Azimuthal stability of trichel pulses and cathode directed streamers

The numerical simulations of negative corona discharge in Trichel pulse mode are carried out with the calculation of evolution of azimuthal perturbations. It is found the azimuthal instability with increment corresponding to avalanche development. This instability is suppressed at the nonlinear stag...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Вопросы атомной науки и техники
Дата:2019
Автори: Bolotov, O., Kadolin, B., Mankovskyi, S., Ostroushko, V., Pashchenko, I., Taran, G., Zavada, L.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2019
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/195194
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Azimuthal stability of trichel pulses and cathode directed streamers / O. Bolotov, B. Kadolin, S. Mankovskyi, V. Ostroushko, I. Pashchenko, G. Taran, L. Zavada // Problems of atomic science and technology. — 2019. — № 4. — С. 130-134. — Бібліогр.: 3 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-195194
record_format dspace
spelling Bolotov, O.
Kadolin, B.
Mankovskyi, S.
Ostroushko, V.
Pashchenko, I.
Taran, G.
Zavada, L.
2023-12-03T14:51:23Z
2023-12-03T14:51:23Z
2019
Azimuthal stability of trichel pulses and cathode directed streamers / O. Bolotov, B. Kadolin, S. Mankovskyi, V. Ostroushko, I. Pashchenko, G. Taran, L. Zavada // Problems of atomic science and technology. — 2019. — № 4. — С. 130-134. — Бібліогр.: 3 назв. — англ.
1562-6016
PACS: 52.80.Hc
https://nasplib.isofts.kiev.ua/handle/123456789/195194
The numerical simulations of negative corona discharge in Trichel pulse mode are carried out with the calculation of evolution of azimuthal perturbations. It is found the azimuthal instability with increment corresponding to avalanche development. This instability is suppressed at the nonlinear stage and does not lead to the process branching. The result is also applicable to the azimuthal instability of the cathode directed streamer, found earlier. The difference in their increments is followed from the difference in courses of the processess, which is discussed.
Виконане числове моделювання негативної корони в режимі імпульсів Тричела з розрахунком еволюції азимутальних збурень. Виявлено азимутальну нестійкість з інкрементом, відповідним розвитку лавини. Ця нестійкість пригнічується на нелінійній стадії і не веде до галуження процесу. Результат також застосовується до виявленої раніше азимутальної нестійкості спрямованого до катода стримера. Різниця в їхніх інкрементах випливає з різниці в ході процесів, які обговорюються.
Выполнено численное моделирование отрицательной короны в режиме импульсов Тричела с расчетом эволюции азимутальных возмущений. Выявлена азимутальная неустойчивость с инкрементом, соответствующим развитию лавины. Эта неустойчивость подавляется на нелинейной стадии и не ведет к ветвлению процесса. Результат также применим к выявленной ранее азимутальной неустойчивости направленного к катоду стримера. Разница в их инкрементах следует из разницы в ходе процессов, которые обсуждаются.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Gas and plasma-beam discharges and their applications
Azimuthal stability of trichel pulses and cathode directed streamers
Азимутальна стійкість імпульсів тричела та спрямованих до катодa стримерів
Азимутальная устойчивость импульсов тричела и направленных к катоду стримеров
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Azimuthal stability of trichel pulses and cathode directed streamers
spellingShingle Azimuthal stability of trichel pulses and cathode directed streamers
Bolotov, O.
Kadolin, B.
Mankovskyi, S.
Ostroushko, V.
Pashchenko, I.
Taran, G.
Zavada, L.
Gas and plasma-beam discharges and their applications
title_short Azimuthal stability of trichel pulses and cathode directed streamers
title_full Azimuthal stability of trichel pulses and cathode directed streamers
title_fullStr Azimuthal stability of trichel pulses and cathode directed streamers
title_full_unstemmed Azimuthal stability of trichel pulses and cathode directed streamers
title_sort azimuthal stability of trichel pulses and cathode directed streamers
author Bolotov, O.
Kadolin, B.
Mankovskyi, S.
Ostroushko, V.
Pashchenko, I.
Taran, G.
Zavada, L.
author_facet Bolotov, O.
Kadolin, B.
Mankovskyi, S.
Ostroushko, V.
Pashchenko, I.
Taran, G.
Zavada, L.
topic Gas and plasma-beam discharges and their applications
topic_facet Gas and plasma-beam discharges and their applications
publishDate 2019
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Азимутальна стійкість імпульсів тричела та спрямованих до катодa стримерів
Азимутальная устойчивость импульсов тричела и направленных к катоду стримеров
description The numerical simulations of negative corona discharge in Trichel pulse mode are carried out with the calculation of evolution of azimuthal perturbations. It is found the azimuthal instability with increment corresponding to avalanche development. This instability is suppressed at the nonlinear stage and does not lead to the process branching. The result is also applicable to the azimuthal instability of the cathode directed streamer, found earlier. The difference in their increments is followed from the difference in courses of the processess, which is discussed. Виконане числове моделювання негативної корони в режимі імпульсів Тричела з розрахунком еволюції азимутальних збурень. Виявлено азимутальну нестійкість з інкрементом, відповідним розвитку лавини. Ця нестійкість пригнічується на нелінійній стадії і не веде до галуження процесу. Результат також застосовується до виявленої раніше азимутальної нестійкості спрямованого до катода стримера. Різниця в їхніх інкрементах випливає з різниці в ході процесів, які обговорюються. Выполнено численное моделирование отрицательной короны в режиме импульсов Тричела с расчетом эволюции азимутальных возмущений. Выявлена азимутальная неустойчивость с инкрементом, соответствующим развитию лавины. Эта неустойчивость подавляется на нелинейной стадии и не ведет к ветвлению процесса. Результат также применим к выявленной ранее азимутальной неустойчивости направленного к катоду стримера. Разница в их инкрементах следует из разницы в ходе процессов, которые обсуждаются.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/195194
citation_txt Azimuthal stability of trichel pulses and cathode directed streamers / O. Bolotov, B. Kadolin, S. Mankovskyi, V. Ostroushko, I. Pashchenko, G. Taran, L. Zavada // Problems of atomic science and technology. — 2019. — № 4. — С. 130-134. — Бібліогр.: 3 назв. — англ.
work_keys_str_mv AT bolotovo azimuthalstabilityoftrichelpulsesandcathodedirectedstreamers
AT kadolinb azimuthalstabilityoftrichelpulsesandcathodedirectedstreamers
AT mankovskyis azimuthalstabilityoftrichelpulsesandcathodedirectedstreamers
AT ostroushkov azimuthalstabilityoftrichelpulsesandcathodedirectedstreamers
AT pashchenkoi azimuthalstabilityoftrichelpulsesandcathodedirectedstreamers
AT tarang azimuthalstabilityoftrichelpulsesandcathodedirectedstreamers
AT zavadal azimuthalstabilityoftrichelpulsesandcathodedirectedstreamers
AT bolotovo azimutalʹnastíikístʹímpulʹsívtričelatasprâmovanihdokatodastrimerív
AT kadolinb azimutalʹnastíikístʹímpulʹsívtričelatasprâmovanihdokatodastrimerív
AT mankovskyis azimutalʹnastíikístʹímpulʹsívtričelatasprâmovanihdokatodastrimerív
AT ostroushkov azimutalʹnastíikístʹímpulʹsívtričelatasprâmovanihdokatodastrimerív
AT pashchenkoi azimutalʹnastíikístʹímpulʹsívtričelatasprâmovanihdokatodastrimerív
AT tarang azimutalʹnastíikístʹímpulʹsívtričelatasprâmovanihdokatodastrimerív
AT zavadal azimutalʹnastíikístʹímpulʹsívtričelatasprâmovanihdokatodastrimerív
AT bolotovo azimutalʹnaâustoičivostʹimpulʹsovtričelainapravlennyhkkatodustrimerov
AT kadolinb azimutalʹnaâustoičivostʹimpulʹsovtričelainapravlennyhkkatodustrimerov
AT mankovskyis azimutalʹnaâustoičivostʹimpulʹsovtričelainapravlennyhkkatodustrimerov
AT ostroushkov azimutalʹnaâustoičivostʹimpulʹsovtričelainapravlennyhkkatodustrimerov
AT pashchenkoi azimutalʹnaâustoičivostʹimpulʹsovtričelainapravlennyhkkatodustrimerov
AT tarang azimutalʹnaâustoičivostʹimpulʹsovtričelainapravlennyhkkatodustrimerov
AT zavadal azimutalʹnaâustoičivostʹimpulʹsovtričelainapravlennyhkkatodustrimerov
first_indexed 2025-11-25T23:10:43Z
last_indexed 2025-11-25T23:10:43Z
_version_ 1850579410450644992
fulltext ISSN 1562-6016. ВАНТ. 2019. №4(122) 130 AZIMUTHAL STABILITY OF TRICHEL PULSES AND CATHODE DIRECTED STREAMERS O. Bolotov, B. Kadolin, S. Mankovskyi, V. Ostroushko, I. Pashchenko, G. Taran, L. Zavada National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine E-mail: ostroushko-v@kipt.kharkov.ua The numerical simulations of negative corona discharge in Trichel pulse mode are carried out with the calcula- tion of evolution of azimuthal perturbations. It is found the azimuthal instability with increment corresponding to avalanche development. This instability is suppressed at the nonlinear stage and does not lead to the process branch- ing. The result is also applicable to the azimuthal instability of the cathode directed streamer, found earlier. The dif- ference in their increments is followed from the difference in courses of the processess, which is discussed. PACS: 52.80.Hc INTRODUCTION Negative corona discharge is widely used in plasma- chemical techniques, in particular, in ozone synthesis. To intensify required reactions, it is worthy to use nega- tive corona in Trichel pulse mode at relatively high voltage value but to keep discharge from turn to station- ary mode, which destructs ozone through the gas heat- ing. In a discharge with a very large voltage, which reali- zation requires rapid voltage application, during a few nanoseconds, a branching of the ionization process is observed, which can affect the gas heating rate, but which is not observed for the quasi-stationary voltage application, with a characteristic time of change, much larger than the time of Trichel pulse development up to the maximum value of total current. In order to find the possibility of branching realization, the numerical simu- lations of negative corona discharge in Trichel pulse mode are carried out. The real possibilities of the modern computers allow the detailed simulations of the axially symmetric pro- cesses. For some three-dimensional processes, such as branching of streamers, the initial, linear stage of their development can also be simulated on a two- dimensional mesh [1, 2]. In the present paper, this ap- proach is applied to the Trichtel pulses. Strictly speak- ing, the concepts of stability and instability are related to the perturbations of the stationary mode. It is near to the stationary one the intermediate stage of the cathode- directed streamer propagation when its head is already far removed from the anode, but has not yet approached the cathode. Any pulse process in general is unsteady, and the formal calculation of the development of its small perturbations may give characteristics somewhat corresponding to reality only when the characteristic time of development of those perturbations will be much less than the characteristic time of development of the main axially symmetric pulse. 1. SIMULATION MODEL In the present numerical simulations, it is taken into account the drift and diffusion of electrons and ions and the processes of impact ionization, attachment, detach- ment, electron-ion and ion-ion recombination. The equations used are similar to those given in [3]. In conditions of the atmospheric pressure gas dis- charge, the electron and ion motion may be considered in the drift-diffusion approximation, and the field may be calculated as electrostatic. The time evolution of the particle densities and the field potential distribution may be determined with the equations t div( ) ( ) e e e e e i a e d n ep e p N D N N E N N N N µ n n n β ∂ − ∇ + = = − + − d , t div( )p p p p p i e ep e p np n p N D N N E N N N N N µ n β β ∂ − ∇ − = = − − d , t div( )n n n n n a e d n np n p N D N N E N N N N µ n n β ∂ − ∇ + = = − − d , 2 1 0 ( )p e nq N N Ne −∇ Φ = − − − . Here the indexes e , p , and n indicates electrons, positive and negative ions, µ are relevant mobilities, β are recombination coefficients, in , an , dn are fre- quencies of ionization, attachment, and detachment (numbers of the events per time caused by single elec- tron or negative ion, respectively), i e En αµ= , where α is ionization coefficient, | |E E= d , E = −∇Φ d , q is elementary charge, 0e is electric constant. The calculations are carried out for the volume re- stricted with the ellipsoid of revolution having the fo- cuses on the axis of revolution and with the hyperbo- loids of revolution having the same axis of revolution and the focuses. At the electrodes-hyperboloids it is imposed the conditions of absence of diffusion flow, absence of ion emission, and existence of electron emis- sion from the cathode determined by positive ions flow, e e i p pN E N Eµ γ µ= , where iγ is the coefficient of ion-electron emission. At the boundary surface formed with ellipsoid, it is im- posed the condition of absence of any charged particle flow to the surface or from the surface. To avoid the accumulation of the charged particles near this bounda- ry it is assumed that in the elementary volumes nearest to this surface the charged particles have artificially large mobility. Potential is calculated in assumption of its fixed values at infinite hyperboloids-electrodes (one of them may be plane), and so, calculated field distribu- tion corresponds to the case of infinite space between hyperboloids with charge in the volume bounded by ellipsoid. The calculations are carried out in the hyper- boloid coordinates ( , )σ τ connected with the cylindrical coordinates ( , )zρ by the equalities ISSN 1562-6016. ВАНТ. 2019. №4(122) 131 2 2 1 2[( 1)(1 )]aρ σ τ= − − and z aστ= , where a is half of distance between focuses. To calculate the potential distribution the expansion in the terms of eigenfunctions with respect to the coordinate τ is made, and the ob- tained ordinary differential equation with respect to the coordinate σ is solved with run method. The evolution of the azimuthally inhomogeneous distribution is calculated in the linear approximation. For the particle densities and potential, it is taken 0 1 cos( )N N N mϕ= + , 0 1 cos( )mϕΦ = Φ +Φ , where ϕ is azimutal angle (so that cosx ρ ϕ= , siny ρ ϕ= ), m is natural number (the indexes epn here are not written). The sinuous streamer path may be connected with the development of the process at 1m = , and the processes at 2m ≥ , in particular, may describe the streamer bifurcation. It is worthy to write some equalities used in linear approximation: for the absolute value of field strength, 0 1 cos( )E E E mϕ= + , where 0 0| |E E= d , 1 0 1( , )E e E= d d , 0 0 0e E E= d d ; for the perturbations (namely, for the corresponding factors at cos( )mϕ ) of mobilities, (1) 1 1Eµ µ= , where (1)µ is the derivative of the function ( )Eµ ; for the perturbation of ionization frequency, 1 0 0 1 0 1 0 1 0 0i E E En α µ α µ α µ= + + , where (1) 1 1Eα α= ; for the perturbation of the quantity div( )N Eµ d , which has the form 1 0 0 0 1 0 1 0 0 0 0 1div( ) ( , ( ))N E N E E N N Qµ µ µ µ+ + ∇ + d d d , where 1 1 0 1 1 1( )p e nQ q N N Ne −= − − ; for the perturbation of summands connected with recombination, 1 0 0 0 1 0 0 0 1p p pN N N N N Nβ β β+ + . The equation for the perturbation of potential has the form 2 2 2 1 1 1m Qρ−∇ Φ − Φ = − . The diffusion coefficients are taken constant. With the approach to the symmetry axis the ratios of the perturbation and the quantity mρ ap- proaches the bounded values, so, it is worthy to remove the factor 2 / 2( 1)mσ − and to rewrite the equations for the coefficients at it. In particular, for the perturbation of potential the solution is searched in the form of the expansion 1 1 ( ) F ( )m n nn σ τΦ = Φ∑ (with unknown 1 ( )n σΦ ) over the eigenvalues n and the corresponding eigenfunctions F ( )m n τ of the Dirichlet problem for the Legendre equation, 2 2 2 1[(1 ) F ( )] [ ( 1) (1 ) ]F ( ) 0m mmτ τ n nτ τ n n τ τ−∂ − ∂ + + − − = . Using the Poisson equation in hyperboloid coordinates one can obtain the equation 2 1 2 2 1 1 1 [( 1) ( )] [ ( 1) ( 1) ] ( ) ( )m Q σ σ n n n σ σ n n σ σ σ− ∂ − ∂ Φ + + − + − − Φ = − , where the quantities 1 ( )Q n σ may be obtained from the expansion 2 2 2 1 1( ) ( ) F ( )mQ a Q n nn σ τ σ τ− = ∑ . Assumed that 2 / 2 1 1( ) ( )( 1)m n nσ σ σΦ = Φ − , one can get the equa- tion, 2 2 1 1 1 1 ( 1) ( ) 2( 1) ( ) [ ( 1) ( 1)] ( ) ( ) m m m Q σ n σ n n n σ σ σ σ n n σ σ − ∂ Φ + + ∂ Φ + + + − + Φ = − , and the boundary condition at the symmetry axis, 1 1 1 1 lim {2( 1) ( ) [ ( 1) ( 1)] ( ) ( )} 0 m m m Q σ σ n n n σ n n σ σ → + ∂ Φ + + + − + Φ + = . As the initial distribution for the basic, axially sym- metric mode, the uniform distribution with a number density of electrons and positive ions of 103 cm−3 is tak- en, and for azimuthal harmonics (the amplitudes of which are normalized at each step), it is taken the distri- bution cos( )mϕ . 2. SIMULATION RESULTS If the increment of a small azimuthal perturbation development is near (by the order of magnitude) to the inverse time of the main pulse development then the results of calculations of the perturbation evolution would depend to a large extent on the choice of the ini- tial distribution. But it is revealed that the rate of azi- muthal perturbations development significantly exceeds the rate of the main pulse development. In the Fig. 1, it is shown the typical time dependence for the total cur- rent ( I ) and for the logarithmic derivatives of the max- imum density in the axially symmetric mode ( 0κ ) and in the azimuthal perturbation (κ ). It should be empha- sized that for the different azimuthal harmonics (the calculations are carried out for m =1…6) the increments are approximately equal. The value 1 on the ordinate axis corresponds to the following values: 10 mA for the total current, 1010 s−1 for the increment of the axially- symmetric mode, 2.5⋅1012 s−1 for the increment of the perturbation. 5 10 15 20 0,0 0,5 1,0 κ0 κ t,ns I Fig. 1. Total current ( I ) and time derivatives of maxi- mum density logarithm, in axially-symmetric mode ( 0κ ) and in azimuthal perturbation (κ ); units in text So, the instability of azimuthal perturbations with a large increment has been formally revealed, while in reality the branching of the process during the Trichel pulse is not observed. And it is noteworthy the fact that the obtained value of increment in order of magnitude corresponds to the characteristic frequency of ionization in a strong field. Therefore, it is natural to suppose that the obtained magnitude of the perturbation increase rate characterizes the linear stage of the electron avalanches development, up to the stage of the space charge field relaxation caused by conductivity. The ability of the avalanche to develop remains high at the stage of Trich- el pulse dumping, but each avalanche, having been de- veloped to the stage of field relaxation, reduces the rate ISSN 1562-6016. ВАНТ. 2019. №4(122) 132 of its development. This azimuthal instability of the Trichtel pulse mode does not lead to the ionization pro- cess branching. Some random heterogeneity of the structure, in particular, the advantage in the ion-electron emission coefficient of one areas of the cathode surface on others, leads to more intensive development of the ionization process in the corresponding direction, but the subsequent random perturbations complicate the details of this development almost imperceptibly. Fig. 2. Perturbation growth increments for the azimuthal harmonics in cathode-directed streamer quasi-stationary propagation In connection with the above, a question arises about the instability found in numerical simulation of the cathode-directed streamer [1, 2]. There the development of azimuthally-inhomogeneous fluctuations was studied for a formally stationary (within the model) mode of a streamer propagation with constant velocity in an exter- nal field close to the homogeneous one. The increment of instability found there was much less than the ioniza- tion frequency and somewhat dependent on the harmon- ic number, as shown in the Fig. 2, corresponding to the Fig. 2 of the paper [2]. Here one should pay attention to the difference in the processes of the streamer propagation to cathode in positive corona, and Trichel pulse develop- ment in the negative corona. In the case of Trichel pulse, the electrons move in the direction of the ionized space propagation, and those ionization acts, due to which this propagation occurs, are performed by a significant part of electrons, so that the average number of successive acts of ionization performed by one of those electrons is relatively small. In the case of cathode directed streamer, the propa- gation of the ionized space takes place through an ava- lanche multiplication of electrons, the initial density of which in the air is 108…109 times less than one character- istic of the streamer channel. The electrons move to- wards the streamer, becoming part of the streamer after performing about 30 acts of impact ionization (9⋅log 2 10 ≈ 30). The first acts occur in a relatively weak field, where the time between successive acts of impact ionization performed by one electron is larger. As a result, the increment of perturbation density in- crease for cathode directed streamer is not 30, but ap- proximately 100 times less than one for Trichel pulse, as it follows from the comparison of the Figs. 1 and 2. And the dependence of increment on the perturbation har- monic number in the Fig. 2 is related to the difference in the field strength of different harmonics at the distance from the streamer head near to its transverse dimension, for the same charge perturbation amplitude at the head. Whereas just on the head, in front of cathode directed streamer channel, the field strength of different harmon- ics for the same charge perturbation amplitude almost does not differ, but depends on the sizes related to the zone of intense ionization in front of the plasma space. Similarly, in negative corona, the field strength in the zone of intense ionization near the needle cathode dur- ing Trichel pulse development is almost the same for different harmonics, at the same amplitude of space charge perturbation. It should be emphasized that the fact of realization of negative corona at the quasi-stationary voltage in the form of Trichel pulses, and not streamers, is closely related to the directions of the propagation of processes and the motion of electrons. The processes caused by ionization, developing faster in a strong field near the needle electrode, start up there and propagate to a plane electrode, whereas the electrons necessary for ionization move from cathode to anode, regardless of the shape of the electrodes. It is worthwhile to describe in more de- tail how the tendency to transverse localization of the process in streamer mode of positive corona and the absence of such tendency in Trichel pulse mode of neg- ative corona is related to the directions of motion. 3. TRANSVERSE LOCALIZATION For a positive streamer, which propagates from an- ode to cathode and is charged positively, transverse lo- calization is a consequence of correlation of some pa- rameters inherent to such a streamer. First, the field strength level in the zone of intensive ionization in front of the streamer head is largely deter- mined by the type of dependence of the ionization coef- ficient on the field strength value. Approximately, the dependence has the form 0 aexp( )E Eα α= − , where aE ~ 200 kV / cm. At aE E<< the dependence α on E is very steep, and at aE E>> it gradually goes to saturation. When the streamer propagates inside the gap at the given value of the potential of the streamer head relative to cathode, the value of the product s md E of the streamer transverse dimension sd and the maximum intensity of the field strength mE near the streamer head is approximately fixed. This assertion is connected with the fact that the potential, with respect to infinity, of the sphere with diameter sd and the field strength mE on its surface is equal to s m 2d E . The streamer propaga- tion velocity sυ is estimated by the relation sυ ∼ 1 s id n −Λ , where in is the characteristic frequency of impact ionization, in ~ e mEαµ , α and eµ are char- acteristic values of the ionization coefficient and the electron mobility in the intensive ionization zone, Λ is the number of ionization acts necessary to increase the electron density from the initial one to that which is characteristic for the streamer channel ( Λ ~ 25…30). This assertion is based, in particular, on the assumption that the streamer propagation velocity is much greater than electron drift velocity, and intensive ionization, ISSN 1562-6016. ВАНТ. 2019. №4(122) 133 with frequency in , begins at a distance sd from the current position of the streamer head. Under these as- sumptions, after Λ successive ionization acts with time intervals i1n , that is, in time inΛ , the forward part of the streamer channel propagates to a distance, which is slightly smaller than sd (on the length of the electron drift during the time inΛ ). As a result, sυ ∼ 1 s m ed E αµ−Λ , and the streamer velocity is roughly proportional to the product eαµ . When the field strength increases, the electron mobility decreases, and the dependence of the product of ionization coefficient and electron mobility on the field strength has maxi- mum at E ~ aE . That is, the streamer propagation ve- locity is maximal when mE ~ aE , and this value of mE corresponds to some value s0d of the transverse stream- er dimension sd , as the value of the product s md E is approximately fixed. If the streamer dimension sd at the given value of head potential relative to cathode was considerably larger than s0d , then from the streamer head, the new, smaller streamer, with sd ~ s0d , would begin to propagate with a higher speed, whereas if the condition s s0d d<< was executed then the streamer would increase its transverse dimension and velocity until the condition mE ~ aE is established. Secondly, the electron density in the positive streamer channel is also, by the order of magnitude, determined by the values of the ionization coefficient and mobility of electrons at E ~ aE . Namely, through the avalanches multiplication the density of electrons increases, and therefore, the characteristic time rτ of the field relaxation, 1 r 0τ σ e−= , where σ is the conduc- tivity, e eqNσ µ= , decreases. When rτ becomes less than the characteristic time i1n between two succes- sive ionization acts carried out by one electron, the field after the last ionization act has time to weaken, and the next ionization act does not occur. Thus, the maximum electron density, attainable in an avalanche, is estimated by the ratio eN ∼ 1 e 0 i( )qµ e n− , in which the value in and eµ should be taken for the field strength near to aE . For the atmospheric air, one gets eN ∼ (1014...1015) cm −3. Thirdly, the source of initial electrons for the propa- gation of avalanches in the atmospheric air is mainly ionization by photons emitted from such excited states of the nitrogen molecule, for which the photon energy exceeds the ionization energy of the oxygen molecule. The density of electrons obtained due to such ionization when the streamer propagates reaches the value (106...107) cm −3. The number of acts of impact ioniza- tion required to increase the density of electrons from this value to the value (1014...1015) cm −3 characteristic for the streamer channel is estimated to be 25…30 and it depends on the values of those densities logarithmically. As a result, such a large number of successive acts of impact ionization in front of the streamer, coupled with the steep dependence α of E when aE E<< , lead to a transversal localization of the streamer propa- gation process. For example, the difference of only 2.5% in the ionization coefficients for two close ava- lanche development paths after 30 acts of ionization gives approximately twice difference in the attained electron density, with the corresponding consequences for the prospect of streamer propagation in the corre- sponding direction. So, the transverse localization of propagation is an intrinsic feature of positive streamers. The above considerations relate just to positive streamers, in which the development of avalanches be- gins at the points far from the streamer head, and propa- gates towards the head. On the contrary, in the ioniza- tion process, which propagates in the direction of the electron motion, the propagation starts from the volume with already attained high electron density. Then for the corresponding movement of the ionization front it is sufficient only one ionization act, and the small differ- ence in the ionization coefficient for the different direc- tions gives a small difference in the rate of the ioniza- tion front propagation for those directions. That is, it turns out that the negative streamers, directed to anode, cannot exist. But the presented description of the ionization pro- cess propagation does not take into account the possibil- ity of its branching, and refers to the case of the quasi- stationary voltage application and a slight excess of quasi-stationary voltage over the relevant streamer mode threshold. The discharge is realized at such volt- age value in the case when voltage is increased slowly and the intensive ionization process development occurs just after the voltage exceeds the threshold. If the volt- age is applied for the time of the order of nanoseconds, then the process goes on just in the field corresponding to the instantaneous value of the applied voltage, which can significantly exceed the threshold. And then the points, in which E ~ aE , can be located far from the current position of the negative streamer head. And be- fore the streamer head approaches those points through ionization, along with the displacement of electrons from the former location of the head, from those points it has time to develop an avalanche, the backward end of which largely has the properties of the streamer channel. And for the old head, to become the part of that channel it is sufficient to reach it. In addition, from that channel, it may begin the process of the positive stream- er propagation, directed to the head. In any case, the connection of the old head with the high conductive plasma corresponds to the formation of a continuous channel of the streamer, which has already propagated further. But there may be a lot of the points, from which the development of avalanches begins, and then, with a high probability, the streamer branching may occur. The positive streamer, directed to the cathode, also can propagate at the voltage value significantly greater than the streamer mode threshold in the case of the qua- si-stationary voltage application. And then the devel- opment of avalanches starts from many points, more distant from the head, than it is in the case of voltage close to the threshold. And after the avalanche coming to the head, a few remnants of their traces can turn into ISSN 1562-6016. ВАНТ. 2019. №4(122) 134 channels of the branched positive streamer. However, positive streamers can exist and branch out also at a voltage close to the threshold. CONCLUSIONS In the numerical simulations of negative corona dis- charge in Trichel pulse mode with the calculation of the evolution of azimuthal perturbations, it is found the az- imuthal instability with the value of increment corre- sponding to electron avalanche multiplication through the impact ionization. This formally obtained instability does not lead to the branching of the process in reality, because it is suppressed at the nonlinear stage of the avalanche development. It becomes obviously that the azimuthal instability of the cathode directed streamer propagation in positive corona discharge obtained earli- er has the same nature. The difference of these instabili- ties in the increment values is connected with the direc- tions of the electron motion and the process propaga- tion: in the negative corona the direction is the same, whereas in the positive corona the directions are oppo- site. It is discussed, how the difference in the process courses is connected with the absence of the streamer mode in the negative corona at the quasi-stationary volt- age application. REFERENCES 1. O. Bolotov, B. Kadolin, S. Mankovskyi, et al. Quasi- stationary streamer propagation // Problems of Atomic Science and Technology. Series “Plasma Electronics and New Methods of Acceleration”. 2015, № 4, p. 185-188. 2. O. Bolotov, B. Kadolin, S. Mankovskyi, et al. Nu- merical simulations of quasi-stationary streamer propagation // Problems of Atomic Science and Technology. Series “Nuclear Physics Investiga- tions”. 2016, № 5, p. 121-125. 3. O. Bolotov, V. Golota, B. Kadolin, et al. Develop- ment of azimuthally not uniform processes in corona discharge in axially symmetric gap // Problems of Atomic Science and Technology. Series “Plasma Electronics and New Methods of Acceleration”. 2013, № 4, p. 161-165. Article received 02.06.2019 АЗИМУТАЛЬНАЯ УСТОЙЧИВОСТЬ ИМПУЛЬСОВ ТРИЧЕЛА И НАПРАВЛЕННЫХ К КАТОДУ СТРИМЕРОВ О. Болотов, Б. Кадолин, С. Маньковский, В. Остроушко, И. Пащенко, Г. Таран, Л. Завада Выполнено численное моделирование отрицательной короны в режиме импульсов Тричела с расчетом эволюции азимутальных возмущений. Выявлена азимутальная неустойчивость с инкрементом, соответ- ствующим развитию лавины. Эта неустойчивость подавляется на нелинейной стадии и не ведет к ветвлению процесса. Результат также применим к выявленной ранее азимутальной неустойчивости направленного к катоду стримера. Разница в их инкрементах следует из разницы в ходе процессов, которые обсуждаются. АЗИМУТАЛЬНА СТІЙКІСТЬ ІМПУЛЬСІВ ТРИЧЕЛА ТА СПРЯМОВАНИХ ДО КАТОДA СТРИМЕРІВ О. Болотов, Б. Кадолін, С. Маньковський, В. Остроушко, І. Пащенко, Г. Таран, Л. Завада Виконане числове моделювання негативної корони в режимі імпульсів Тричела з розрахунком еволюції азимутальних збурень. Виявлено азимутальну нестійкість з інкрементом, відповідним розвитку лавини. Ця нестійкість пригнічується на нелінійній стадії і не веде до галуження процесу. Результат також застосо- вується до виявленої раніше азимутальної нестійкості спрямованого до катода стримера. Різниця в їхніх ін- крементах випливає з різниці в ході процесів, які обговорюються. E-mail: ostroushko-v@kipt.kharkov.ua INTRODUCTION 1. SIMULATION MODEL 2. SIMULATION RESULTS 3. TRANSVERSE LOCALIZATION CONCLUSIONS REFERENCES О. Болотов, Б. Кадолін, С. Маньковський, В. Остроушко, І. Пащенко, Г. Таран, Л. Завада