Parametric X-ray radiation in polycrystals

Parametric X-ray radiation produced during the interaction of charged particles with polycrystals is regarded. A review of the existing theories, perspectives of application and performed experiments is presented. The evolution of experimental capabilities as well as the progress in the process comp...

Full description

Saved in:
Bibliographic Details
Published in:Вопросы атомной науки и техники
Date:2019
Main Authors: Alekseev, V.I., Eliseyev, A.N., Irribarra, E.F., Kishin, I.A., Kubankin, A.S., Nazhmudinov, R.M.
Format: Article
Language:English
Published: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2019
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/195183
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Parametric X-ray radiation in polycrystals / V.I. Alekseev, A.N. Eliseyev, E.F. Irribarra, I.A. Kishin, A.S. Kubankin, R.M. Nazhmudinov // Problems of atomic science and technology. — 2019. — № 4. — С. 187-190. — Бібліогр.: 28 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-195183
record_format dspace
spelling Alekseev, V.I.
Eliseyev, A.N.
Irribarra, E.F.
Kishin, I.A.
Kubankin, A.S.
Nazhmudinov, R.M.
2023-12-03T14:47:21Z
2023-12-03T14:47:21Z
2019
Parametric X-ray radiation in polycrystals / V.I. Alekseev, A.N. Eliseyev, E.F. Irribarra, I.A. Kishin, A.S. Kubankin, R.M. Nazhmudinov // Problems of atomic science and technology. — 2019. — № 4. — С. 187-190. — Бібліогр.: 28 назв. — англ.
1562-6016
PACS: 537.8, 538.9, 535-1/-3, 535.4, 537.5
https://nasplib.isofts.kiev.ua/handle/123456789/195183
Parametric X-ray radiation produced during the interaction of charged particles with polycrystals is regarded. A review of the existing theories, perspectives of application and performed experiments is presented. The evolution of experimental capabilities as well as the progress in the process comprehension is illustrated. The state of the art of PXR in polycrystals is presented.
Розглянуто параметричне рентгенівське випромінювання (ПРВ), що виникає при взаємодії заряджених частинок з полікристалічними мішенями. Представлено огляд сучасного стану дослідження ПРВ в полікристалах: існуючих теорій, перспектив застосування і проведених експериментів з урахуванням розвитку експериментальних можливостей.
Рассмотрено параметрическое рентгеновское излучение (ПРИ), возникающее при взаимодействии заряженных частиц с поликристаллическими мишенями. Представлен обзор современного состояния исследования ПРИ в поликристаллах: существующих теорий, перспектив применения и проведенных экспериментов с учетом развития экспериментальных возможностей.
The work was supported the scholarship of the President of the Russian Federation for young scientists and graduate students number SP-765.2019.2, by the grant of the President of Russia for young doctors of sciences MD-5748.2018.2 and by the project No. PIJ-16-03 of the Escuela Politécnica Nacional.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Applications and technologies
Parametric X-ray radiation in polycrystals
Дослідження параметричного рентгенівського випромінювання в полікристалах
Исследование параметрического рентгеновского излучения в поликристаллах
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Parametric X-ray radiation in polycrystals
spellingShingle Parametric X-ray radiation in polycrystals
Alekseev, V.I.
Eliseyev, A.N.
Irribarra, E.F.
Kishin, I.A.
Kubankin, A.S.
Nazhmudinov, R.M.
Applications and technologies
title_short Parametric X-ray radiation in polycrystals
title_full Parametric X-ray radiation in polycrystals
title_fullStr Parametric X-ray radiation in polycrystals
title_full_unstemmed Parametric X-ray radiation in polycrystals
title_sort parametric x-ray radiation in polycrystals
author Alekseev, V.I.
Eliseyev, A.N.
Irribarra, E.F.
Kishin, I.A.
Kubankin, A.S.
Nazhmudinov, R.M.
author_facet Alekseev, V.I.
Eliseyev, A.N.
Irribarra, E.F.
Kishin, I.A.
Kubankin, A.S.
Nazhmudinov, R.M.
topic Applications and technologies
topic_facet Applications and technologies
publishDate 2019
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Дослідження параметричного рентгенівського випромінювання в полікристалах
Исследование параметрического рентгеновского излучения в поликристаллах
description Parametric X-ray radiation produced during the interaction of charged particles with polycrystals is regarded. A review of the existing theories, perspectives of application and performed experiments is presented. The evolution of experimental capabilities as well as the progress in the process comprehension is illustrated. The state of the art of PXR in polycrystals is presented. Розглянуто параметричне рентгенівське випромінювання (ПРВ), що виникає при взаємодії заряджених частинок з полікристалічними мішенями. Представлено огляд сучасного стану дослідження ПРВ в полікристалах: існуючих теорій, перспектив застосування і проведених експериментів з урахуванням розвитку експериментальних можливостей. Рассмотрено параметрическое рентгеновское излучение (ПРИ), возникающее при взаимодействии заряженных частиц с поликристаллическими мишенями. Представлен обзор современного состояния исследования ПРИ в поликристаллах: существующих теорий, перспектив применения и проведенных экспериментов с учетом развития экспериментальных возможностей.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/195183
citation_txt Parametric X-ray radiation in polycrystals / V.I. Alekseev, A.N. Eliseyev, E.F. Irribarra, I.A. Kishin, A.S. Kubankin, R.M. Nazhmudinov // Problems of atomic science and technology. — 2019. — № 4. — С. 187-190. — Бібліогр.: 28 назв. — англ.
work_keys_str_mv AT alekseevvi parametricxrayradiationinpolycrystals
AT eliseyevan parametricxrayradiationinpolycrystals
AT irribarraef parametricxrayradiationinpolycrystals
AT kishinia parametricxrayradiationinpolycrystals
AT kubankinas parametricxrayradiationinpolycrystals
AT nazhmudinovrm parametricxrayradiationinpolycrystals
AT alekseevvi doslídžennâparametričnogorentgenívsʹkogovipromínûvannâvpolíkristalah
AT eliseyevan doslídžennâparametričnogorentgenívsʹkogovipromínûvannâvpolíkristalah
AT irribarraef doslídžennâparametričnogorentgenívsʹkogovipromínûvannâvpolíkristalah
AT kishinia doslídžennâparametričnogorentgenívsʹkogovipromínûvannâvpolíkristalah
AT kubankinas doslídžennâparametričnogorentgenívsʹkogovipromínûvannâvpolíkristalah
AT nazhmudinovrm doslídžennâparametričnogorentgenívsʹkogovipromínûvannâvpolíkristalah
AT alekseevvi issledovanieparametričeskogorentgenovskogoizlučeniâvpolikristallah
AT eliseyevan issledovanieparametričeskogorentgenovskogoizlučeniâvpolikristallah
AT irribarraef issledovanieparametričeskogorentgenovskogoizlučeniâvpolikristallah
AT kishinia issledovanieparametričeskogorentgenovskogoizlučeniâvpolikristallah
AT kubankinas issledovanieparametričeskogorentgenovskogoizlučeniâvpolikristallah
AT nazhmudinovrm issledovanieparametričeskogorentgenovskogoizlučeniâvpolikristallah
first_indexed 2025-11-26T03:57:14Z
last_indexed 2025-11-26T03:57:14Z
_version_ 1850608606600232960
fulltext ISSN 1562-6016. ВАНТ. 2019. №4(122) 187 PARAMETRIC X-ray RADIATION IN POLYCRYSTALS V.I. Alekseev1, A.N. Eliseyev1, E.F. Irribarra3, I.A. Kishin1,2, A.S. Kubankin1,2, R.M. Nazhmudinov1,2 1P.N. Lebedev Physical Institute RAS, 308007, Moscow, Russia; 2Belgorod National Research University, 119991, Belgorod, Russia; 3Escuela Politécnica Nacional, Departamento de Física, Quito, Ecuador Parametric X-ray radiation produced during the interaction of charged particles with polycrystals is regarded. A review of the existing theories, perspectives of application and performed experiments is presented. The evolution of experimental capabilities as well as the progress in the process comprehension is illustrated. The state of the art of PXR in polycrystals is presented. PACS: 537.8, 538.9, 535-1/-3, 535.4, 537.5 A large number of experimental and theoretical works were devoted to the research of radiation pro- cesses that take place when a charged particle moves in condensed matter. The radiation is generated in a wide spectral region during the charged particle interaction with atoms and the total generated radiation consists of the contributions from different radiation mechanisms, which can occur simultaneously. In some mechanisms the radiation is emitted by the charged particle because it moves with acceleration (Bremsstrahlung, Channel- ling Radiation), and in others the radiation is emitted by the polarized medium even if the particle velocity is constant (Transition Radiation, Cherenkov Radiation, Parametric X-ray Radiation, Polarization Bremsstrah- lung) [1 - 5]. The mechanism describing the radiation generated during the interaction of charged particles with poly- crystals was theoretically described in [6]. The Paramet- ric X-ray radiation spectrum in polycrystals consists of a set of peaks which position is determined by the obser- vation angle. Additionally, it was established that the intensity and the spectral width are also determined by the observation angle achieving interesting properties in the backward geometry [7]. Several attempts were performed to verify the theo- retical predictions. Some properties were validated separately, however a complete study was not achieved until this year [8]. The main problem to verify experi- mentally the theory was the presence of texture in the targets. Metallic polycrystalline foils have a predomi- nant orientation of the grains according the crystallo- graphic structure and the manufacturing process [9]. For the theory validation it was a problem but on the other hand, since PXR in polycrystals is sensitive to texture, grain size, lattice constant, etc., it can be used to measure these parameters. Possible applications of PXR in polycrystals have been described for structure diag- nostics due to the spectrum dependence on the medium properties [10 - 14]. Parametric X-ray radiation in polycrystals (textured polycrystals and powders) has been studied experimen- tally since 1999 [15]. Several experiments were per- formed subsequently, mainly in three experimental facilities located in Russia and Japan. In Table are de- scribed the main characteristics of the experiments. The evolution of the experimental setup and the progress in the comprehension of PXR from polycrystals can be observed. It is interesting to observe that unlike PXR in crystals [3], PXR in polycrystals was generated only by electrons. The general scheme of the experiments is presented in Fig. 1. Charged particles interact with polycrystalline targets, then the radiation is registered at the observation angle θ for a specific value of the orientation angle ϕ. The main characteristics of PXR in polycrystals were studied manipulating the orientation angle and the ob- servation angle. Fig. 1. Experimental scheme: θ – observation angle; ϕ – orientation angle; n – normal to the target surface plane In Fig. 2 is presented a spectrum of PXR in poly- crystals. It was obtained after the interaction of a 7 MeV electron beam with a tungsten polycrystalline foil when θ = 180°. It can be observed that the intensity of the PXR peaks changes when φ changes. Such behaviour confirms that the target presents texture. Additionally, theory affirms that in the analysed energy region, free from background peaks (CXR or escape peaks), five PXR peaks should manifest corresponding to crystallo- graphic planes (110), (200), (211), (220), and (310). However, in Fig. 2 only peaks from planes (200) and (310) were reliably measured. This is the result of the texture influence and it represented the main problem to verify the theory. Unfortunately, it occurs with all kind of metallic foils. ISSN 1562-6016. ВАНТ. 2019. №4(122) 188 PXR experiments in polycrystals Year Country, Energy Target, planes θ Main findings Detector, Energy resolution 2019 [8] Russia, Lebedev Physical insti- tute, department of high energy physics, 7 MeV W powder, (110), (200), (211), (220), (310) 150.0° 180.0° Absolute comparison of experi- ment with theory [6]. Agreement in position, form and amplitude for all peaks simultaneously Silicon drift detector 145 eV at 5.9 keV 2018 [16] W textured foil (200) 90.8° 119.6° 151.0° 180.0° Dynamic verification that the PXR peaks intensity increases and the spectral width decreases when θ approaches 180.0°. Textured polycrystals can be de- scribed by the theory of PXR for mosaic crystals Silicon drift detector 145 eV at 5.9 keV 2018 [17] Textured foils of Ni (220) W (200), (310) 180.0° Disadvantages of PXR compared to XRD to measure the rocking curves Silicon drift detector 145 eV at 5.9 keV 2016 [18] W textured foil (200) 180.0° Discrimination of the contribution from diffraction mechanisms of real and virtual photons to the total radiation yield. Energy dependence of the PXR peak on φ was observed Silicon drift detector 137 eV at 3.9 keV 2015 [19] Al (111), (200), (220) Ni (111), (200),(220) Cu (111), (200), (220) (311) W (200) 75.0° 90.0° 83.0° 180.0° Shift of the PXR peak position when θ changes. Agreement with theory for indi- vidual peaks. Observation of several PXR peaks not simultaneously. PXR is generated in grains which mean size is 300 nm Uncooled Si(Li) 200 eV at 5.9 keV and Silicon drift detector 160 eV at 4.9 keV 2014 [20] Ni (111), (200), (220) 180.0° PXR peaks are produced in grains which average size is 50 nm. PXR spectrum changes when ϕ changes because of texture Silicon drift detector 130 eV 2013 [21] Ni (111), (200), (220) 180.0° PXR peaks are produced in grains which average size is 300 nm Silicon drift detector 130 eV 2012 [22] Cu (111), (220), (311) 180.0° PXR peaks are measured in the backward geometry. PIN Si 159 eV at 5.9 keV 2008 [23] Al (111) 75.0° 90.0° Shift of the PXR peak position when θ changes Uncooled Si(Li) PIN 200 eV at 5.9 keV 2006 [24, 25] Japan, REFER electron ring at Hiroshima University, 150 MeV Mo, textured polycrystalline foil (110, (220), (112) 11.2° 25.8° PXR peaks from textured poly- crystalline foil registered. Orientation dependence measured using XRD and PXR. Energy independence of the PXR peak on φ was reported Cooled Si(Li) 380 eV at 17.5 keV 2001 [26] 25.8° ‘‘unidentified peaks’’ were observed during the experiment from an “amorphous” molybdenum foil Cooled Si(Li) 450 eV at 7.23 keV 2004 [27] Hiroshima University, X-ray diffractometer RIGAKU RINT2000, 8 keV Mo, textured poly- crystalline foil (110), (220), (112), (200) 50°…170° The origin of the unidentified X-ray spectral peaks observed at the REFER was established as manifestation of the PXR from textured polycrystal X-ray film, scintilla- tion X-ray detector 1999 [15] Russia, Moscow State University Linac, 2.4 Mev Al foil, (111) and (220) 90.0° PXR peaks observed. Cooled Si(Li) Energy resolution not reported, estimation 500 eV at 6 keV ISSN 1562-6016. ВАНТ. 2019. №4(122) 189 Fig. 2. PXR from a tungsten textured polycrystalline foil measured for two orientation angles ϕ = 2° and ϕ = -10° To solve this inconvenient, experiments with pow- ders were performed [8]. Unlike metallic foils, powders are constituted of randomly oriented grains. In this case, the manifestation of all PXR peaks was reliably fixed as shown in Fig. 3. The measurements were performed for two observation angles to highlight that the PXR peaks positions depends on θ. Fig. 3 PXR from tungsten powder measured for observation angles of θ = 150° and θ = 180° The main differences of PXR from crystals and pol- ycrystals can be observed in the spectra, the orientation dependences and the intensity. For example, the PXR spectrum from crystals pre- sents only one peak and its harmonics while the spec- trum from polycrystals presents a set of peaks from different crystallographic planes. The case of texture polycrystals can be regarded as a transition, then the spectrum can present one or more peaks depending on the texture degree. The dependence of PXR yield on the orientation angle differs substantially also. The rocking curve for crystals presents two peaks symmetrically distributed around the specular condition at ϕ = γ -1, for textured polycrystal metallic foils it was observed only one peak at the specular condition and finally it is a constant for polycrystals. The PXR energy peak de- pendence on the orientation angle can be listed as the last example of the differences. It changes for crystals and textured polycrystals but remain a constant for pol- ycrystals. It is important to mention that despite the perspec- tives to apply PXR in polycrystals some disadvantages have been already reported. For example, it was pro- posed [25] that polycrystals can be used instead of crys- tals to generate quasimonochromatic X-ray beams be- cause of a higher resistance to mechanical damage pro- duced by the charged particle beam. However, it was shown that the destruction of Si crystals is related to the heating during one micropulse, if the micro pulse dura- tion is smaller than 5 μs, currents of 300 mA can be achieved [28]. Similarly, it was shown that the rocking curves obtained by PXR are wider than those obtained by commonly used diffraction methods because of the influence of the initial angular divergence of the charged particle Coulomb field [17]. Even though some limitations have been reported additional studies should be performed to explore the possibilities for applications and to clarify fundamental questions such as the radiation formation length, the differences in the diffraction mechanisms of virtual and real photons and others. ACKNOWLEDGEMENTS The work was supported the scholarship of the Pres- ident of the Russian Federation for young scientists and graduate students number SP-765.2019.2, by the grant of the President of Russia for young doctors of sciences MD-5748.2018.2 and by the project No. PIJ-16-03 of the Escuela Politécnica Nacional. REFERENCES 1. Y.B. Fainberg, N.A. Khyzhniak. On parametric X- rays of fast charged particles in periodic media // Journal of Experimental and Theoretical Physics. 1957, v. 32, p. 883 (in Russian). 2. M.L. Ter-Mikaelian. High Energy Electromagnetic Processes in Condensed Media. 1972. 3. V.G. Baryshevsky, I. Feranchuk, A. Ulyanenkov. Parametric X-Ray Radiation in Crystals. Springer- Verlag Berlin Heidelberg, 2005. 4. A.P. Potylitsyn. Electromagnetic Radiation of Elec- trons in Periodic Structures. Springer Berlin Heidel- berg, 2011. 5. A.V. Shchagin. Fresnel coefficients for parametric X-ray (Cherenkov) radiation // Physics – Uspekhi. 2015, v. 58, p. 819-827. 6. N.N. Nasonov. Collective effects in the polarization bremsstrahlung of relativistic electrons in condensed media. // NIM. Section B. 1998, v. 145, p. 19-24. 7. V. Astapenko, N. Nasonov, P. Zhukova. Anomalous peak in the spectrum of polarizational bremsstrah- lung from relativistic electrons moving through a solid target // Journal of Physics B. 2007, v. 40, p. 1337-1346. 8. V.I. Alekseev, A.N. Eliseyev, E. Irribarra, et al. Parametric X-ray radiation from powders // Physics Letters A. 2019, v. 383, p. 770-773. 9. H. Wenk, P.V. Houtte. Texture and anisotropy // Reports on Progress in Physics. 2004, v. 67, p. 1367. 10. V.A. Shchagin. Possibilities for measurement of nano-crystallites size with use of parametric X-ray radiation // Journal of Physics: Conference Series. 2010, v. 236, p. 012020. 11. I. Lobach, A. Benediktovitch. Theoretical Analysis of Orientation Distribution Function Reconstruction of Textured Polycrystal by Parametric X-rays // ISSN 1562-6016. ВАНТ. 2019. №4(122) 190 Journal of Physics: Conference Series. 2016, v. 732, p. 012015. 12. I. Lobach, A. Benediktovitch, I. Feranchuk, A. Lobko. Parametric X-rays from a polycrystalline target // NIM. Section B. 2015, v. 360, p. 75-80. 13. N. Nasonov, P. Zhukova, V. Sergienko. Polarization bremsstrahlung in a backward direction for medium structure diagnostics // Journal of Physics: Confer- ence Series. 2010, v. 012017, p. 236. 14. A.S. Kubankin, N.N. Nasonov. On the possibility of using parametric X-ray radiation to study anisotropy of a crystal mosaic structure, Journal of Surface In- vestigation.X-ray // Synchrotron and Neutron Tech- niques. 2008, v. 2, p. 317-320. 15. S. Blazhevich, A. Chepurnov, V. Grishin, et al. Polarization bremsstrahlung of relativistic electrons in aluminium // Physics Letters A. 1999, v. 254, p. 230-232. 16. V.I. Alekseev, A.N. Eliseyev, E. Irribarra, et al. Evolution of the characteristics of Parametric X-ray Radiation from textured polycrystals under different observation angles // Physics Letters A. 2018, v. 382, p. 503-506. 17. V.I. Alexeyev, A.N. Eliseyev, E. Irribarra, et al. Parametric Xray Radiation And Texture Of Poly- crystalline Foils // Resource-Efficient Technologies. 2018, v. 2, p. 12-15. 18. V.I. Alexeyev, A.N. Eliseyev, E. Irribarra, et al. Observation of parametric X-ray radiation in an anomalous diffraction region // Physics Letters A. 2016, v. 380, p. 2892-2896. 19. V.I. Alekseev, A.N. Eliseev, E.F. Irribarra, et al. Research of the polarization bremsstrahlung of rela- tivistic electrons in polycrystalline targets // NIM. Section B. 2015, v. 342, p. 47-51. 20. V.I. Alekseev, A.N. Eliseev, E.F. Irribarra, et al. Diagnostics of nanodisperse polycrystals based on the polarization bremsstrahlung of relativistic elec- trons // Journal of Surface Investigation. X-ray, Syn- chrotron and Neutron Techniques. 2014, v. 8, p. 347-350. 21. V.I. Alekseev, E.F. Irribarra, A.S. Kubankin, et al. Experimental study of polarization bremsstrahlung from small-grained polycrystals // Journal of Sur- face Investigation. X-ray, Synchrotron and Neutron Techniques. 2013, v. 7, p. 276-278. 22. V.I. Alekseev, K.A. Vokhmyanina, A.N. Eliseev, et al. Measuring coherent peaks of polarization brems- strahlung from relativistic electrons in polycrystal- line targets in backscattering geometry // Technical Physics Letters. 2012, v. 38, p. 294-296. 23. N.A. Gostishchev, A.S. Kubankin, N.N. Nasonov, et al. Angular dependence of the coherent peak posi- tion in the polarization bremsstrahlung spectrum of relativistic electrons in polycrystalline targets // Technical Physics Letters. 2008, v. 34, p. 763-764. 24. S. Nawang, I. Endo, M. Iinuma, et al. Parametric X- ray Study from Textured Molybdenum Polycrystal // J. Phys. Soc. Jpn.. 2006, v. 75, p. 124705. 25. Y. Takabayashi, I. Endo, K. Ueda, C. Moriyoshi, A.V. Shchagin. Observation of intense PXR from textured polycrystal // NIM. Section B. 2006, v. 243, p. 453-456. 26. K. Chouffani, M.Y. Andreyashkin, I. Endo, et al. Parametric X-radiation and diffracted transition ra- diation at REFER electron ring // NIM. Section B. 2001, v. 173, p. 241-252. 27. I. Endo, D. Iseki, T. Ohnishi, C. et al. On the origin of mysterious X-ray spectral peaks observed at the REFER electron ring // NIM. Section B. 2004, v. 217, p. 666-670. 28. J. Hyun, M. Satoh, M. Yoshida, et al. Compact and intense parametric x-ray radiation source based on a linear accelerator with cryogenic accelerating and decelerating copper structures // Phys. Rev. Accel. Beams. 2018, v. 21, p. 014701. Article received 10.06.2019 ИССЛЕДОВАНИЕ ПАРАМЕТРИЧЕСКОГО РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ В ПОЛИКРИСТАЛЛАХ В.И. Алексеев, А.Н. Елисеев, Е.Ф. Иррибарра, И.А. Кищин, А.С. Кубанкин, Р.М. Нажмудинов Рассмотрено параметрическое рентгеновское излучение (ПРИ), возникающее при взаимодействии заря- женных частиц с поликристаллическими мишенями. Представлен обзор современного состояния исследова- ния ПРИ в поликристаллах: существующих теорий, перспектив применения и проведенных экспериментов с учетом развития экспериментальных возможностей. ДОСЛІДЖЕННЯ ПАРАМЕТРИЧНОГО РЕНТГЕНІВСЬКОГО ВИПРОМІНЮВАННЯ В ПОЛІКРИСТАЛАХ В.І. Алексєєв, А.Н. Єлисєєв, Е.Ф. Іррібарра, І.А. Кищин, А.С. Кубанкін, Р.М. Нажмудинов Розглянуто параметричне рентгенівське випромінювання (ПРВ), що виникає при взаємодії заряджених частинок з полікристалічними мішенями. Представлено огляд сучасного стану дослідження ПРВ в полікрис- талах: існуючих теорій, перспектив застосування і проведених експериментів з урахуванням розвитку екс- периментальних можливостей.