Small-size direct-action electron accelerator with a high-efficiency nanosecond plasma-current switch
The paper presents the results of a study undertaken to determine operating modes for a small-size direct-action electron accelerator with a high-efficiency nanosecond plasma-current switch (PCS). The investigations have shown that using PCS as a base it is possible to develop small-size nanosecond...
Saved in:
| Date: | 2019 |
|---|---|
| Main Authors: | , |
| Format: | Article |
| Language: | English |
| Published: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2019
|
| Series: | Вопросы атомной науки и техники |
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/195157 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Small-size direct-action electron accelerator with a high-efficiency nanosecond plasma-current switch / E.I. Skibenko, V.B. Yuferov // Problems of atomic science and technology. — 2019. — № 4. — С. 10-14. — Бібліогр.: 10 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-195157 |
|---|---|
| record_format |
dspace |
| spelling |
nasplib_isofts_kiev_ua-123456789-1951572025-02-10T01:16:47Z Small-size direct-action electron accelerator with a high-efficiency nanosecond plasma-current switch Малогабаритний прискорювач електронів прямої дії з ефективним плазмовим комутатором струму наносекундного діапазону Малогабаритный ускоритель электронов прямого действия с эффективным плазменным коммутатором тока наносекундного диапазона Skibenko, E.I. Yuferov, V.B. Non-relativistic and relativistic electronics The paper presents the results of a study undertaken to determine operating modes for a small-size direct-action electron accelerator with a high-efficiency nanosecond plasma-current switch (PCS). The investigations have shown that using PCS as a base it is possible to develop small-size nanosecond pulsed high-current electron accelerators with a voltage pulse sharpening coefficient of about 12, beam (flow) electron energy of 300…400 keV and current of 100 kA for pulse duration of 30 ns. The ways for improving the PCS and accelerator operating parameter stability, increasing the switching current and maximum accessible switching frequency are proposed. Представлені результати досліджень режимів роботи малогабаритного прискорювача електронів прямої дії з ефективним плазмовим комутатором струму (ПКС) наносекундного діапазону. Показано, що на основі ПКС можливе створення малогабаритних імпульсних сильнострумових електронних прискорювачів наносекундного діапазону з коефіцієнтами загострення імпульсу напруги до величини, що дорівнює 12, енергією електронів пучка (потоку) 300…400 кеВ і струмом ≈ 100 кА на протязі 30 нс. Запропоновані шляхи для підвищення стабільності робочих параметрів ПКС і прискорювача в цілому, збільшення величини струму комутації, а також шляхи зростання величини гранично можливої частоти комутацій. Представлены результаты исследований режимов работы малогабаритного ускорителя электронов прямого действия с эффективным плазменным коммутатором тока (ПКТ) наносекундного диапазона. Показано, что на базе ПКТ возможно создание малогабаритных импульсных сильноточных электронных ускорителей наносекундного диапазона с коэффициентами обострения импульса напряжения до 12, энергией электронов пучка (потока) 300…400 кэВ и током 100 кА при длительности импульса 30 нс. Предложены пути для повышения стабильности рабочих параметров ПКТ и ускорителя в целом, увеличения значения коммутируемого тока, а также пути увеличения предельно достижимой частоты коммутаций. 2019 Article Small-size direct-action electron accelerator with a high-efficiency nanosecond plasma-current switch / E.I. Skibenko, V.B. Yuferov // Problems of atomic science and technology. — 2019. — № 4. — С. 10-14. — Бібліогр.: 10 назв. — англ. 1562-6016 PACS: 621.316.543 https://nasplib.isofts.kiev.ua/handle/123456789/195157 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
English |
| topic |
Non-relativistic and relativistic electronics Non-relativistic and relativistic electronics |
| spellingShingle |
Non-relativistic and relativistic electronics Non-relativistic and relativistic electronics Skibenko, E.I. Yuferov, V.B. Small-size direct-action electron accelerator with a high-efficiency nanosecond plasma-current switch Вопросы атомной науки и техники |
| description |
The paper presents the results of a study undertaken to determine operating modes for a small-size direct-action electron accelerator with a high-efficiency nanosecond plasma-current switch (PCS). The investigations have shown that using PCS as a base it is possible to develop small-size nanosecond pulsed high-current electron accelerators with a voltage pulse sharpening coefficient of about 12, beam (flow) electron energy of 300…400 keV and current of 100 kA for pulse duration of 30 ns. The ways for improving the PCS and accelerator operating parameter stability, increasing the switching current and maximum accessible switching frequency are proposed. |
| format |
Article |
| author |
Skibenko, E.I. Yuferov, V.B. |
| author_facet |
Skibenko, E.I. Yuferov, V.B. |
| author_sort |
Skibenko, E.I. |
| title |
Small-size direct-action electron accelerator with a high-efficiency nanosecond plasma-current switch |
| title_short |
Small-size direct-action electron accelerator with a high-efficiency nanosecond plasma-current switch |
| title_full |
Small-size direct-action electron accelerator with a high-efficiency nanosecond plasma-current switch |
| title_fullStr |
Small-size direct-action electron accelerator with a high-efficiency nanosecond plasma-current switch |
| title_full_unstemmed |
Small-size direct-action electron accelerator with a high-efficiency nanosecond plasma-current switch |
| title_sort |
small-size direct-action electron accelerator with a high-efficiency nanosecond plasma-current switch |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| publishDate |
2019 |
| topic_facet |
Non-relativistic and relativistic electronics |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/195157 |
| citation_txt |
Small-size direct-action electron accelerator with a high-efficiency nanosecond plasma-current switch / E.I. Skibenko, V.B. Yuferov // Problems of atomic science and technology. — 2019. — № 4. — С. 10-14. — Бібліогр.: 10 назв. — англ. |
| series |
Вопросы атомной науки и техники |
| work_keys_str_mv |
AT skibenkoei smallsizedirectactionelectronacceleratorwithahighefficiencynanosecondplasmacurrentswitch AT yuferovvb smallsizedirectactionelectronacceleratorwithahighefficiencynanosecondplasmacurrentswitch AT skibenkoei malogabaritniipriskorûvačelektronívprâmoídíízefektivnimplazmovimkomutatoromstrumunanosekundnogodíapazonu AT yuferovvb malogabaritniipriskorûvačelektronívprâmoídíízefektivnimplazmovimkomutatoromstrumunanosekundnogodíapazonu AT skibenkoei malogabaritnyiuskoritelʹélektronovprâmogodeistviâséffektivnymplazmennymkommutatoromtokananosekundnogodiapazona AT yuferovvb malogabaritnyiuskoritelʹélektronovprâmogodeistviâséffektivnymplazmennymkommutatoromtokananosekundnogodiapazona |
| first_indexed |
2025-12-02T10:34:36Z |
| last_indexed |
2025-12-02T10:34:36Z |
| _version_ |
1850392368286531584 |
| fulltext |
ISSN 1562-6016. ВАНТ. 2019. №4(122) 10
SMALL-SIZE DIRECT-ACTION ELECTRON ACCELERATOR WITH
A HIGH-EFFICIENCY NANOSECOND PLASMA-CURRENT SWITCH
E.I. Skibenko, V.B. Yuferov
National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine
E-mail: skibenko38@gmail.com
The paper presents the results of a study undertaken to determine operating modes for a small-size direct-action
electron accelerator with a high-efficiency nanosecond plasma-current switch (PCS). The investigations have shown
that using PCS as a base it is possible to develop small-size nanosecond pulsed high-current electron accelerators
with a voltage pulse sharpening coefficient of about 12, beam (flow) electron energy of 300…400 keV and current
of 100 kA for pulse duration of 30 ns. The ways for improving the PCS and accelerator operating parameter stabil-
ity, increasing the switching current and maximum accessible switching frequency are proposed.
PACS: 621.316.543
INTRODUCTION
Development of medium-size high-current electron
accelerators (HEA) can be realized using a combination
of inductive storage rings (ISR) and plasma-current
switches (PCS) [1 - 10]. To perform the proposed de-
sign it is necessary to define the following: design ser-
vice life of HEA and components, as well as its deter-
mining factors; pulse repetition rate and possibility of
stabilizing the output device parameters (current, volt-
age, pulse duration); values of the voltage multiplication
factor within different energy ranges and energy-to-load
transfer; dynamical and integral plasma-vacuum charac-
teristics of the discharge gap; possibility of developing a
small-size pulsed accelerating installation in the
transport variant with parameters: voltage of 200…300
kV; current of 100 kA; pulse duration of several tens ns.
1. EXPERIMENTAL INSTALLATION
Experiments have been carried out on the small-size
electron accelerator DI [10] equipped with a plasma-
current switch (PCS) [6, 9], which is schematically rep-
resented in Fig. 1.
The accelerator is built up of a vacuum chamber
having 200 mm diameter and 350 mm height compris-
ing a system of electrodes, plasma guns and magnetic
coils, pulse current generator (PCG), power supplies for
plasma guns and magnetic field, trigger-pulse and tim-
ing unitnoise-protective means, diagnostic infrastructure
and evacuation post.
Principal electric primary circuit parameters of the
accelerator DI are: central electrode (cathode) voltage,
about 50 kV; storage capacitor capacity, 3 mf; storage
capacitor inductance, 40 nH; plasma current switch in-
ductance, 122 nH; load (diode) inductance, 25 nH;
plasma gun supply voltage, about 15 kV.
Discharge gap filling with plasma has been carried
out using 12 planar-type plasma guns [7] (Fig. 2) uni-
formly spaced in the equatorial plane of the vacuum
chamber (see Fig. 1).
The gun is a two-electrode coaxial system with a
fluoroplastic insulator having a thickness of about
1 mm. The discharge of the capacitor (capacity 0.25 µf,
voltage 15 kV) leads to the breakdown throughout the
insulator ring face and to the formation of a carbon-
hydrogen plasma bunch radially propagating in the di-
rection of the central electrode-cathode.
The experiment over a long period of time demon-
strated a high reliability of this-type guns. Their service
life is not less than 104 pulses. Figs. 3 and 4 present the
equivalent [7] and principal [6] electric circuit of the
installation under study.
Fig. 1. Schematic view of the accelerator DI:
1 – vacuum chamber; 2 – cathode; 3 – insulator;
4 – anode; 5 – slits; 6 – diaphragm; 7 – central plasma
gun electrode; 8 – plasma gun insulator; 9 – evacuation
pipe; 10 – pressure gauge; 11 – seal ring
Fig. 2. Schematic view of the plasma gun:
1 – central electrode; 2 – insulator; 3 – case;
4 – vacuum seal; 5 – sleeve; 6 – screw nut
2. METHODS AND DIAGNOSTIC TOOLS
For the experiment the following diagnostic tools
were used:
1. The current measurements were carried out with
Rogowski loops (see Figs. 3 and 4): Rp – for measuring
the PCG current and Rd – for measuring the accelerat-
ing diode load current;
2. The cathode voltage was determined using a cali-
brated capacitive divider;
3. The measurement of the density of the plasma in-
jected into the discharge gap using plasma guns and of
the plasma space distribution was carried out with a
microwave interferometers on the separate bench at a
frequency of 35 GHz (their circuits are presented in
Figs. 5 and 6 [6, 10]);
ISSN 1562-6016. ВАНТ. 2019. №4(122) 11
4. The vacuum condition change in the period of
current switching and after this was recorded with pres-
sure pulse measuring transducers;
5. The control X-ray measurements were carried out
using integral transducers with lead attenuators and
scintillation transducers with photomultipliers.
Fig. 3. Equivalent electric circuit of PCS:
C – storage capacitor; LC – storage capacitor inductance;
Ls – switch inductance; S – switch; Ll – load inductance;
D – diode; VD – voltage divider; Rp – Rogowski loopе
for measuring the PCG current; Rd – Rogowski loop
for measuring the load current; 1, 2, 3 – measuring cables
Fig. 4. Principal electric circuit: C – cathode;
P1-P4 – plasma guns; C1-C5 – storage capacitors
of PCG and plasma guns; r1-r2 – rectifiers; P1-P2 –
dischargers; D.i.1-D.i.2 – discharger initiation units;
Т – isolating transformer; L1 – external magnetic field
winding; L2-L5 – high-voltage reactors; M.f.p. –
magnetic field power supply unit; S.D. – synchronizing
device; R.l. – Rogowski loopе; V.D. – voltage divider;
X-ray transducer; O – oscillograph
Fig. 5. Geometry and schematic of microwave probing
of the plasma bunches injected from the outside into the
near-cathode region: 1-4 – plasma guns; G – generator;
P.H. – phase shifter; А – attenuator; F.W. – flexible wave-
guide; P – plunger; D – detector; О – oscillograph
Fig. 6. Geometry and schematic of microwave probing
of the plasma injected from the outside into the near-
cathode region designed to measure its transverse
dimensions by the microwave reflection: G – generator;
P – plunger; D – detector; H.А. – horn antenna,
Pl. – plasma; R.W. – reflecting wall; Аt. – attenuator,
F.V. – ferrite valve
3. EXPERIMENTAL RESULTS
3.1. DYNAMIC BEHAVIOR OF THE
INSTALLATION
Measurements were carried out in two modes: operat-
ing mode using simultaneous operation of 4 or 12 plasma
guns at voltage of 9.3 kV; simulation mode using gas (air,
nitrogen, argon) puffing through the inlet valve.
One example of the typical pressure-time depend-
ences in the discharge chamber is shown in Fig. 7. The
leading-edge time is 0.5…1 s and the vacuum regenera-
tion time is of about 100 s. So, despite the high-speed
electrical processes, the pressure is changing rather
slowly. This can occur because of a heating-cooling
process in any of the installation parts, e.g. electrodes.
Fig. 7. Time dependence of the gaseous mixture
pressure in the PCS chamber observed after the current
switching event at PCG voltage of 27 kV and evacuation
rate of about 80 l/s
3.2. PLASMA, DYNAMIC AND PARAMETRIC
CHARACTERISTICS OF THE INSTALLATION
In PCS the opening switching current is determined
by the density of the plasma generated by the external
plasma guns. Therefore it has been very important to
determine the plasma bunch parameters. Fig. 8 presents
the life-time of the plasma with a critical density
Ncr > 1.7·1013 сm-3 as a function of the gun voltage.
Fig. 9 presents the time of plasma (Ncr >1.7·1013 сm-3)
entering into the central electrode-cathode zone (that in
fact is equal to the plasma filling of the interelectrode
gap) as a function of the same parameter (gun voltage)
in Fig. 8. It has been established that for the plasma gun
operation a so-called training is a characteristic feature.
Vacuum conditions in the system are stabilized after
20…30 training pulses.
ISSN 1562-6016. ВАНТ. 2019. №4(122) 12
Taking into account the dependences presented in
Figs. 8 and 9 the time of PCG triggering relative to the
plasma gun pulse was, generally, ~15 μs.
Fig. 8. Life-time of the plasma (Ncr ≥ 1.7⋅1013 сm-3)
in the interelectrode gap as a function of the gun volt-
age: 1 – single-gun operation; 2 – four-gun operation
Fig. 9. The time of plasma (Ncr > 1.7·1013 сm-3) entering
into the central electrode-cathode zone as a function
of the gun voltage. Four-gun operation
Fig. 10. Cross-section dimension (diameter) R
of the plasma (Ncr ≥ 1.8·1013 сm-3) formation (front)
as a function of time
Fig. 10 presents the cross-section dimension (diame-
ter) R of the plasma (Ncr > 1.8·1013 сm-3) formation
(front) as a function of time.
Using the data obtained we estimate the plasma
(having a critical density) front propagation velocity in
the discharge gap. From the average plasma front prop-
agation velocity of ~ 5·105 сm/s we obtain the time of
discharge gap filling by the plasma (Ncr > 1.8·1013 сm-3)
equal to 15 μs that approximately corresponds to the
experimental value of the time delay between the PCG
and plasma guns triggering. This result is evidenced by
the dynamics of plasma-density radial profile changing
(Fig. 11) after the plasma gun pulse triggering. In
Fig. 11 curve 1 is plotted for the instant of time t = 2…4
μs; curve 2 for t = 12 μs; curve 3 for t = 20 μs.
The life-time of the plasma having Ncr > 1.8·1013 сm-3
is ~25 μs in the case of four-gun operation and ~50 μs
with 12 guns.
Besides, the relationship N=f(R) evident on the fact
that the gun-injected plasma bunch is composed of two
parts: a fast part with a low density (N ~ 5·1012 сm-3)
and a slow part with a density (N≥1.8·1013 сm-3).
The fast low-density plasma fills the discharge gap
during several μs after plasma gun triggering and the
dense plasma fills the gap during 10…15 μs. Evidently,
just the fast part of the bunch ionizes the neutral gas
which fills the discharge gap and the chamber of PCS.
Fig. 11. Radial plasma density distribution in the
discharge gap at the instant of time t=2…4 μs
after triggering the plasma gun pulses (curve 1),
t=12 μs (curve 2), t =20 μs (curve 3)
Fig. 12 presents the fraction of the maximum PCG
current switched onto the load (electron diode) as a
function of the energy content of the plasma gun power
supply.
In this series of pulses a maximum PCG current val-
ue was 129 kA. The increase of a number of plasma
guns (quantity of plasma) from 4 (curve 1) to 12 (curve
2) resulted in a significant (25…30%) increase of the
switching current value.
Fig. 12. Fraction of the maximum PCG current
switched onto the load (electron diode) as a function
of the energy content of the plasma gun power supply:
A1 – 4 guns; A2 – 12 guns; A3 – Ar puffing under
pressure of 1.5·10-3 Torr
ISSN 1562-6016. ВАНТ. 2019. №4(122) 13
Still more significant (by 50%) increase of the
switching current occurs after the argon puffing into the
PCS chamber under pressure of 1.5·10-3 Torr (curve 3).
The argon presence increases the plasma density and
plasma life-time due to the higher ionization cross sec-
tion values in the energy range of 20…30 eV.
Besides, the argon presence decreases the recombi-
nation rate of the primary plasma injected from the out-
side. A similar effect was also observed in the case of
carbon-bearing atmosphere (СО2, СО, СН4, С2Н2) in
the PCS chamber.
Fig. 13 gives the results of experimental investiga-
tions on the influence of the density of neutral particles
(residual gases) in the PCS chamber on the switching
current value (in α units). It is shown that the dependence
α=f(No) has a threshold character. The current switching
begins when No>3.5·1012 сm-3. If No > 1·1013 сm-3 the α
value increases insignificantly (within ~10%).
Fig. 14 presents the maximum values of the diode
voltage U, opening switch current I and pressure in-
crease ∆р [6] in the system after pulse triggering.
Maximum values of the voltage multiplication (sharp-
ening) factor, in comparison with the initial one equal to
37 kV, can reach values equal to 10…12. The degree of
exacerbation of 7.5 has 75% of the impulses out of 65.
It has been also established that the high switching
current values correspond to the lower values of the
pressure (gas release) increase. Probably it is related
with the change of the charge-mass composition of the
plasma bunch in the cathode zone, as well as, on the
total number of particles in the discharge chamber.
Fig. 13. Switching current value in α units as a function
of the density of residual gases in the PCS chamber
Fig. 14. Pulse-to-pulse change of the diode voltage U,
opening switch current I and pressure increase ∆P
in the system as a function of the pulse-to-pulse
in the series of N=65
To this increase values corresponding are the single
gas release values equal to 3 n⋅cm3 per pulse for air, and
0.5…1 n⋅cm3 per pulse for hydrogen. Fig. 15, shows the
dependence of the multiplied diode voltage on the
switching current (load current) value, generalizing the
experimental results of this investigation.
In other series of experimental pulses observed were
the voltage pulses with a large spread of points, but with
an amplitude to 450 kV and, correspondingly, with a
multiplication factor value equal to 12.
At the same time, as is seen from Fig. 16, the aver-
aged energy of accelerated electrons in the diode, de-
termined using the integral X-ray transducers, is at the
level of 270 keV with a voltage multiplication factor
more than 7 that is within limits of the experimental
error (see Fig. 15).
Fig. 15. Voltage-current characteristics of PCS
designed for a small-size direct-action electron acceler-
ator demonstrating the multiplied diode voltage
as a function of the switching current (load current).
A minimum thread of experimental points
at IN=const is ≤±23%, a maximum one is ~±45%
Fig. 16. Multiplicity of X-ray radiation attenuation
on the lead absorbers as a function of their thickness:
1, 3 – literature data; 2 – experimental results;
1 – 200 keV; 2 – 270 keV; 3 – 300 keV
CONCLUSIONS
1. Investigations have shown that on the base of a plas-
ma current switch (PCS) with an inductive storage rings
(ISR) [1 - 10] it is possible to develop small-size pulsed
high-intensity electron accelerators operating in the nano-
second range with voltage pulse sharpening coefficients of
12, beam (flux) electron energy of 300…400 keV, current of
100 kA and pulse duration of 30 ns.
2. Small-size and transportability factor of the accel-
erator DI is demonstrated by its overall sizes
ISSN 1562-6016. ВАНТ. 2019. №4(122) 14
(180×120×60 cm) and by the possibility to compose its
total mass step-by-step from the following components:
- vacuum chamber with accessories – 15 kg, PCG –
200(140) kg;
- plasma gun power supply – 46(2) kg;
- magnet field power supply – 12(3) kg;
- triggering and timing units – 1 kg;
- noise-protecting and diagnostic equipment – 4 kg;
- evacuation post – 15 kg;
- measuring equipment – 10 kg;
- mounting frame – 12 kg.
The total weight equals to 315 kg and so the acceler-
ator DI is an easy- transported facility.
A change-over to the pulsed voltage transducer al-
lows one to decrease significantly the weight of power
supply devices (see figures in brackets) and, finally, the
total weight of the accelerating installation to 200 kg
(> 30%).
3. The operating parameter stability of PCS and ac-
celerator in whole (current, voltage) is improved by
increasing the quantity and density of plasma in the dis-
charge gap, as well as, by reaching a more uniform
plasma density distribution along the gap.
4. The switching current value is increased either by
increasing the quantity and density of plasma or due to
the external (internal) injection of inert gas, e.g. argon,
into the PCS chamber before the current switching event.
5. Maximum attainable frequency of current switch-
ing can be reached by increasing the rate of evacuation
of the PCS chamber, by decreasing the internal gas re-
lease value and by using the PCS operation under higher
maximum pressure, e.g. 10-3 Torr instead of 10-4 Torr
that reduces the time of evacuation of the accelerator
chamber after the PCS triggering pulse.
REFERENCES
1. P.F. Ottinger, S.A. Goldstein, R.A. Meger. Theoreti-
cal modeling of the plasma erosion opening switch
for inductive storage application // J. Appl. Phys.
1984, v. 56, p. 774.
2. B.M. Kovalchuk, G.A. Mesyats. High-intensity
power nanosecond pulse generator with a vacuum
line and plasma opening switch // DAN USSR. 1985,
v. 284, № 4, p. 857 (in Russian).
3. D.D. Hinshelwood, J.R. Boller, R.J. Comisso, et al.
Long conduction time plasma erosion opening
switch experiment // Appl. Phys. Lett. 1986, v. 49,
№ 24, p. 1635.
4. Е.G. Krastelev, А.G. Mozgovoj, М.Yu. Solovyov.
Experimental investigation of a plasma erosion
opening switch: Preprint № 326. М.: FIAN USSR,
1987 (in Russian).
5. Hidenory Matsurawa, Netsyda Akitsu. High-
pressure operation of a beam // J. Appl. Phys. 1988,
v. 63 (9), p. 4392.
6. V.G. Artyukh, Е.I. Skibenko, Yu.V. Tkach,
Yu.B. Yuferov. Investigation of a high-current
plasma switch: Preprint KIPT 89-28. Kharkiv: NSC
KIPT, 1989, p. 12.
7. V.G. Artyukh, Е.I. Skibenko, Yu.V. Tkach,
Yu.B. Yuferov. Investigation of a high-current
plasma switch: Preprint KIPT 94-12. Kharkiv: NSC
KIPT, 1989, p. 9.
8. V.G. Artyukh, Е.I. Skibenko, Yu.V. Tkach,
Yu.B. Yuferov. Investigation of a possibility for sta-
bilizing the characteristics of a high-speed current
switch // Ukrainskyj Fizychnyj Zhurnal. 1995, v. 40,
№ 8, p. 805-806 (in Ukrainian).
9. V. Yuferov, E. Skibenko, I. Onishchenko,
V. Artyuch and O. Druy. Investigation of high cur-
rent plasma opening switch at low gas pressure //
Digest of Technical Papers. 12th IEEE International
Pulsed Power Conference. v. 2. (Cat. №
99CH36358), Monterey, CA, 1999, p. 1215-1217.
10. Е.I. Skibenko, Yu.B. Yuferov. V.G. Artyukh. Small-
sized electron accelerator DI with a high-
performance plasma opening current switch // Prob-
lems of Atomic Science and Technology. Series
“Plasma Physics”. 1999, № 3, p. 236-238.
Article received 09.02.2018
МАЛОГАБАРИТНЫЙ УСКОРИТЕЛЬ ЭЛЕКТРОНОВ ПРЯМОГО ДЕЙСТВИЯ С ЭФФЕКТИВНЫМ
ПЛАЗМЕННЫМ КОММУТАТОРОМ ТОКА НАНОСЕКУНДНОГО ДИАПАЗОНА
Е.И. Скибенко, В.Б. Юферов
Представлены результаты исследований режимов работы малогабаритного ускорителя электронов пря-
мого действия с эффективным плазменным коммутатором тока (ПКТ) наносекундного диапазона. Показано,
что на базе ПКТ возможно создание малогабаритных импульсных сильноточных электронных ускорителей
наносекундного диапазона с коэффициентами обострения импульса напряжения до 12, энергией электронов
пучка (потока) 300…400 кэВ и током 100 кА при длительности импульса 30 нс. Предложены пути для по-
вышения стабильности рабочих параметров ПКТ и ускорителя в целом, увеличения значения коммутируе-
мого тока, а также пути увеличения предельно достижимой частоты коммутаций.
МАЛОГАБАРИТНИЙ ПРИСКОРЮВАЧ ЕЛЕКТРОНІВ ПРЯМОЇ ДІЇ З ЕФЕКТИВНИМ
ПЛАЗМОВИМ КОМУТАТОРОМ СТРУМУ НАНОСЕКУНДНОГО ДІАПАЗОНУ
Є.І. Скібенко, В.Б. Юферов
Представлені результати досліджень режимів роботи малогабаритного прискорювача електронів прямої
дії з ефективним плазмовим комутатором струму (ПКС) наносекундного діапазону. Показано, що на основі
ПКС можливе створення малогабаритних імпульсних сильнострумових електронних прискорювачів наносе-
кундного діапазону з коефіцієнтами загострення імпульсу напруги до величини, що дорівнює 12, енергією
електронів пучка (потоку) 300…400 кеВ і струмом ≈ 100 кА на протязі 30 нс. Запропоновані шляхи для під-
вищення стабільності робочих параметрів ПКС і прискорювача в цілому, збільшення величини струму ко-
мутації, а також шляхи зростання величини гранично можливої частоти комутацій.
|