Effect of negative shift of metalhydride cathode on the emission of H⁻ ions from penning discharge

On the basis of numerical calculations, the experimental results obtained by the authors in the study of the source of negative hydrogen ions of the Penning type with a metal hydride cathode are explained. It was shown that the yield of negative ions depends on the potential at the metal hydride cat...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Вопросы атомной науки и техники
Дата:2019
Автори: Sereda, I., Tseluyko, A., Hrechko, Ya.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2019
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/195191
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Effect of negative shift of metalhydride cathode on the emission of H⁻ ions from penning discharge / I. Sereda, A. Tseluyko, Ya. Hrechko // Problems of atomic science and technology. — 2019. — № 4. — С. 113-115. — Бібліогр.: 12 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-195191
record_format dspace
spelling Sereda, I.
Tseluyko, A.
Hrechko, Ya.
2023-12-03T14:50:24Z
2023-12-03T14:50:24Z
2019
Effect of negative shift of metalhydride cathode on the emission of H⁻ ions from penning discharge / I. Sereda, A. Tseluyko, Ya. Hrechko // Problems of atomic science and technology. — 2019. — № 4. — С. 113-115. — Бібліогр.: 12 назв. — англ.
1562-6016
PACS: 52.80.Sm
https://nasplib.isofts.kiev.ua/handle/123456789/195191
On the basis of numerical calculations, the experimental results obtained by the authors in the study of the source of negative hydrogen ions of the Penning type with a metal hydride cathode are explained. It was shown that the yield of negative ions depends on the potential at the metal hydride cathode and is determined by the temperature of the plasma electrons. The dependence of this potential on the electron temperature is calculated numerically to ensure the maximum current of negative ions.
На основі чисельних розрахунків пояснені експериментальні результати, які отримані авторами при дослідженні джерела негативних іонів водню типу Пеннінга з металогідридним катодом. Показано, що вихід негативних іонів залежить від потенціалу на металогідридному катоді і визначається температурою електронів плазми. Залежність цього потенціалу від температури електронів розраховується чисельно для забезпечення максимального струму негативних іонів.
На основе численных расчетов объяснены экспериментальные результаты, полученные авторами при исследовании источника отрицательных ионов водорода типа Пеннинга с металлогидридным катодом. Показано, что выход отрицательных ионов зависит от потенциала на металлогидридном катоде и определяется температурой электронов плазмы. Зависимость этого потенциала от температуры электронов рассчитывается численно для обеспечения максимального тока отрицательных ионов.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Gas and plasma-beam discharges and their applications
Effect of negative shift of metalhydride cathode on the emission of H⁻ ions from penning discharge
Вплив від’ємного зсуву металогідридного катода на емісію іонів Н⁻ з розряду пеннінга
Влияние отрицательного смещения металлогидридного катода на эмиссию ионов Н⁻ из разряда пеннинга
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Effect of negative shift of metalhydride cathode on the emission of H⁻ ions from penning discharge
spellingShingle Effect of negative shift of metalhydride cathode on the emission of H⁻ ions from penning discharge
Sereda, I.
Tseluyko, A.
Hrechko, Ya.
Gas and plasma-beam discharges and their applications
title_short Effect of negative shift of metalhydride cathode on the emission of H⁻ ions from penning discharge
title_full Effect of negative shift of metalhydride cathode on the emission of H⁻ ions from penning discharge
title_fullStr Effect of negative shift of metalhydride cathode on the emission of H⁻ ions from penning discharge
title_full_unstemmed Effect of negative shift of metalhydride cathode on the emission of H⁻ ions from penning discharge
title_sort effect of negative shift of metalhydride cathode on the emission of h⁻ ions from penning discharge
author Sereda, I.
Tseluyko, A.
Hrechko, Ya.
author_facet Sereda, I.
Tseluyko, A.
Hrechko, Ya.
topic Gas and plasma-beam discharges and their applications
topic_facet Gas and plasma-beam discharges and their applications
publishDate 2019
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Вплив від’ємного зсуву металогідридного катода на емісію іонів Н⁻ з розряду пеннінга
Влияние отрицательного смещения металлогидридного катода на эмиссию ионов Н⁻ из разряда пеннинга
description On the basis of numerical calculations, the experimental results obtained by the authors in the study of the source of negative hydrogen ions of the Penning type with a metal hydride cathode are explained. It was shown that the yield of negative ions depends on the potential at the metal hydride cathode and is determined by the temperature of the plasma electrons. The dependence of this potential on the electron temperature is calculated numerically to ensure the maximum current of negative ions. На основі чисельних розрахунків пояснені експериментальні результати, які отримані авторами при дослідженні джерела негативних іонів водню типу Пеннінга з металогідридним катодом. Показано, що вихід негативних іонів залежить від потенціалу на металогідридному катоді і визначається температурою електронів плазми. Залежність цього потенціалу від температури електронів розраховується чисельно для забезпечення максимального струму негативних іонів. На основе численных расчетов объяснены экспериментальные результаты, полученные авторами при исследовании источника отрицательных ионов водорода типа Пеннинга с металлогидридным катодом. Показано, что выход отрицательных ионов зависит от потенциала на металлогидридном катоде и определяется температурой электронов плазмы. Зависимость этого потенциала от температуры электронов рассчитывается численно для обеспечения максимального тока отрицательных ионов.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/195191
citation_txt Effect of negative shift of metalhydride cathode on the emission of H⁻ ions from penning discharge / I. Sereda, A. Tseluyko, Ya. Hrechko // Problems of atomic science and technology. — 2019. — № 4. — С. 113-115. — Бібліогр.: 12 назв. — англ.
work_keys_str_mv AT seredai effectofnegativeshiftofmetalhydridecathodeontheemissionofhionsfrompenningdischarge
AT tseluykoa effectofnegativeshiftofmetalhydridecathodeontheemissionofhionsfrompenningdischarge
AT hrechkoya effectofnegativeshiftofmetalhydridecathodeontheemissionofhionsfrompenningdischarge
AT seredai vplivvídêmnogozsuvumetalogídridnogokatodanaemísíûíonívnzrozrâdupennínga
AT tseluykoa vplivvídêmnogozsuvumetalogídridnogokatodanaemísíûíonívnzrozrâdupennínga
AT hrechkoya vplivvídêmnogozsuvumetalogídridnogokatodanaemísíûíonívnzrozrâdupennínga
AT seredai vliânieotricatelʹnogosmeŝeniâmetallogidridnogokatodanaémissiûionovnizrazrâdapenninga
AT tseluykoa vliânieotricatelʹnogosmeŝeniâmetallogidridnogokatodanaémissiûionovnizrazrâdapenninga
AT hrechkoya vliânieotricatelʹnogosmeŝeniâmetallogidridnogokatodanaémissiûionovnizrazrâdapenninga
first_indexed 2025-11-25T08:09:30Z
last_indexed 2025-11-25T08:09:30Z
_version_ 1850510656335249408
fulltext ISSN 1562-6016. ВАНТ. 2019. №4(122) 113 EFFECT OF NEGATIVE SHIFT OF METALHYDRIDE CATHODE ON THE EMISSION OF H– IONS FROM PENNING DISCHARGE I. Sereda, A. Tseluyko, Ya. Hrechko V.N. Karazin Kharkiv National University, Kharkiv, Ukraine E-mail: igorsereda@karazin.ua On the basis of numerical calculations, the experimental results obtained by the authors in the study of the source of negative hydrogen ions of the Penning type with a metal hydride cathode are explained. It was shown that the yield of negative ions depends on the potential at the metal hydride cathode and is determined by the temperature of the plasma electrons. The dependence of this potential on the electron temperature is calculated numerically to en- sure the maximum current of negative ions. PACS: 52.80.Sm INTRODUCTION The development of negative ion sources for high- power ion beams is a significant challenge for world science and are pursued in fusion research institutes worldwide, e.g., IPP Garching [1] (Germany), Consor- zio RFX [2] (Padova, Italy), JAEA [3, 4] and NIFS [5] (Japan). This is due to the neutralization efficiency of negative hydrogen ions, that remains acceptable at high- er kinetic energy and is nearly independent on beam energy above 100 keV/nucleon. Since high heating power (up to 33 MW) of atomic beams are required in fusion research, the need for producing intense negative ion beams becomes urgent. The main problem that aris- es here is the insufficient current of negative ion beams for heating the plasma in tokamaks up to the burning temperature. For instance, in ITER, negative ion current should be more than 40 A to produce intense neutral beam with reasonable pulse duration for effective plas- ma heating. Another application area of negative ions beams is producing a number of medical radionuclides used in diagnosis and contact radiation therapy [6]. Beams of high energy (hundreds MeV) and small average current (from 20 µA to several A) are used here depending on the type of therapy [6]. All these force the intensive development of negative hydrogen ion sources, which are traditionally based on two types of processes: H– formation in the plasma volume [7], and on surfaces [8]. In the first case negative ions are formed by dissociative attachment of slow electrons to vibrational- ly/ rotationally excited hydrogen molecules H2 * and H– current usually does not exceed tens mA at several kW of a discharge power in a pulse. In the second one – by the interaction between hydrogen plasma and caesiated surface facing the plasma. Using cesium sufficiently increases the intensity of negative ions, but complicates ion source operation and requires a careful stabilization of cesium injection and discharge parameters [8]. These sources are usually set separately from acceleration complexes to avoid operational risks associated with cesium flow. Maximum H– current on the level of 2 A has been achieved there. On the contrary, volume sources possess much low intensity of H– beam (tens mA), but they are more reliable, compact and environ- mentally friendly (cesium free). They could be inserted inside an acceleration complex that sufficiently reduces dimensions and cost of the equipment. Achieved low current of negative ions is caused by hydrogen pressure limitation in the source volume, because raising it more than 10-2 Torr increases the destruction processes of negative ions [7]. So, if one could increase the intensity of H– beam from volume source, it would be the best way to produce high-power negative ion beams for fu- sion and accelerators. In our previous work we obtained the H– ion current of 10 μA at an input power of 6 W from Penning type ion source with metal-hydride cathode [12]. Maximum extracted current was observed at electrical bias of met- al-hydride cathode. The purpose of the paper is to ex- plain carried out results and to giveadvices on increas- ing the extracted current. 1. EXPERIMENTAL SETUP Experimental results [12] were obtained on a device shown in Fig. 1. It shows a schematic illustration of the Penning type H– ion source with metal hydride cathode and electromagnetic filter. Fig. 1. The scheme of the Penning type H– ion source: 1 – metal hydride cathode; 2 – cathode-holder with wa- ter-cool; 3 – thermocouple; 4 – anode; 5 – copper cath- ode-reflector with an aperture; 6 – reflecting grid; 7 – electrons collector; 8 – filter magnetic coil; 9 – H– ion collector, Hzo0 – main axial Penning magnet- ic field (Hzo0 = 0…1000 Oe) Hydrogen plasma was formed inside a tubular an- ode 4 and between a metal hydride cathode 1 and a cop- per cathode-reflector 5. Behind the central aperture in the cathode-reflector 5 an electromagnetic filter was set. It consists of a grid 6 for positive ions reflecting, a mag- netic coil 8 for electrons diverting, a collector of divert- ed electrons 7 and a collector of extracted axial beam of H– ions 9. The metal hydride cathode 1 was produced from hy- dride-forming alloy Zr50V50. The quantity of hydrogen stored in the cathode is ~ 9×10-3 m-3 under normal at- Ud +3kV 1 4 5 6 7 8 9 Icol z Hz0 Hzo0 z,cm 0 1 2 3 4 5 6 7 8 9 Hcoil -UMH +UC water 2 3 ISSN 1562-6016. ВАНТ. 2019. №4(122) 114 mospheric conditions. For pressure being stabilized, the metal hydride cathode had got a water-cool and its tem- perature was not exceed 20°С, that much lower than the temperature of thermal destruction of hydride phases. Therefore, H2 * desorption was determined only by a dis- charge current and is provided mainly by ion-stimulated processes from the surface of metal hydride [11]. 2. RESULTS AND DISCUSSION Fig. 2 shows the experimental results [12] of the to- tal collector current (Icol) of outgoing particles behavior depending on the value of metal hydride cathode bias. The growth of axial total current with an increase in negative bias on the metal hydride cathode (UMH) may be attributed to the repulsive force to the electrons by the extra cathode potential. 0 50 100 150 200 250 -100 -80 -60 -40 -20 0 I co l , µ A -UMH, V Fig. 2. The dependence of total current on negative electric bias on the metal hydride cathode at Ud = 4 kV, Hzo0 = 1000 Oe, p = 5×10-6 Torr On the other hand, an increase in the H– ion current ( H I − ) (Fig. 3) is observed only to the values of UMH of -50 V. 0 50 100 150 200 250 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 Ifit IH - I H -- , µ A -UMH , V Fig. 3. The dependence of H– ion current on negative electric bias on the metal hydride cathode at Ud = 4 kV, Hzo0 = 1000 Oe, p = 5×10-6 Torr To explain this behavior, we assume that the elec- tron concentration near the cathode is described by the Boltzmann distribution. Thus, the dependence of H I − current on UMH can be approximately described as: ( )MHUb H eaII −=− 0 , (1) where I0 is the current of outgoing charged particles, which we do not associate here with any particular physical process, but simply approximate it up to a con- stant i to fit the experimental curve Icol in Fig. 2. ( )2 0 0fit MHI I i c U U= − = − + . (2) This additional term i is related to the initial current of negatively charged particles from the whole cell vol- ume at UMH = 0 and was not included in the equation (1) because it concerns only the cathode region. Substituting the following values of a = 3.85, b = 0.0237, c = 0.001, i = 25, and U0 = 40 one can be sure of the good match of calculations (dot curve) with experiment (solid curve) in Fig. 3 at |UMH| ≤ 50 V. So, an increase in the H– ion current is due to the growth of the total collector current. The coincidence of the H– yield maximum with the calculated curve is a result of the parameter a in Eq. (1) fit and does not help as physical interpretation. But the factor b is responsible for the inflection point of the curve H I − in Fig. 3 and depends on the temperature of plasma electrons (Te). If the factor eb kTe = , one could see, that Te should be 42 eV, which is in good agree- ment with experiments carried out in [11]. Higher val- ues of b correspond to a decrease in Te and a shift of the inflection point towards smaller values of |UMH|. One can see this dependence from Fig. 4, which is calculated from Eq. (2). 0 50 100 150 0 20 40 60 80 100 T e , e V -UMH, V Fig. 4. The dependence of metal-hydride electric bias on temperature of plasma electrons A further significant decline in the calculated H I − curve (dot curve) is obviously due to electrons depletion in the cathode region reducing the rate of the dissocia- tive electron attachment. Since in our experiments the reduction of H– current (solid line) is not so strong, as it predicted by Boltzmann distribution, we suppose that at least three more physical phenomena are responsible for the H I − curve behavior in Fig. 3. These are secondary ion-electron emission, which slows down the depletion of electrons, reduction in the efficiency of accelerated electron dissociative attachment to H2 * molecules and the destructive impact of energetic electrons on H– ions. The dissociative attachment rate coefficients can be as high as 10-8 cm3⋅s-1 at Te ≈ 1…2 eV when the mole- cules are in the highest vibrational states [7]. But an ISSN 1562-6016. ВАНТ. 2019. №4(122) 115 increase in the electron temperature even to 5 eV leads to a decrease in the rate coefficients by 4 orders of mag- nitude. So, high bias supply on metal hydride UMH can sufficiently reduce the efficiency of electron dissocia- tive attachment to H2 * molecules. Destructive impact of accelerated electrons on H– ions appears only at high plasma density ne > 1017m-3 [7] that much higher, than in our experiments (ne = 3×1015 m-3) [17]. Thus, the maximum H– yield is apparently due to the effect of these competing processes. CONCLUSIONS Thus, the current of negative ions depends on the potential at the metal-hydride cathode and is determined by the temperature of the plasma electrons. To increase the H– current one should supply a negative potential on metal hydride cathode, with sufficient values to deflect plasma electrons. In our experiments Te ≈ 40 eV, and the maximum value of H– current is achieved by apply- ing a negative bias to 50 V. The higher values of electric bias leads to decreasing in the efficiency of H– ions formation due to electrons depletion in the cathode re- gion and reduction in the dissociative attachment rate coefficients. REFERENCES 1. P. Franzen, U. Fantz, D. Wünderlich, B. Heinemann, R. Riedl, W. Kraus, et al. Progress of the ELISE test facility: results of caesium operation with low RF power // Nucl. Fusion. 2015, v. 55, p. 053005. 2. V. Antoni, D. Aprile, M. Cavenago, G. Chitarin, N. Fonnesu, et al. Physics design of the injector source for ITER neutral beam injector (invited) // Rev. Sci. Instr. 2014, v. 85, p. 02B128. 3. M. Kashiwagi, N. Umeda, H. Tobari, A. Kojima, M. Yoshida, M. Taniguchi, et al. Development of negative ion extractor in the high-power and long- pulse negative ion source for fusion application // Rev. Sci. Instr. 2014, v. 85, p. 02B320. 4. N. Umeda, M. Kashiwagi, M. Taniguchi, H. Tobari, K. Watanabe, M. Dairaku, et al. Long-pulse beam acceleration of MeV-class H− ion beams for ITER NB accelerator // Rev. Sci. Instr. 2014, v. 85, p. 02B304. 5. Y. Takeiri, K. Tsumori, M. Osakabe, K. Ikeda, K. Nagaoka, H. Nakano, et al. Development of in- tense hydrogen-negative-ion source for neutral beam injectors at NIFS // AIP Conf. Proc. 2013,v. 1515, p. 139. 6. Th. Stammbach, S. Adam, A. Mezger, P.A. Schmelzbach, P. Sigg. Cyclotron performance and new developments // Proc. of the 8-th Europ. Part. Acc. Conf. Paris, 2002, p. 159. 7. M. Bacal, G.W. Hamilton. H− and D− Production in Plasmas // Phys. Rev. Lett. 1979, v. 45, 1538. 8. V. Dudnikov. Thirty years of surface plasma sources for efficient negative ion production // Rev. Sci. In- str. 2002, v. 73, p. 992. 9. Yu.F. Shmal'ko, M.V. Lototsky, V.V. Solovey, V.A. Yartys', A.P. Strokach. Application of metal hydrides in hydrogen ion sources // Z. Phys. Chem. 1994, v. 183, p. 479. 10. V. Borgun, D.L. Ryabchikov, I.N. Sereda, A.F. Tseluyko. PIG charged particle source with hydro- gen supply from a metal-hydride cathode // J. Phys. Conf. Ser. 2014, v. 514, p. 012051. 11. I. Sereda, A. Tseluyko, N. Azarenkov, D. Ryab- chikov, Ya. Hrechko. Effect of metal-hydride hy- drogen activation on longitudinal yield of negative ions from PIG // Int. J. Hydrogen Energy. 2017, v. 42, p. 21866. 12. I.N. Sereda, Ya.O. Hrechko, D.L. Ryabchikov, A.F. Tseluyko. Method of increasing the longitudi- nal current of H– ions from PIG with metal hydride cathode // Problems of Atomic Science and Technol- ogy. Series “Plasma Physics”. 2019, № 7, p. 190- 192. Article received 17.05.2019 ВЛИЯНИЕ ОТРИЦАТЕЛЬНОГО СМЕЩЕНИЯ МЕТАЛЛОГИДРИДНОГО КАТОДА НА ЭМИССИЮ ИОНОВ Н– ИЗ РАЗРЯДА ПЕННИНГА И. Середа, А. Целуйко, Я. Гречко На основе численных расчетов объяснены экспериментальные результаты, полученные авторами при ис- следовании источника отрицательных ионов водорода типа Пеннинга с металлогидридным катодом. Пока- зано, что выход отрицательных ионов зависит от потенциала на металлогидридном катоде и определяется температурой электронов плазмы. Зависимость этого потенциала от температуры электронов рассчитывает- ся численно для обеспечения максимального тока отрицательных ионов. ВПЛИВ ВІД’ЄМНОГО ЗСУВУ МЕТАЛОГІДРИДНОГО КАТОДА НА ЕМІСІЮ ІОНІВ Н– З РОЗРЯДУ ПЕННІНГА І. Середа, О. Целуйко, Я. Гречко На основі чисельних розрахунків пояснені експериментальні результати, які отримані авторами при дос- лідженні джерела негативних іонів водню типу Пеннінга з металогідридним катодом. Показано, що вихід негативних іонів залежить від потенціалу на металогідридному катоді і визначається температурою елект- ронів плазми. Залежність цього потенціалу від температури електронів розраховується чисельно для забез- печення максимального струму негативних іонів. 1. EXPERIMENTAL SETUP 2. RESULTS AND DISCUSSION