Using graph-analytical methods modeling of system objects to determine integrated assessment of their state

In article is determined of object state in researching "system - environment" based on system analytic-graph modeling for representation real relationships and relations between any systems in nature. Justified non-standard solution according to forecasting states and changes results in &...

Full description

Saved in:
Bibliographic Details
Published in:Вопросы атомной науки и техники
Date:2019
Main Authors: Kozulia, T.V., Kozulia, M.M.
Format: Article
Language:English
Published: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2019
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/195152
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Using graph-analytical methods modeling of system objects to determine integrated assessment of their state / T.V. Kozulia, M.M. Kozulia // Problems of atomic science and technology. — 2019. — № 3. — С. 116-123. — Бібліогр.: 12 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-195152
record_format dspace
spelling Kozulia, T.V.
Kozulia, M.M.
2023-12-03T14:17:42Z
2023-12-03T14:17:42Z
2019
Using graph-analytical methods modeling of system objects to determine integrated assessment of their state / T.V. Kozulia, M.M. Kozulia // Problems of atomic science and technology. — 2019. — № 3. — С. 116-123. — Бібліогр.: 12 назв. — англ.
1562-6016
PACS: 519.713: 631.411.6
https://nasplib.isofts.kiev.ua/handle/123456789/195152
In article is determined of object state in researching "system - environment" based on system analytic-graph modeling for representation real relationships and relations between any systems in nature. Justified non-standard solution according to forecasting states and changes results in "system - environment" based on constructed cognitive models and entropy analysis for action direction sustainability and implemented situations assessment. Practical usage of systematic methodological support for complex objects comprehensive research based on graph models sequential analysis. To analyze physical processes displacements between simple ideal system components, which are sources of potential and kinetic energy, changes in its capacity through matter or energy accumulation, is used structural graph-physical processes topological model.
Визначено стан об'єкта при дослідженні "система - середовище", заснованого на системном граф-аналітичному моделюванні для представлення реальних зв'язків та відносин між будь-якими системами в природі. Обгрунтоване нестандартне рішення за прогнозними станами та змінами призводить до стану "системи - середовища", що базується на побудованих когнітивних моделях та аналізі ентропії для оцінки стійкості напрямку діяльності та реалізації ситуації. Практичне використання систематичної методологічної підтримки комплексних об'єктів комплексного дослідження базується на послідовному аналізі моделей графів. Для аналізу фізичних процесів зміщення між простими компонентами ідеальної системи, які є джерелами потенційної та кінетичної енергії, зміни його потужності через накопичення речовини або енергії, використовується структурний граф-топологічна модель фізичних процесів.
Определено состояние объекта при исследовании "система - среда", основанного на системном граф-аналитическом моделировании для представления реальных связей и отношений между любыми системами в природе. Обоснованное нестандартное решение по прогнозным состояниям и изменениям приводит к состоянию "система - среда", основанному на построенных когнитивных моделях и анализе энтропии для оценки устойчивости направления деятельности и реализации ситуации. Практическое использование систематической методологической поддержки комплексных объектов комплексного исследования базируется на последовательном анализе моделей графов. Для анализа физических процессов смещения между простыми компонентами идеальной системы, которые являются источниками потенциальной и кинетической энергии, изменения его мощности через накопление вещества или энергии, используется структурная граф-топологичная модель физических процессов.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Computing and modelling systems
Using graph-analytical methods modeling of system objects to determine integrated assessment of their state
Використання граф-аналітичних методів моделювання системних об'єктів для визначення інтегральної оцінки їхнього стану
Использование граф-аналитических методов моделирования системных объектов для определения интегрированной оценки их состояния
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Using graph-analytical methods modeling of system objects to determine integrated assessment of their state
spellingShingle Using graph-analytical methods modeling of system objects to determine integrated assessment of their state
Kozulia, T.V.
Kozulia, M.M.
Computing and modelling systems
title_short Using graph-analytical methods modeling of system objects to determine integrated assessment of their state
title_full Using graph-analytical methods modeling of system objects to determine integrated assessment of their state
title_fullStr Using graph-analytical methods modeling of system objects to determine integrated assessment of their state
title_full_unstemmed Using graph-analytical methods modeling of system objects to determine integrated assessment of their state
title_sort using graph-analytical methods modeling of system objects to determine integrated assessment of their state
author Kozulia, T.V.
Kozulia, M.M.
author_facet Kozulia, T.V.
Kozulia, M.M.
topic Computing and modelling systems
topic_facet Computing and modelling systems
publishDate 2019
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Використання граф-аналітичних методів моделювання системних об'єктів для визначення інтегральної оцінки їхнього стану
Использование граф-аналитических методов моделирования системных объектов для определения интегрированной оценки их состояния
description In article is determined of object state in researching "system - environment" based on system analytic-graph modeling for representation real relationships and relations between any systems in nature. Justified non-standard solution according to forecasting states and changes results in "system - environment" based on constructed cognitive models and entropy analysis for action direction sustainability and implemented situations assessment. Practical usage of systematic methodological support for complex objects comprehensive research based on graph models sequential analysis. To analyze physical processes displacements between simple ideal system components, which are sources of potential and kinetic energy, changes in its capacity through matter or energy accumulation, is used structural graph-physical processes topological model. Визначено стан об'єкта при дослідженні "система - середовище", заснованого на системном граф-аналітичному моделюванні для представлення реальних зв'язків та відносин між будь-якими системами в природі. Обгрунтоване нестандартне рішення за прогнозними станами та змінами призводить до стану "системи - середовища", що базується на побудованих когнітивних моделях та аналізі ентропії для оцінки стійкості напрямку діяльності та реалізації ситуації. Практичне використання систематичної методологічної підтримки комплексних об'єктів комплексного дослідження базується на послідовному аналізі моделей графів. Для аналізу фізичних процесів зміщення між простими компонентами ідеальної системи, які є джерелами потенційної та кінетичної енергії, зміни його потужності через накопичення речовини або енергії, використовується структурний граф-топологічна модель фізичних процесів. Определено состояние объекта при исследовании "система - среда", основанного на системном граф-аналитическом моделировании для представления реальных связей и отношений между любыми системами в природе. Обоснованное нестандартное решение по прогнозным состояниям и изменениям приводит к состоянию "система - среда", основанному на построенных когнитивных моделях и анализе энтропии для оценки устойчивости направления деятельности и реализации ситуации. Практическое использование систематической методологической поддержки комплексных объектов комплексного исследования базируется на последовательном анализе моделей графов. Для анализа физических процессов смещения между простыми компонентами идеальной системы, которые являются источниками потенциальной и кинетической энергии, изменения его мощности через накопление вещества или энергии, используется структурная граф-топологичная модель физических процессов.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/195152
citation_txt Using graph-analytical methods modeling of system objects to determine integrated assessment of their state / T.V. Kozulia, M.M. Kozulia // Problems of atomic science and technology. — 2019. — № 3. — С. 116-123. — Бібліогр.: 12 назв. — англ.
work_keys_str_mv AT kozuliatv usinggraphanalyticalmethodsmodelingofsystemobjectstodetermineintegratedassessmentoftheirstate
AT kozuliamm usinggraphanalyticalmethodsmodelingofsystemobjectstodetermineintegratedassessmentoftheirstate
AT kozuliatv vikoristannâgrafanalítičnihmetodívmodelûvannâsistemnihobêktívdlâviznačennâíntegralʹnoíocínkiíhnʹogostanu
AT kozuliamm vikoristannâgrafanalítičnihmetodívmodelûvannâsistemnihobêktívdlâviznačennâíntegralʹnoíocínkiíhnʹogostanu
AT kozuliatv ispolʹzovaniegrafanalitičeskihmetodovmodelirovaniâsistemnyhobʺektovdlâopredeleniâintegrirovannoiocenkiihsostoâniâ
AT kozuliamm ispolʹzovaniegrafanalitičeskihmetodovmodelirovaniâsistemnyhobʺektovdlâopredeleniâintegrirovannoiocenkiihsostoâniâ
first_indexed 2025-11-24T21:53:36Z
last_indexed 2025-11-24T21:53:36Z
_version_ 1850496683053416448
fulltext USING GRAPH-ANALYTICAL METHODS MODELING OF SYSTEM OBJECTS TO DETERMINE INTEGRATED ASSESSMENT OF THEIR STATE T.V.Kozulia, M.M.Kozulia∗ National Technical University ”Kharkiv Polytechnic Institute”, 61002, Kharkiv, Ukraine (Received March 18, 2018) In article is determined of object state in researching ”system – environment” based on system analytic-graph model- ing for representation real relationships and relations between any systems in nature. Justified non-standard solution according to forecasting states and changes results in ”system – environment” based on constructed cognitive models and entropy analysis for action direction sustainability and implemented situations assessment. Practical usage of systematic methodological support for complex objects comprehensive research based on graph models sequential analysis. To analyze physical processes displacements between simple ideal system components, which are sources of potential and kinetic energy, changes in its capacity through matter or energy accumulation, is used structural graph – physical processes topological model. PACS: 519.713: 631.411.6 1. INTRODUCTION Modern system theory presupposes the existence of systemic entities in the form of socio-economic, socio- ecological, ecological and economic objects of natural and man-made content, which relate to complex sys- tems, and, in accordance with sustainable develop- ment provisions, they are united in socio-ecological and economic research objects [1, 2]. A special com- ponent for such systems is an information component that takes into account the qualitative characteristics of both individual elements and their relationships. The unstable systems state leads to crises that are conventionally equated with qualitative transforma- tions in them. Thus, the study of modern complex systems is becoming relevant in the processing of in- formation data in accordance with the standard sys- tem approach and the latest methods of information theory [3]. Decision-making is an analogue of information ex- change and is the basis of activity, including manage- ment. The decision is determined by the achievement of the goal in choosing the best (more acceptable, op- timal) alternative from possible variety of options for the purpose. Under the research object study or development in accordance with the general definition of J. Clare [1] is understood part of the world, which for a given period of time is a unit that reflects the natural (ecological), economic and social aspects of life. The object interacts with environment, which is central to the investigated integrity [3] (as opposed to existing approaches in solving complex system problems, be- cause it is the basis of the functionality of the object). 2. THE STUDY GOAL AND TASKS Investigated object assessment, organizational struc- ture and multifunctionality by components ex- pense, multidimensionality and knowledge diversity in proper systems determining, initial conditions for their creation, require a system analysis, enhanced to manage situation or support / change the system by a new element / property. A special feature of such an analytical center should be complexity, in- formation efficiency of state and processes identifica- tion in components and object in general, taking into account environment and interaction with it, which creates uncertainty at inaccuracies, fuzziness, incom- pleteness information providing complexity increase and corresponding knowledge lack of it nature for different systems – technical, economic, social, bio- logical, ecological. Thus, the task of creating not just an information system as in the analysis object, but also the information shell toolkit, which allows to give an assessment and integrate into a single information space knowledge about system and process solved in such tasks: 1) determination of object state in researching ”system – environment” based on system analytic- graph modeling for representation real relationships and relations between any systems in nature; 2) justification of non-standard solution according to forecasting states and changes results in ”system – environment” based on constructed cognitive models ∗Corresponding author E-mail address: mariya.kozulya7@gmail.com 116 ISSN 1562-6016. PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2019, N3(121). Series: Nuclear Physics Investigations (71), p.116-123. and entropy analysis for action direction sustainabil- ity and implemented situations assessment; 3) practical use of systematic methodological support for complex objects comprehensive resaech based on graph models sequential analysis. 3. SCIENTIFIC RESULTS Information visualization about the system as a re- search object is widely used in various activity fields: biological sciences, artificial intelligence, financial in- formation analysis, etc. At solving complex problems of studying state and functional correspondences at interaction ”system – environment” at resaerch level ”state – process – state” proposed to refer to topo- logical models – observational graphical display of el- ements efficiency and system in whole to determine system state indicators, taking into account its struc- ture, elements interaction, functionality and external influence both from the side of environment and con- trol action. Topological models contain structural (structural- logical) schemes, parametric graphs, logic-functional graphs (transitions intensity and state changes), sig- nal graphs, tree failures. Organizing optimizing communications task solv- ing in complex systems from the determining stand- point it state and possible adjustments assessment in order to achieve maximum systems functionality and interaction with environment, have to deal with information flows and a significant amount by calcu- lation and logical procedures. In this case, it is ap- propriate to use analyzed objects topological models in form of information flow multigraphs, parametric information and signal graphs, using optimal strategy algorithms. Topological model appling allow using the in- formation on GIS and establish investigated system state and its relations with surrounding systems of different nature: natural, namely ecosystems, so- cial and economic, formed natural-technogenic re- search object for ”state – process – state” analy- sis. This approach involves the consistent solution of deterministic tasks, statistical nature of informa- tion support and dynamic, associated with influence on system, processes in it and the regulatory action on it to achieve stationary sustainable development. Combination of topological and cognitive models is suggested, where information base is taken for fac- tors study as self-regulating mechanisms definition for ”system – environment”, decisions on this system object quality management. To analyze physical processes displacements be- tween simple ideal system components, which are sources of potential and kinetic energy, changes in its capacity through matter or energy accumulation, is used structural graph – physical processes topolog- ical model. It is proposed to use simpler and mathematically rigorous concept for programming with graphs loaded only on horizontal arcs by symbols, expressions, and functions from elementary mathematics. Such graph is polyglot, has the ISO 8631/1989 standard and only one is effectively used throughout software develop- ment and operation process life cycle. Error-free design processes of algorithms, pro- grams, data, network graphs, proof of their correct- ness, self-documentation and decision making docu- menting motivation are greatly simplified, improved and accelerated [4, 5]. Uncertainties overcoming due to unpredictable situations in systems, stochastic – in the natural and some knowledge lack about natural-technogenic for- mations occur according to logical analysis procedure in topological graphs system, which ensures decision- making reliability and backed by knowledge oriented base. This base consists of a corresponding infor- mation set on state, processes and optimization re- search systems and optimization decomposition prin- ciples, construction special mathematical modeling programs of complex systems. The availability of such source data and provided research objects mod- els is the base for solving majority technical problems providing strategy building for solving research prob- lems based on what becomes possible due to topolog- ical models in form of information stream multimo- graphs and information graphs. The general task model for achieving the goal in this case has form: φ (my) = s∑ i=1 ∫ cif (y,my, σy) dy, where φ (my) – estimated function – efficiency func- tion of nominal optimum from mathematical ex- pectation of random variable Y (indicator, factor); f (y,my, σy) – distribution density Y : my, σy – math- ematical expectation and mean square deviation re- spectively; ci – utility i-th interval ⌈yiH , yiB⌉ of val- ues Y ; YiB∫ YiH f(y,my, σy) – probability of falling y in i-th values interval. For ecological and economic tasks of environ- mental quality management denomination is a value that corresponds to objective homeostasis function while preserving natural environment quality Y : my = mynom. Thus, the denomination search – set- ting for these conditions such relationships and pro- cesses of systems coexistence within an object that provides the minimum energy tension and corre- sponding maximum entropy that does not lead to its changes m0 y, that is, maximum systems ordering, effective functionality maximum: max my φ(my) = φ0. Target changes achievement in the best way by max- imizing rule of generalized efficiency function of nom- inal optimum takes the form: φ0 max my φ ( Mh, t ) = ∫∫ S ... ∫ C(y)f ( y,Mh, t ) dcdydt, taking into account the constraints on the generalized efficiency function as moments control condition Mh 117 distribution: f(y,Mh): Mh = φ ( X, t ) , h = 1, 2, 3, 4 and constraints on managing factors X ∈ Xadd and resultant one Y ∈ Yadd. In complex systems analysis, identification it state in quality management terms, it is advisable to switch to cognitive models, which allows to determine possi- ble variants of its behavior by pulsed modeling on cognitive maps, obtain the necessary implementa- tions number of pulsed processes [6, 7]. Cognitive modeling technology allows to deter- mine possible and rational situation managing ways in order to transition from initial to goal states ac- cording to revealed factors of significant impact on events development in system with internal changes in it and external interaction with environment [8]. Thus, cognitive model determines system state and its occurrence in certain situation in general – ”sys- tem – (system – environment) – process – situational system state”, based on logic, knowledge and experi- ence. In practice dynamic systems dominate, where dif- ferent processes take place both in nature, society and in technical devices, and it is therefore advisable to refer to such system definition provided by Optin [9]: system is a process that goes. It is therefore neces- sary to substantiate the basis for the synthesis and analysis of various specific complex systems. Such system must include the object as material physi- cal education, processes that occur when it interacts with environment, in it with self-regulation, support and homeostatic relations restoration with the envi- ronment, stochastic transformations with new system structure self-organization. Structural research con- tinuity, for such complex systems, is ensured by re- search system model image usage in form of topolog- ical graph. Topological models – graph, simplicial complex, CW-complexes, provide system analysis integrity un- der conditions of polydisciplinary approach usage when considering problem tasks in assessment and objects study based on psychology knowledge and system representations about social systems, animate and inanimate nature, man-made environments or- ganization that provide symbiotic relations between man and technical systems. Taking into account introduced symbols accord- ing to researched object components: X1, X2, X3, X4 – economic, social and ecological systems state and environment according to influence independent vari- able as assessment start X0 – input value represented as a three-contour oriented graph, which is gener- alized model of dynamic system and processes in it (Fig.1). Fig.1. System object structure schema in form of topologic model – oriented graph G = G ( X,A ) : Xi,j – coordinate set of analized system, where i – system number, where information received; j – system number, wich have influence, give an information; A – set of all connections between systems aji Intoduced graph represents a system object, which is defined by three closed loops structure, two of which have inverse negative bonds and one com- mon with positive inverse bond, external inverse in- formation bond – a40. Each system in such interac- tion with environment characterized by certain infor- mativeness level, which depends on information com- munications state aji, i.e. xi = N∑ i=0 ajixi, i = 0, N , where N – systems number involved in analysis with environment consideration – ”system – environ- ment”. According to structure object, presented as topological graph in Fig.1, following informativeness is determined for systems: x1 = a01x0 − a21x2 + a41x4; x2 = a12x1; x3 = a23x2 − a43x4; x4 = a34x3.  (1) Under the provided equations system from structured scheme, graph variables are determined by Cramer method: xi = ∆i ∆ , where ∆ – main system determi- nant; ∆i – separate determinant. For k independent variables used expression xi = ∑ k ∆ikxk ∆ . For taking into account all information about state ”system – environment” – the system proper- ties through interactions variables and parameters, involve matrix methods: A · X̌ = B · Y̌ , where A,B – matrices of numerical system coefficients; X,Y – coordinates vector; or X = CY,C = A−1B. According to requirements of the World Bank and the International Finance Corporation, the environ- mental assessment of man-made systemic entities co- existence and natural is determined by information on environmental impact assessment (EIA) results, ecological audit, ecological risk assessment, environ- mental protection plan. When establishing this gen- 118 eral dynamic equilibrium indicator in the corporate natural-technogenic research object representation by state and processes analysis in it along with cognitive maps structural matrices are used with corresponding purposes. System structural components transfer functions view of direct relation Wdr and feedback Wfdb be- tween elements determine input influence transfor- mation xinput in initial characteristic of this process and dynamic changes given by operator polynomials relation: xoutput (s) xinput (s) = Ws = Q (s) R (s) , (2) where Q (s) – personal operator of dynamic element (component, system) that characterizes its proper- ties; R (s) – communication operator between dy- namic elements; s – complex variable in the Laplace transform operator, which under zero initial condi- tions is analogous to differentiation operator p = d dt . Thus, information transmission through any structural element of considered system (object) is characterized by a transfer function Φs = Wdr (s) 1−Wdr (s) ·Wfdb (s) . (3) For transformation processes analysis, transfer function is revised accordingly, which according to introduced entropy approach changes characteristics in complex object ”state – process – state” constitute information, proceeding from the following: arbitrary processes function is characterized by ”deep” excel- lent values, that is S → −∞ , but for reverse process Srv.p ≈ Wrv.con (s) → 0. In transition to change factors analysis and their relationship according to elements interaction within system it is expedient to use information transfer characteristic from one concept to another using Mai- son formula, which is dynamics assessment and at the same time reliability (as ability to transmit external influence / information and remain structured enti- ties) systems: Kjl = ∑ s PsDs D , (4) where Kjl – transfer rate from some source j to l-th vertex graph; D – general graph determinant, simi- lar to main determinant equations system describing system elements; Ps – information transfer (or direct process probability as arbitrary in interaction entropy terms) s-th through path from source j to l-th vertex graph; Ds – an algebraic complement to certain s-th through path. In turn, D,Ds, and Ps are determined by such rules. Values D,Ds reflect transmission by graph con- tours, taking into account all contours, contiguous and discontiguous contours, namely for D. D = 1− ∑ r L(1) r + ∑ r L(2) r ∑ r L(3) r + . . . , (5) where ∑ r L (1) r – transfers sum along all r graph con- tours; ∑ r L (2) r – products sum of all passon combi- nations for two discontiguous contours; ∑ r L (3) r – the same for three discontiguous contours, etc. Algebraic supplementDs is determined by the for- mula (4) and by the same rules only taking into ac- count discontiguous contours (which have no common vertices) with s-th through path. Transmission Ps is one of all transfer product vari- ants between intermediate vertices from j-th sources to l-th (finite) vertex: Ps = i−l∏ j aji, (6) where aji – transfer from j-th to i-th structural ele- ment in the contour, graph. Similarly, transmissions along contours L are de- termined. As an example of topological models calcula- tions, consider graph on Fig.1. The graph has only one cross-sectional path from initial vertex to finale and three contours, all of which are faced with this through path. Two contours L1, L2 not facing with each other. Determining elements the total transmis- sion coefficient are: L1 = −a12 · a21;L1 = −a34 · a43; L1 = a12 · a23 · a34 · a41; D = 1− (L1 + L2 + L3) + (L1 · L2) = = 1− (−a12 · a21 − a34 · a43 + a12 · a23 · a34 · a41)+ + (a12 · a21 · a34 · a43) ; P04 = a01 · a12 · a23 · a34;D04 = 1 . Output data is entered into graph transfer for- mula (5) for determining coefficient value: K04 = P04D04 D = = a01 · a12 · a23 · a34 · 1 1− (−a12 · a21 − a34 · a43 + a12 · a23 · a34 · a41)+ +(a12 · a21 · a34 · a43) = = a01 · a12 · a23 · a34 · 1 1 + a12 · a21 + a34 · a43 − a12 · a23 · a34 · a41+ +a12 · a21 · a34 · a43 . The general links orientation between system el- ements, structuring it in integrity with the realiza- tion of certain properties, should reflect whole pro- cess progress in converting inputs into outputs. The importance for maintaining a stable process is impor- tant for system stability. This is possible if composite elements are combined into closed contour with neg- ative feedback. In general dynamic system physics reflects different connections and contours set that make up input, output, and itself process set – sys- tem core. The system’s input and output are defined as multi-dimensional vectors X input, Xouput Commu- nications in system core, as elementary cores outputs, 119 in totality made up system vector state X ′′ state which corresponds to generally accepted systems mathe- matical description. For complex state and processes representation in analytical system proposed to provide system struc- ture in structural entropy matrix form, which reflects elements state correspondence and processes direc- tion in elements relatively other elements state. In contrast to O. Long, dynamic system state is interpreted in following way: a stable / constant (per- sistant) system has formed elements, that is struc- tured, hence its entropy equals to ”0”, otherwise matrix diagonal will be inconsistency value by state function or the situation uncertainty according to in- formation entropy (local can reach its maximum of 0.38) [10, 11]; processes in system with support of its stable structure – ”1”, its negative consequences – ”- 1”, with system maintenance in equilibrium, natural quality – ”0” (”Sij”) (Fig.2). Fig.2. ”Structure system matrix” and ”action variaty matrix” given in view ”structure entropy matrix of dinamic system” Main diagonal elements are the own operators of system dynamic parts (operating elements, in O. Lange terminology) Q (s). On both sides of diagonal and on right side of matrix, operators are mapped R (s) (see (2)), which are used for structural complex system formations studies. System objects of natural and man-made content are defined as target-oriented complexes, which in- clude aims namely – the base of research, analysis and evaluation, object state, input and output in- formation resources, the object environment directly (Fig.3). Fig.3. Structure matrix ”system – environment” according to given aims taking into account components and relations in system kernel In proposed complex systems research direc- tion by information-entropy (entropy-information) approach with synergetic analysis elements (syner- getics), the indicated division into groups [12] is as- sociated with analyzed object division into 3 systems ”(system-environment) – processes-external environ- ment – system state” or socio-ecological-economic system, which is information input (socio-economic aspects), research system core (socio-economic ele- ments) and environment (socio-ecologycal aspects – natural (ecological) systems state and men health). According to this structural matrix form [12] is changes – input from the left as information flow components properties has an impact on the research 120 structure core elements, the right output factors that have an impact on the external environment. Con- struction and analysis by such matrix complex sys- tem (object of research) state according to the infor- mation entropy is envisaged, which includes dynamic system entropy that is evaluation according to en- tropy function (state – process – state) and synergy with regard to the order establishment by the self – organizing mechanism of arbitrary processes. It is proposed to modify and complete complex system research object analysis. According to ob- served data by received structural matrix, it is expe- dient to construct a model in graph form which have cognitive map content, that is the base of the factor analysis in relation to the systems dynamics and de- termination self-organization direction regarding the structurization of a stable systemic formation by in- fluence factors – x1, x2, x3, x4 (first factors group) re- sponsible x̄input = x̄6, x̄7, x̄8, x̄9 provided internal sys- tem structure functionality provision (x1, x2 – system development contributing, x3, x4 – negative impact) and system elements state, namely x5, x6, x7, x8, x9 (second group) are relevant x̄syst = x̄1, x̄2, x̄3, x̄4, x̄5 , and action factors on external environment by sys- tem side x̄output (third factors group) positive char- acter x10 (system performance) and negative impact in form of waste x11 (Fig.4). Fig.4. Schema of system object graph model – oriented graph G = G (X,A): X – set of analized systems: X1, X2, X3, X4 – environment recourses; climate; socio-economic environment; transport; X5, X6, X7, X8, X9 – state of atmosphere; hydrosphere; soil; flora, fauna; X10 – man state; X11 – external ecological environ- ment; A – connections between systems aji where i – information entrance system, j – information exit system According to internal link data between param- eters / properties X{xi} object components (exter- nal influence systems – investigated object system – target identification systems (initial influences recep- tion systems)) determine system object mathematical model: aiixj = l∑ i=1,j ̸=l aji · xj (i = 1, 2, ..., n) . (7) Depending on harmful effects intensity on given 121 approaches to modeling, ”environment – system – en- vironment” can roughly calculate the decline in hu- man health, population and, consequently, its social impact reduction. The negative influence of external environment on reproductive function is expressed in its functionality decrease or defective offspring ap- pearance due to gametes mutation, fetal developmen- tal disorders, neuroendocrine transformation in body due to stress (Fig.5). Fig.5. Systems object graphical model schema – topological-cognitive model of object ”organism = (envi- ronment – systems) – functionality – object state”:→ – material and energy connections between system elements; – → – data transmission about general influence of factor physical activity on system Thus, state and processes analysis and evalua- tion in system object developed for study due to at- tracted methodological support system for consistent problem tasks solution, evaluation task solution in uncertainty conditions allows to obtaine results on a strict object base according to proposed combina- tion of complex and system approaches into a single whole. 4. CONCLUSIONS 1) To determine object systems transition dynam- ics to co-operative coherence to achieve synergistic realization set target point of positive states and sta- ble functionality is proposed to use graph models of natural and man-made objects for ”state (system – environment) – process – system state” research. 2) Highly structured system ”object – environ- ment” state assessment (see Figures 4, 5) and risk- free solution adoption for stabilizing component sys- tems, obtaining new systems properties, development for target system used subject area conceptual mod- els in structural matrix form of complex systems (”object – environment”) with knowledge-oriented databases development, which are based on research methods, knowledge, information systems, namely structural matrix ”organization – process (function- ality)”, ”information structure – functionality”, ”or- ganization – knowledge-oriented information struc- ture”. References 1. KlirDzh. Systemology. Automatization of system problem solving. Moscow: ′′Radio i svjaz'′′. 1990, 540 p. (in Russian). 2. M.Z. Zhurovs'kyy, N.D.Pankratova. System analyses foundations. Kiev: ′′Vydavnycha grupa BHV′′. 2007, 544 p. (in Russian). 122 3. T.V.Kozulia, M.M.Kozulia. Integrated information system assessment of complex objects safety level // Bulletin of NTU KhPI. Series "System analysis, control and information technology". Kharkov: NTU KhPI, 2017, N55(1276), p.39-45. 4. I.V.Velbitskiy. Graphical Programming and Program Correctness Proof, IEEE: 10.1109/ CSIT-13.6710368, 2013, p.85-89. 5. I.V.Velbitskiy. New Graphic Poliglot Concept of Programming // IEEE 40th Annual COMPSAC. 2016, USA, p.139-144. 6. G.V.Gorelova, E.N. Zaharova, S.N.Radchenko. Issledovanie slabostrukturirovannyh problem social'no-jekonomicheskih sistem: kognitivnyj pohod. Rostov n/Donu: Izd. "RGU 2006, 332 p. 7. Innovacionnoe razvitie sociojekonomicheskih sistem na osnove metodologij predvidenija i kognitivnogo modelirovanija / Pod red. G.V.Gorelovoj, N.D.Pankratovnoj. Kiev: ′′Naukova Dumka′′. 2015, 464 p. (in Russian). 8. M.Z. Zgurovskij, V.A. Pankratov. Strategija innovacionnogo razvitija regiona na osnove sinteza metodologij predvidenija i kognitivnogo modelirovanija // Sistemni doslidzhennja ta informatzijni tehnologii. 2014, N2, p.7-17 (in Ukrainian). 9. S.Optner. Sistemnyj analiz dlja reshenija delovyh i promyshlennyh problem. M.: ′′Sovetskoe radio′′, 1969, 216 p. (in Russian). 10. I.V. Prangishvili. Entropijnye i drugie sistemnye zakonomernosti: Voprosy upravlenija slozhnymi sistemami. M.: ′′Nauka′′. 2003, 428 p. (in Russian). 11. T.V.Kozulia, M.A.Belova, M.M.Kozulia, N.G. Fonta. Informacionnoe obespechenie analiza bezopasnosti prirodno-tehnogennyh obektov v kontekste ih vzaimodejstvija s okruzhajushhej sredoj // International Scienti�c Journal. 2016, N3(56), p.72-81 (in Russian). 12. L.G. Shatihin Strukturnye matricy i ih primenenie dlja issledovanija sistem. M.: ′′Mashinostroenie′′. 1991, 256 p. (in Russian). ÈÑÏÎËÜÇÎÂÀÍÈÅ ÃÐÀÔ-ÀÍÀËÈÒÈ×ÅÑÊÈÕ ÌÅÒÎÄΠÌÎÄÅËÈÐÎÂÀÍÈß ÑÈÑÒÅÌÍÛÕ ÎÁÚÅÊÒΠÄËß ÎÏÐÅÄÅËÅÍÈß ÈÍÒÅÃÐÈÐÎÂÀÍÍÎÉ ÎÖÅÍÊÈ ÈÕ ÑÎÑÒÎßÍÈß Ò.Â.Êîçóëÿ, Ì.Ì.Êîçóëÿ Îïðåäåëåíî ñîñòîÿíèå îáúåêòà ïðè èññëåäîâàíèè ′′ñèñòåìà � ñðåäà′′, îñíîâàííîå íà ñèñòåìíîì ãðàô- àíàëèòè÷åñêîì ìîäåëèðîâàíèè äëÿ ïðåäñòàâëåíèÿ ðåàëüíûõ ñâÿçåé è îòíîøåíèé ìåæäó ëþáûìè ñè- ñòåìàìè â ïðèðîäå. Îáîñíîâàííîå íåñòàíäàðòíîå ðåøåíèå ïî ïðîãíîçíûì ñîñòîÿíèÿì è èçìåíåíèÿì ïðèâîäèò ê ñîñòîÿíèþ ′′ñèñòåìû � ñðåäû′′, îñíîâàííîìó íà ïîñòðîåííûõ êîãíèòèâíûõ ìîäåëÿõ è àíà- ëèçå ýíòðîïèè äëÿ îöåíêè óñòîé÷èâîñòè íàïðàâëåíèÿ äåÿòåëüíîñòè è ðåàëèçàöèè ñèòóàöèè. Ïðàêòè÷å- ñêîå èñïîëüçîâàíèå ñèñòåìàòè÷åñêîé ìåòîäîëîãè÷åñêîé ïîääåðæêè êîìïëåêñíûõ îáúåêòîâ êîìïëåêñ- íîãî èññëåäîâàíèÿ áàçèðóåòñÿ íà ïîñëåäîâàòåëüíîì àíàëèçå ìîäåëåé ãðàôîâ. Äëÿ àíàëèçà ôèçè÷åñêèõ ïðîöåññîâ ñìåùåíèÿ ìåæäó ïðîñòûìè êîìïîíåíòàìè èäåàëüíîé ñèñòåìû, êîòîðûå ÿâëÿþòñÿ èñòî÷íè- êàìè ïîòåíöèàëüíîé è êèíåòè÷åñêîé ýíåðãèè, èçìåíåíèÿ åãî ìîùíîñòè ÷åðåç íàêîïëåíèå âåùåñòâà èëè ýíåðãèè, èñïîëüçóåòñÿ ñòðóêòóðíàÿ ãðàô-òîïîëîãè÷íàÿ ìîäåëü ôèçè÷åñêèõ ïðîöåññîâ. ÂÈÊÎÐÈÑÒÀÍÍß ÃÐÀÔ-ÀÍÀËIÒÈ×ÍÈÕ ÌÅÒÎÄI ÌÎÄÅËÞÂÀÍÍß ÑÈÑÒÅÌÍÈÕ ÎÁ'�ÊÒI ÄËß ÂÈÇÍÀ×ÅÍÍß IÍÒÅÃÐÀËÜÍÎ� ÎÖIÍÊÈ �ÕÍÜÎÃÎ ÑÒÀÍÓ Ò.Â.Êîçóëÿ, Ì.Ì.Êîçóëÿ Âèçíà÷åíî ñòàí îá'¹êòà ïðè äîñëiäæåííi ′′ñèñòåìà � ñåðåäîâèùå′′, çàñíîâàíèé íà ñèñòåìíîìó ãðàô- àíàëiòè÷íîìó ìîäåëþâàííi äëÿ ïðåäñòàâëåííÿ ðåàëüíèõ çâ'ÿçêiâ òà âiäíîñèí ìiæ áóäü-ÿêèìè ñèñòåìà- ìè â ïðèðîäi. Îáãðóíòîâàíå íåñòàíäàðòíå ðiøåííÿ çà ïðîãíîçíèìè ñòàíàìè òà çìiíàìè ïðèçâîäèòü äî ñòàíó ′′ñèñòåìè � ñåðåäîâèùà′′, ùî áàçó¹òüñÿ íà ïîáóäîâàíèõ êîãíiòèâíèõ ìîäåëÿõ òà àíàëiçi åíòðîïi¨ äëÿ îöiíêè ñòiéêîñòi íàïðÿìêó äiÿëüíîñòi òà ðåàëiçàöi¨ ñèòóàöi¨. Ïðàêòè÷íå âèêîðèñòàííÿ ñèñòåìàòè÷- íî¨ ìåòîäîëîãi÷íî¨ ïiäòðèìêè êîìïëåêñíèõ îá'¹êòiâ êîìïëåêñíîãî äîñëiäæåííÿ áàçó¹òüñÿ íà ïîñëiäîâ- íîìó àíàëiçi ìîäåëåé ãðàôiâ. Äëÿ àíàëiçó ôiçè÷íèõ ïðîöåñiâ çìiùåííÿ ìiæ ïðîñòèìè êîìïîíåíòàìè iäåàëüíî¨ ñèñòåìè, ÿêi ¹ äæåðåëàìè ïîòåíöiéíî¨ òà êiíåòè÷íî¨ åíåðãi¨, çìiíè éîãî ïîòóæíîñòi ÷åðåç íàêîïè÷åííÿ ðå÷îâèíè àáî åíåðãi¨, âèêîðèñòîâó¹òüñÿ ñòðóêòóðíà ãðàô-òîïîëîãi÷íà ìîäåëü ôiçè÷íèõ ïðîöåñiâ. 123 124