Formation of light impurities in a hydrogen plasma at initial stage of a discharge

Analyzing the dynamics of density for atomic and molecular hydrogen ions, the values of atomic hydrogen and UV radiation fluxes to the walls of the plasma chamber were obtained, resulting in light impurities of carbon and oxygen at plasma start-up during the process of desorption from the walls unde...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Вопросы атомной науки и техники
Дата:2019
Автори: Yuferov, V.B., Skibenko, E.I., Tkachov, V.I., Katrechko, V.V., Svichkar, A.S.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2019
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/195190
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Formation of light impurities in a hydrogen plasma at initial stage of a discharge / V.B. Yuferov, E.I. Skibenko, V.I. Tkachov, V.V. Katrechko, A.S. Svichkar // Problems of atomic science and technology. — 2019. — № 4. — С. 110-112. — Бібліогр.: 11 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-195190
record_format dspace
spelling Yuferov, V.B.
Skibenko, E.I.
Tkachov, V.I.
Katrechko, V.V.
Svichkar, A.S.
2023-12-03T14:50:03Z
2023-12-03T14:50:03Z
2019
Formation of light impurities in a hydrogen plasma at initial stage of a discharge / V.B. Yuferov, E.I. Skibenko, V.I. Tkachov, V.V. Katrechko, A.S. Svichkar // Problems of atomic science and technology. — 2019. — № 4. — С. 110-112. — Бібліогр.: 11 назв. — англ.
1562-6016
PACS: 52.50.Qt, 52.55.Hc
https://nasplib.isofts.kiev.ua/handle/123456789/195190
Analyzing the dynamics of density for atomic and molecular hydrogen ions, the values of atomic hydrogen and UV radiation fluxes to the walls of the plasma chamber were obtained, resulting in light impurities of carbon and oxygen at plasma start-up during the process of desorption from the walls under irradiation. The fluxes of impurity atoms associated with the fluxes of photons and hydrogen atoms in a discharge are determined. Recommendations are given to reduce the amount of impurities at the initial stage of discharge.
При розгляді динаміки щільності водневих атомарних і молекулярних іонів отримані величини потоків атомарного водню і УФ-випромінювання на стінки плазмової камери, через що з'являються легкі домішки вуглецю і кисню на початковій стадії розряду в процесі десорбції зі стінок при опроміненні. Визначено величини потоків домішкових атомів, пов'язаних з потоками фотонів і атомів водню, що виникають у розряді. Надано рекомендації щодо зменшення кількості домішок на початковій стадії розряду.
При рассмотрении динамики плотности водородных атомарных и молекулярных ионов получены величины потоков атомарного водорода и УФ-излучения на стенки плазменной камеры, в результате чего появляются легкие примеси углерода и кислорода на начальной стадии развития разряда в процессе десорбции со стенок при облучении. Определены величины потоков примесных атомов, связанных с потоками фотонов и атомов водорода, возникающих в разряде. Даны рекомендации по уменьшению количества примесей на начальной стадии разряда.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Gas and plasma-beam discharges and their applications
Formation of light impurities in a hydrogen plasma at initial stage of a discharge
Утворення легких домішок на початковій стадії розряду
Образование легких примесей на начальной стадии разряда
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Formation of light impurities in a hydrogen plasma at initial stage of a discharge
spellingShingle Formation of light impurities in a hydrogen plasma at initial stage of a discharge
Yuferov, V.B.
Skibenko, E.I.
Tkachov, V.I.
Katrechko, V.V.
Svichkar, A.S.
Gas and plasma-beam discharges and their applications
title_short Formation of light impurities in a hydrogen plasma at initial stage of a discharge
title_full Formation of light impurities in a hydrogen plasma at initial stage of a discharge
title_fullStr Formation of light impurities in a hydrogen plasma at initial stage of a discharge
title_full_unstemmed Formation of light impurities in a hydrogen plasma at initial stage of a discharge
title_sort formation of light impurities in a hydrogen plasma at initial stage of a discharge
author Yuferov, V.B.
Skibenko, E.I.
Tkachov, V.I.
Katrechko, V.V.
Svichkar, A.S.
author_facet Yuferov, V.B.
Skibenko, E.I.
Tkachov, V.I.
Katrechko, V.V.
Svichkar, A.S.
topic Gas and plasma-beam discharges and their applications
topic_facet Gas and plasma-beam discharges and their applications
publishDate 2019
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Утворення легких домішок на початковій стадії розряду
Образование легких примесей на начальной стадии разряда
description Analyzing the dynamics of density for atomic and molecular hydrogen ions, the values of atomic hydrogen and UV radiation fluxes to the walls of the plasma chamber were obtained, resulting in light impurities of carbon and oxygen at plasma start-up during the process of desorption from the walls under irradiation. The fluxes of impurity atoms associated with the fluxes of photons and hydrogen atoms in a discharge are determined. Recommendations are given to reduce the amount of impurities at the initial stage of discharge. При розгляді динаміки щільності водневих атомарних і молекулярних іонів отримані величини потоків атомарного водню і УФ-випромінювання на стінки плазмової камери, через що з'являються легкі домішки вуглецю і кисню на початковій стадії розряду в процесі десорбції зі стінок при опроміненні. Визначено величини потоків домішкових атомів, пов'язаних з потоками фотонів і атомів водню, що виникають у розряді. Надано рекомендації щодо зменшення кількості домішок на початковій стадії розряду. При рассмотрении динамики плотности водородных атомарных и молекулярных ионов получены величины потоков атомарного водорода и УФ-излучения на стенки плазменной камеры, в результате чего появляются легкие примеси углерода и кислорода на начальной стадии развития разряда в процессе десорбции со стенок при облучении. Определены величины потоков примесных атомов, связанных с потоками фотонов и атомов водорода, возникающих в разряде. Даны рекомендации по уменьшению количества примесей на начальной стадии разряда.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/195190
citation_txt Formation of light impurities in a hydrogen plasma at initial stage of a discharge / V.B. Yuferov, E.I. Skibenko, V.I. Tkachov, V.V. Katrechko, A.S. Svichkar // Problems of atomic science and technology. — 2019. — № 4. — С. 110-112. — Бібліогр.: 11 назв. — англ.
work_keys_str_mv AT yuferovvb formationoflightimpuritiesinahydrogenplasmaatinitialstageofadischarge
AT skibenkoei formationoflightimpuritiesinahydrogenplasmaatinitialstageofadischarge
AT tkachovvi formationoflightimpuritiesinahydrogenplasmaatinitialstageofadischarge
AT katrechkovv formationoflightimpuritiesinahydrogenplasmaatinitialstageofadischarge
AT svichkaras formationoflightimpuritiesinahydrogenplasmaatinitialstageofadischarge
AT yuferovvb utvorennâlegkihdomíšoknapočatkovíistadíírozrâdu
AT skibenkoei utvorennâlegkihdomíšoknapočatkovíistadíírozrâdu
AT tkachovvi utvorennâlegkihdomíšoknapočatkovíistadíírozrâdu
AT katrechkovv utvorennâlegkihdomíšoknapočatkovíistadíírozrâdu
AT svichkaras utvorennâlegkihdomíšoknapočatkovíistadíírozrâdu
AT yuferovvb obrazovanielegkihprimeseinanačalʹnoistadiirazrâda
AT skibenkoei obrazovanielegkihprimeseinanačalʹnoistadiirazrâda
AT tkachovvi obrazovanielegkihprimeseinanačalʹnoistadiirazrâda
AT katrechkovv obrazovanielegkihprimeseinanačalʹnoistadiirazrâda
AT svichkaras obrazovanielegkihprimeseinanačalʹnoistadiirazrâda
first_indexed 2025-11-25T20:32:34Z
last_indexed 2025-11-25T20:32:34Z
_version_ 1850524734242947072
fulltext ISSN 1562-6016. ВАНТ. 2019. №4(122) 110 FORMATION OF LIGHT IMPURITIES IN A HYDROGEN PLASMA AT INITIAL STAGE OF A DISCHARGE V.B. Yuferov, E.I. Skibenko, V.I. Tkachov, V.V. Katrechko, A.S. Svichkar National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine E-mail: v.yuferov@kipt.kharkov.ua Analyzing the dynamics of density for atomic and molecular hydrogen ions, the values of atomic hydrogen and UV radiation fluxes to the walls of the plasma chamber were obtained, resulting in light impurities of carbon and oxygen at plasma start-up during the process of desorption from the walls under irradiation. The fluxes of impurity atoms associated with the fluxes of photons and hydrogen atoms in a discharge are determined. Recommendations are given to reduce the amount of impurities at the initial stage of discharge. PACS: 52.50.Qt, 52.55.Hc When considering the dynamics of the density of hydrogen atomic and molecular ions [1], the fluxes of atomic hydrogen and UV radiation on the walls of the plasma chamber were obtained. In the general case, at the initial stage of discharge, the flow of impurities into the plasma Fz determined by the sum of the products of various radiation fluxes Fi, falling on the wall, by the value of the erosion coefficient for this type of radiation Ki: Z i ii F Fκ= ∑ . In this case, we consider the entry of light impurities through two processes: the supply of atomic hydrogen and UV radiation on the wall. As can be seen from the values of the effective cross sections of the processes, the formation of atomic hydrogen is especially effective for small Te, wherein the number of atoms in the elec- tron-ion pair for the Te (Fig. 1) defined as ( ) ( )2 3 2 4 6 3 9 10 2 2 8 2 1 2 4 1 7 3 9 2 2 2 3 / .eh e n n n n n ndF dn n n n n σ σ σ σ σ σ σ σ σ σ + + + + + + + + + + = + + (1) And as the electron plasma temperature changes from 4 to 12 eV, the number of generated hydrogen atoms drops from ~18 to ~2 atoms (Fig. 1). The time depend- ence of the averaged density of oxygen and carbon impu- rities for two values of the desorption coefficient and the electron temperature ~6 eV is shown in Fig. 2 Fig. 1. Dependence of the number of hydrogen atoms per electron-ion pair on the temperature of electrons at plasma density 1·1012 cm-3 1 2 2 10 5 3 ; ph e L H L Z ph ph phZ dF n n v n v n v dt n v dF dF dF α α α σ σ σ σ + = + + +  + = + + (2) ; O phO O h ph h dF dFdn K K dt dt dt = + (3) ; C phC C h ph h dF dFdn K K dt dt dt = + (4) 1 2 3 0C O en n n n n n+ + + + − = . (5) In Fig. 2 show the time dependencies of the values nc and no for Te=6 eV, we have chosen, for the reason that the time of generating plasma satisfy the conditions set in [2] (0.5...1 ms). t, µs Fig. 2. Time dependence of the average density of oxygen and carbon impurities for two values of the desorption coefficient and the electron temperature ~ 6 eV. For oxygen 1·10-3 and 2·10-3; carbon – 1·10-2 and 2.5·10-2 SURFACE CONDITIONS THE AND THE SELECTION OF EROSION RATIO Selection of plausible desorption coefficient values Kph and Kh is a very important operation, since their value significantly depends on the composition of the surface of the discharge chamber, which, in turn, deter- mines the flow of impurities into the plasma. There is an extensive literature on the values of the sputtering coef- ficients of various materials by different ions, but there are very few data in the area of interest to us. In [3] shows the dependence of the coefficient of oxygen ex- cretion Kh o in the form of water vapor from the surface of stainless steel when hydrogen atoms with an energy of 0.2 eV interact with it. For temperature range 100...400°С the value lies within 3·10-3…0.2. Since in this work there is no data on the values Kh o for room temperature and surface oxygen concentration, magni- tude Kx o was obtained by extrapolation, and the desorp- tion cross section was estimated for the relative concen- mailto:v.yuferov@kipt.kharkov.ua ISSN 1562-6016. ВАНТ. 2019. №4(122) 111 tration of oxygen on the surface θ = 0.15, selected on the basis of the data of [3 - 8] for similar experimental conditions. Thus, the value we take Kh o =1·10-5 for T = 300 K and σx o=6.6·10-18 сm-2. The value of the cross section for chemical removal of carbon from the inconel surface at temperature T = 470 K for the heat fluxes of atomic hydrogen is given in [8] σh o=2.3·10-17 сm-2 for filling 0.05≤θ≤0.4. Extrapolation to room temperature gives σh c≈1·10-20 сm-2 – a value that is rather small and therefore not taken into account, although, as in the case of oxygen, σh c may increase with increasing energy of hydrogen atoms EH. The magnitudes of the photode- sorption cross sections strongly depend on the energy of the quanta, are maximum in the region of ultraviolet and soft X-ray radiation and lie at level 10-17…10-20 сm-2 [1]. The measured value Kph for CO2 for quanta with energy from 2 to 10 eV varies from 1.5·10-4 to 1·10-2 [6]. In [9] for radiation with λmin= 1300 A, Kph= 2.5·10-2 (for СО). It should be noted that during the irradiation of oxygen- and carbon-containing surfaces simultane- ously with electromagnetic (ultraviolet) radiation and atomic hydrogen, the yield of carbon and oxygen from the surfaces may increase. This, in our opinion, is due to the fact that intermediate products of chemical reactions are radicals CH, CH2, CH3, OH on the surface can be desorbed by ultraviolet radiation, which will increase the coefficients of Kh and Kph. In the calculations, the Kph values are taken for quanta with an energy of 10.5 and 3 eV, respectively 1·10-2, 2·10-2 and 1·10-3. The composition of the surfaces of the discharge chambers of thermonuclear installations, according to the data of [4 - 8], substantially depends on the working and cleaning conditions; immediately after purification with atomic hydrogen, the surface concentration of car- bon, oxygen and sulfur lies at about 2...5% of each of the elements, respectively, the concentration of the sub- strate metal is about 85...90%. In the process of long- term operation, the composition of the surface can vary greatly in such a way that the concentration of carbon increases to 30...95%, oxygen to 10...30%, metal to 1...35%. (Unfortunately, the Kh and Kh o values for films of this composition were not measured directly in the discharge chambers). In addition, in the intervals be- tween the plasma pulses, i.e. peculiar cleaning, the sur- face composition may also change as a result of adsorp- tion of water vapor, CO, CH4, CO2, are always present in the discharge chamber and the divertor, and coming from the associated volumes. According to the data of [10, 11], we consider the composition of the atmosphere and the filling of the surface with oxygen θ in installa- tions (Table 1). Table 1 Atmospheric composition Partial pressure, Pa Installations JET-2 TFR-600 ASDEX filling of the surface with oxygen No data 0.02 1.0 No data HO CH CO (2…3.3)·10-5 (1.3…4)·10-6 2.7·10-6…1·10-5 1.3·10-6 - - 4·10-6 - - 6.7·10-5 2.7·10-6 1.4·10-5 It should be noted that in JET-2 and TFR-600 Spe- cial vacuum technologies for cleaning materials were used, including heating the chambers to 300...400°С, and in the case of TFR, a special initial heating of mate- rials up to 800°С before installation of the system. Camera installation ASDEX could be heated only to 120°С, in addition, its divertor was weakly purified dur- ing plasma purification. Therefore, in the period be- tween plasma pulses, as mentioned above, a weakly coupled adsorption layer will increase on the cleaned surfaces of the discharge chambers, the concentration of which surf Ln will vary: ( ) ( ) 10surf surf ds L L i dc A n n const A tp A θ d −= + × × , (6) where A(θ) – coefficient of capture of particles in the discharge chamber; Ads⁄Adc – the area ratio of the di- vertor slits and the discharge chamber; δ – coefficient of surface roughness; pi – pressure in the diverter chamber. Coefficient A(θ) determined by the ratio Ads⁄Adc and the local coefficient of adhesion (capture) of gas on the sur- face α(θ). For most pure metals α(θ) for room temperature, the substrates lie at a level of 0.1...0.05 for CO, CH4, CO2; 0.5...0.2 for H2O. For metal carbides, these values are about 0.5...0.03 [3]. Thus, in a wide range of variation of θ, setting the pressure values Pi, characteristic of the case [2] (Table 2), and also taking into account the ge- ometry of the system Ads⁄Adc=5·10-2 and δ = 1, at initial concentrations of oxygen and carbon on the surface, equal to 5%, At initial concentrations of oxygen and carbon on the surface, equal to no and nc for θ < 0.2: 13 125 10 3.9 10 t;O surfn = × + × (7) 13 125 10 2.9 10 t,C surfn = × + × (8) where t – is the time of accumulation of impurities after cleaning the surface before filling with θ≈0.05. As can be seen Kh and Kph taken by us for fillings θ≈0.15, will be achieved in a few tens of seconds, i.e. our choice is understated, since in the case of [2] the impulses usually go in 2...3 minutes. Table 2 Impurity gases H2O CO CO2 CH4 Pressure, Pa 1.33·10-5 6.6·10-6 4·10-6 4·10-6 CONCLUSIONS Thus, as can be seen from the results of the calcula- tions in papers [1] and [3], the concentration of light impurities under equal conditions on the surface is de- termined by the temperature of the plasma electrons, which, in turn, affects the values of the fluxes Fh and Feff and the ratios of the number of quanta or atoms on the ion-electron pair formed in the discharge, which change during the plasma generation process. Reduced Te leads to an increase in income of impuri- ties into the plasma by increasing the ratio of the num- ber of photons and atoms in the ion-electron pair. Changes in temperature also leads to a redistribution contribution of photons and atoms in the impurity con- centration. Moreover, at Te<6 eV the contribution of Fh is significant, at Te>6 eV – are photons, since for the conditions under consideration Kph>>Kh. ISSN 1562-6016. ВАНТ. 2019. №4(122) 112 It should also be noted that at the gas-kinetic rates of the desorbed molecules H2O, CH2, CO the lengths be- fore ionization at ne=1012…1013 сm-3 lie in the range 10...1 сm. Moreover, as the density increases, the depth of penetration of impurities decreases. Here we do not consider elementary processes leading to a decrease in concentration gradients, nor processes of impurity trans- fer in plasma. Those at small Te impurities penetrate to a considerable depth, but still at ne≈1×1013 сm-3 the cap- ture of impurities goes to the outer plasma regions ~1…3 сm. Such a distribution can be maintained long enough for small Te and Ti due to very low values of the diffusion coefficients and large ionization rates. How- ever, at the stage of plasma heating, due to an increase in the diffusion coefficients of the impurity for 1…5 ms equalize radial distribution. Fig. 3. Distribution of energy lost by electrons in CO2 (dashed line) and H2O (solid line) through various exci- tation channels: 1 – Oscillations; 2 – Electronic excita- tion (dissociation, dissociative adhesion); 3 – Electronic excitation; 4 – Ionization; 5 – Elastic collision loss It should also make some comments regarding the impurities. In Fig. 3 they are represented in the atomic state, whereas desorption from the surface occurs in the form of molecules, which in this case will be represented in the form of water molecules H2O and hydrocarbons, i.e. fragments of CnHm, in particular, methane CH4, CH3, CH, CO2 clearly visible in the mass spectrograms plasma discharges. On the other side all these compounds have a radiating vibrational levels significantly increase the en- trainment of the energy from the plasma. In Fig. 3 shows the energetics of the vibrational lev- els for the H2O and CO2 molecules which indicates that in spite of the relatively small percentage of impurities H2O and CO2 ~10% in the hydrogen plasma, they will significantly increase the energy consumption of such hydrogen plasma discharges. REFERENCES 1. G.W. Fabel, S.M. Cox, D. Lichtman. Photodesorp- tion from 304 stainless steel // Surf. Sci. 1973, v. 40, p. 571. 2. E.D. Volkov, A.V. Georgievskij, A.G. Dikij, et al. Basic physical installation tasks "Uragan-3": Pre- print KIPT 81-45. Kharhiv: KIPT AS USSR, 1981, 28 p. 3. G.M. Cracken, P.E. Stott. Plasma-surface interac- tions in tokamaks. Preprint CLM. Culham Laborato- ry, Oxfordshire, Abingdon, 1979, p. 573. 4. Desorption and related phenomena relevant to fu- sion device. JPPJ-AM-22. Nagaya, Japan, 1982, p. 101. 5. H.F. Dylla. A review of the wall problem and condi- tioning techniques for tokamaks // J. Nucl. Mat. 1980, v. 93/94, p. 61-74. 6. P. Staib, G. Staudenmaier. Surface effects and impu- rity production in tokamak machines // J. Nucl. Mat. 1978, v. 76/77, p. 78-91. 7. S.A. Cohen, H.F. Dylla, et al. Long-term changes in the surface conditions of PLT // J. Nucl. Mat. 1978, v. 76/77, p. 459-471. 8. J.V. Seggern, K.G. Tachersich. Dependence of in- conel surface composition on the influx of hydrogen atoms // J. Nucl. Mat. 1978, v. 76/77. p. 600-604. 9. Yu.M. Pustovoit, V.N. Stolyarov. Unsprayable get- ters for fusion devices // Reports of the Second All- Union Conference on the Engineering Problems of Thermonuclear Reactors. Leningrad, NIIEFA, 1982, iss. 4, p. 53. 10. T. Hiraycima et al. On the origin of gaseous impuri- ties measured by mass spectroscopy in the JET-2 to- kamak // J. Nucl. Mat. 1978, v. 76/77, p. 587-593. 11. TFR Group (presented by P. Deschamps). Surface conditioning and mass spectroscopy in the TFR-600 tokamak // J. Nucl. Mat. 1978, v. 76/77, p. 587-593. Article received 29.05.2019 ОБРАЗОВАНИЕ ЛЕГКИХ ПРИМЕСЕЙ НА НАЧАЛЬНОЙ СТАДИИ РАЗРЯДА В.Б. Юферов, Е.И. Скибенко, В.И. Ткачев, В.В. Катречко, А.С. Свичкарь При рассмотрении динамики плотности водородных атомарных и молекулярных ионов получены вели- чины потоков атомарного водорода и УФ-излучения на стенки плазменной камеры, в результате чего появ- ляются легкие примеси углерода и кислорода на начальной стадии развития разряда в процессе десорбции со стенок при облучении. Определены величины потоков примесных атомов, связанных с потоками фотонов и атомов водорода, возникающих в разряде. Даны рекомендации по уменьшению количества примесей на начальной стадии разряда. УТВОРЕННЯ ЛЕГКИХ ДОМІШОК НА ПОЧАТКОВІЙ СТАДІЇ РОЗРЯДУ В.Б. Юферов, Є.І. Скібенко, В.І. Ткачов, В.В. Катречко, О.С. Свічкар При розгляді динаміки щільності водневих атомарних і молекулярних іонів отримані величини потоків атомарного водню і УФ-випромінювання на стінки плазмової камери, через що з'являються легкі домішки вуглецю і кисню на початковій стадії розряду в процесі десорбції зі стінок при опроміненні. Визначено ве- личини потоків домішкових атомів, пов'язаних з потоками фотонів і атомів водню, що виникають у розряді. Надано рекомендації щодо зменшення кількості домішок на початковій стадії розряду.