Electrical properties of gamma-modified composites copolymer of polyvinylidene fluoride with tetrafluoroethylene and silicon
The concentration and temperature dependences of the electrical properties of the composites obtained on the basis of a copolymer of polyvinylidene fluoride with tetrafluoroethylene P(VDF–TFE) with silicon nano- and microparticles were investigated, and the effect of gamma-radiation on them was stud...
Збережено в:
| Опубліковано в: : | Вопросы атомной науки и техники |
|---|---|
| Дата: | 2019 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2019
|
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/195214 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Electrical properties of gamma-modified composites copolymer of polyvinylidene fluoride with tetrafluoroethylene and silicon / I.M. Nuruyev // Problems of atomic science and technology. — 2019. — № 5. — С. 53-57. — Бібліогр.: 27 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-195214 |
|---|---|
| record_format |
dspace |
| spelling |
Nuruyev, I.M. 2023-12-03T15:30:20Z 2023-12-03T15:30:20Z 2019 Electrical properties of gamma-modified composites copolymer of polyvinylidene fluoride with tetrafluoroethylene and silicon / I.M. Nuruyev // Problems of atomic science and technology. — 2019. — № 5. — С. 53-57. — Бібліогр.: 27 назв. — англ. 1562-6016 PACS: 61.80.Ed; 61.25.hp; 72.80.Tm https://nasplib.isofts.kiev.ua/handle/123456789/195214 The concentration and temperature dependences of the electrical properties of the composites obtained on the basis of a copolymer of polyvinylidene fluoride with tetrafluoroethylene P(VDF–TFE) with silicon nano- and microparticles were investigated, and the effect of gamma-radiation on them was studied. It is shown that the cause of the change in the concentration and temperature dependences of the electrical properties of irradiated composites P(VDF)–TeFE)/Si, apart from crosslinking and destruction, is the uneven distribution of the energy of the absorbed radiation between the components of the composite material. Досліджено концентраційні і температурні залежності електричних властивостей композитів, отриманих на основі сополімера полівініліденфториду з тетрафторетіленом P(VDF–TFE) з нано- і мікрочастинками кремнію, і вивчено вплив на них гамма-випромінювання. Показано, що причиною зміни в концентраційних і температурних залежностях електричних властивостей опромінених композитів P(VDF–TeFE)/Si крім зшивання і деструкції є і нерівномірний розподіл енергії поглиненого випромінювання між компонентами композитного матеріалу. Исследованы концентрационные и температурные зависимости электрических свойств композитов, полученных на основе сополимера поливинилиденфторида с тетрафторэтиленом P(VDF–TFE) с нано- и микрочастицами кремния, и изучено влияние на них гамма-излучения. Показано, что причиной изменения в концентрационных и температурных зависимостях электрических свойств облученных композитов P(VDF– TeFE)/Si кроме сшивания и деструкции является и неравномерное распределение энергии поглощенного излучения между компонентами композитного материала. en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Вопросы атомной науки и техники Physics of radiation damages and effects in solids Electrical properties of gamma-modified composites copolymer of polyvinylidene fluoride with tetrafluoroethylene and silicon Електричні властивості гамма-модифікованих композитів сополімера полівініліденфториду з тетрафторетіленом і кремнієм Электрические свойства гамма-модифицированных композитов сополимера поливинилиденфториду с тетрафторэтиленом и кремнием Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Electrical properties of gamma-modified composites copolymer of polyvinylidene fluoride with tetrafluoroethylene and silicon |
| spellingShingle |
Electrical properties of gamma-modified composites copolymer of polyvinylidene fluoride with tetrafluoroethylene and silicon Nuruyev, I.M. Physics of radiation damages and effects in solids |
| title_short |
Electrical properties of gamma-modified composites copolymer of polyvinylidene fluoride with tetrafluoroethylene and silicon |
| title_full |
Electrical properties of gamma-modified composites copolymer of polyvinylidene fluoride with tetrafluoroethylene and silicon |
| title_fullStr |
Electrical properties of gamma-modified composites copolymer of polyvinylidene fluoride with tetrafluoroethylene and silicon |
| title_full_unstemmed |
Electrical properties of gamma-modified composites copolymer of polyvinylidene fluoride with tetrafluoroethylene and silicon |
| title_sort |
electrical properties of gamma-modified composites copolymer of polyvinylidene fluoride with tetrafluoroethylene and silicon |
| author |
Nuruyev, I.M. |
| author_facet |
Nuruyev, I.M. |
| topic |
Physics of radiation damages and effects in solids |
| topic_facet |
Physics of radiation damages and effects in solids |
| publishDate |
2019 |
| language |
English |
| container_title |
Вопросы атомной науки и техники |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Електричні властивості гамма-модифікованих композитів сополімера полівініліденфториду з тетрафторетіленом і кремнієм Электрические свойства гамма-модифицированных композитов сополимера поливинилиденфториду с тетрафторэтиленом и кремнием |
| description |
The concentration and temperature dependences of the electrical properties of the composites obtained on the basis of a copolymer of polyvinylidene fluoride with tetrafluoroethylene P(VDF–TFE) with silicon nano- and microparticles were investigated, and the effect of gamma-radiation on them was studied. It is shown that the cause of the change in the concentration and temperature dependences of the electrical properties of irradiated composites P(VDF)–TeFE)/Si, apart from crosslinking and destruction, is the uneven distribution of the energy of the absorbed radiation between the components of the composite material.
Досліджено концентраційні і температурні залежності електричних властивостей композитів, отриманих на основі сополімера полівініліденфториду з тетрафторетіленом P(VDF–TFE) з нано- і мікрочастинками кремнію, і вивчено вплив на них гамма-випромінювання. Показано, що причиною зміни в концентраційних і температурних залежностях електричних властивостей опромінених композитів P(VDF–TeFE)/Si крім зшивання і деструкції є і нерівномірний розподіл енергії поглиненого випромінювання між компонентами композитного матеріалу.
Исследованы концентрационные и температурные зависимости электрических свойств композитов, полученных на основе сополимера поливинилиденфторида с тетрафторэтиленом P(VDF–TFE) с нано- и микрочастицами кремния, и изучено влияние на них гамма-излучения. Показано, что причиной изменения в концентрационных и температурных зависимостях электрических свойств облученных композитов P(VDF– TeFE)/Si кроме сшивания и деструкции является и неравномерное распределение энергии поглощенного излучения между компонентами композитного материала.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/195214 |
| citation_txt |
Electrical properties of gamma-modified composites copolymer of polyvinylidene fluoride with tetrafluoroethylene and silicon / I.M. Nuruyev // Problems of atomic science and technology. — 2019. — № 5. — С. 53-57. — Бібліогр.: 27 назв. — англ. |
| work_keys_str_mv |
AT nuruyevim electricalpropertiesofgammamodifiedcompositescopolymerofpolyvinylidenefluoridewithtetrafluoroethyleneandsilicon AT nuruyevim električnívlastivostígammamodifíkovanihkompozitívsopolímerapolívínílídenftoriduztetraftoretílenomíkremníêm AT nuruyevim élektričeskiesvoistvagammamodificirovannyhkompozitovsopolimerapolivinilidenftoridustetraftorétilenomikremniem |
| first_indexed |
2025-11-26T23:07:32Z |
| last_indexed |
2025-11-26T23:07:32Z |
| _version_ |
1850779721796681728 |
| fulltext |
ISSN 1562-6016. PASТ. 2019. №5(123), p. 53-57.
ELECTRICAL PROPERTIES OF GAMMA-MODIFIED COMPOSITES
COPOLYMER OF POLYVINYLIDENE FLUORIDE WITH
TETRAFLUOROETHYLENE AND SILICON
I.M. Nuruyev
The Institute of Radiation Problems of ANAS, AZ 1143, Baku, Azerbaijan
E-mail: nuruyevibrahim@gmail.com
The concentration and temperature dependences of the electrical properties of the composites obtained on the
basis of a copolymer of polyvinylidene fluoride with tetrafluoroethylene P(VDF–TFE) with silicon nano- and
microparticles were investigated, and the effect of gamma-radiation on them was studied. It is shown that the cause
of the change in the concentration and temperature dependences of the electrical properties of irradiated composites
P(VDF)–TeFE)/Si, apart from crosslinking and destruction, is the uneven distribution of the energy of the absorbed
radiation between the components of the composite material.
PACS: 61.80.Ed; 61.25.hp; 72.80.Tm
INTRODUCTION
Recently, physics and chemistry of nano-sized
materials are one of the most intensively developing
fields of science and technology [1–4]. In this
connection, of great interest are studies of composites
based on a polymer with a semiconductor, the processes
occurring in them, and size effects [5–7]. It is also
associated with their electrophysical, physico-chemical,
optical, and photoproperties and their practical
application in various devices (photocells, solar cells,
sensors etc.). It is possible to control its electrophysical,
optical and photoproperties by changing volume
quantity and size of filler in polymer composites.
The composite materials have different active
properties depending on the type and properties of the
filler [8–12]. On the other hand, various external effects,
including ionizing radiation, can modify these active
properties [13–16]. Scientific studies in this direction
show that composites with semiconductor fillers are of
great interest. Interest in these composites is due to the
presence of electroactive properties with a wide
spectrum in the semiconductor materials. Electroactive
properties of such composites are mainly formed by
electrical properties, and the current value in the
composites is determined by the sizes of the polymer
layer between the filler particles, and the Volt-Ampere
Characteristics (VAC) due to tunneling of the charge
carriers from this layer [17, 18]. Despite the large
number of scientific studies on the investigation of
electrophysical properties in these materials, the value
of interparticle contact resistance and the beginning of
the percolation border in composites are insufficiently
studied [19–22]. Also, here the effects of ionizing
radiation on these problems have been examined in
superficial. Considering these, in the present work,
different volume composites were obtained on the basis
of nano- and microsilicon (Si) particles and copolymers
of polyvinylidene fluoride with tetrafluoroethylene.
First of all, the concentration and temperature
dependence of specific volume resistance of composites
irradiated with gamma-quantum doses in various doses
were studied. Then, the temperature dependence of the
specific volume resistance of the P(VDF–TeFE)/Si
nano- and microcomposites with contains 1 and 10%
volume was irradiated in the dosage range of
0…300 kGy.
EXPERIMENTAL PART
The composites are obtained by thermal pressing
method of previously mixed powders in definite volume
component ratios. Pressing is carried out at the melting
point of the polymer matrix under a pressure of 10 MPa
for 5 min, followed by cooling the melt in an aqueous
medium at an ice temperature. The resistance
measurement of composite samples is carried out by
Е6-13А Theraohmmeter at heating rate 2.5 K/min. The
samples in “sandwich” form with plane-parallel
electrodes from aluminium are used for measurement of
ρv specific volume resistance. Samples were irradiated
with a source of γ-radiation based on the
60
Co isotope
on the MRX-γ-25M facility.
DISCUSSION OF THE RESULTS
As known, the electrical properties of the
composites are dependent on interparticle contact
resistance, resistance of components, type, size and
quantity of filler [23]. From the dependences (Fig. 1,a,b)
it is clearly seen that the change in the volume amount
of the filler up to 50% in the composite, there is a
change in the resistance ρv of approximately ~ 5 orders
of magnitude, which is typical of heterogeneous
composite systems. The separation of the electric
conductivity to the dielectric at the low concentrations
of filler and high conductivity regions at high
concentrations is typical for polymer-filler composite
systems. The interval between two areas where the
resistance is monotonously decreases is called the
percolation zone. Various external factors also affect the
change in electrical properties of composite materials,
and sometimes these factors allow you to control their
properties. The effect of the ionizing radiation we use as
an external factor leads to the certain changes in the
electrical properties by changing the structure of
composite components and the nature of the interphase
boundary.
It has been given the concentration dependence
lgρv = f(Ф) of the specific volume resistance of the
P(VDF–TеFE)/Si composites, initial and irradiated at
different doses, which was taken on the basis of fillers
with the size of d < 50 μm (a) and d ~ 50 nm (b) (see
mailto:nuruyevibrahim@gmail.com
Fig. 1). Apparently, the percolation transition is
observed in the concentration range of ~ 5…20% by
volume of filler (curve 1) for composite P(VDF–
TeFE)/micro-Si (see Fig. 1,a). In addition to narrowing
the range of the percolation transition in samples
irradiated with gamma rays with 100 kGy (~ 10…20%;
curve 2), this range doubles with increasing dose (D)
and the beginning the percolation transition shifts
towards higher filler values (curves 3 and 4). We
believe that the observed effect is due to cross-linking
processes between the macromolecules of the polymer
and the polymer chains with the surface of the Si
particles. The intermolecular crosslinking processes in
the matrix due to the influence of gamma irradiation at
lower values of the filler provide a decrease in the
mobility of macromolecular chains and the relative
stability of the electrical resistance of the composite.
In my opinion, another reason why the electrical
resistance of the composite remains relatively high and
constant is oxidation of the surface of Si particles during
the radiation on the open air. Crosslinking on the matrix
and oxidation of the filler surface are the factors that
observed the percolation transition boundary causes the
filler to move towards higher filler values in gamma-
irradiated samples. A subsequent increase in the amount
of filler in the matrix leads to a relatively large decrease
and stabilization of the resistance value due to contacts
between the particles.
a
Fig. 1. Dependence ρv = f(Ф) of P(VDF–TFE)/nano-Si composites, initial and irradiated at different doses,
obtained on the basis of fillers with the sizes of d < 50 μm (a) and d ~ 50 nm (b):
1– initial; 2 – irradiated at 100 kGy; 3 – 200 kGy; 4 – 300 kGy
It can be seen that the dependence lgρv = f(Φ) of the
initial and irradiated composites P(VDF-TеFE)/nano-Si
obtained at different doses, based on fillers (d ~ 50 nm),
differs in comparison with dependencies of samples
obtained with micro-Si (see Fig. 1,b). In these samples,
the transition from the highly résistance state to the low
resistance occurs at a slower rate. There is observed no
sharp boundary of the percolation transition with the
increase in the quantity of filler. The reason is the
increase in the effective surface of the interphase
polymer-Si border, in proportion to the increase in the
filler's volume to Ф = 50%. The change in resistance is
due to an increase in crosslinking in the polymer matrix
of nanocomposites after gamma irradiation, oxidation of
nano-Si particles, and an increase in Si–O–C bonds
[24]. In addition, we believe that a more uniform
distribution of nanoscale filler over the volume of the
composite leads to a more efficient absorption of the
dose by the filler and ultimately to a decrease in the
effect of radiation on the matrix [25, 26]. To study the
differences in the electrical conductivity of P(VDF–
TeFE) – nano- and microcomposites obtained at two
different concentrations (1 and 10 vol.%) and irradiated
in the 0…300 kGy range, the temperature dependence
of their specific resistance (ρv) in the stable electric field
was investigated (Fig. 2). Dependence of lgρv = f(1/T)
for P(VDF–TeFE)/Si composites obtained with the
same amount of nano- and micro-Si and irradiated at
different doses and comparative analysis of activation
energy (ΔE) calculated from these dependencies allows
us to evaluate the exploitation characteristics and
radiation resistance of composites. It is seen that the
dependence lgρv = f(1/T) of the initial P(VDF–TeFE)/Si
composites obtained with 1% (see Fig. 2,a) and with
10% by volume (see Fig. 2,d) nano (curve 2) and micro
(curve 3) of the filler consists of curves, which differ
from each other in resistance value by two orders of
magnitude. The resistance of composites obtained by
nano-Si is higher than the resistance of composites
obtained with micro-Si, and in this case the specific
resistance of the samples obtained with the nano-Si
increases compared with polymers, while the specific
resistance of the composite obtained with micro-Si
decreases.
The activation energy of the conductivity ΔE was
calculated for the tangent to the rectangular portion of
each curve in the dependence on lgρv = f(1/T) of both
micro- and nanosized composites and the results are
presented in the Table. Comparison of the curves (see
Fig. 2,d,e,f; curve 2) and corresponding activation
energy values (see Table) of the initial and irradiated
samples of the P(VDF–TeFE)/10% nano-Si composites
in the dependence of lgρv = f(1/T) shows that the
parameters remain stable within a certain error the
measured temperature range. The reason why, P(VDF–
TeFE)/nano-Si composites obtained with nano-Si are
resistant to ionizing radiation, as we mentioned above,
is the relatively high concentration of particles in the
bulk of the composite and their uniform distribution
[26].
b
a d
b e
c f
Fig. 2. Dependence lgρ=f(1/T) for the 1% (a, b, c) and 10% (d, e, f) P(VDF–TeFE)/Si composites
and P(VDF–TeFE) irradiated at different doses: а – and d – initial; b – and e – 100 kGy; с – and f – 300 kGy;
1 – P(VDF–TeFE); 2 – nano-Si; 3 – micro-Si
The activation energy of conductivity ΔE was
calculated according to the method from the literature
[27] from the dependences lgρv = f(1/T) of both micro-
size and nanoscale composites, and the results are
presented in the Table. The same effect is also observed
for P(VDF–TeFE)/1% nano-Si samples which irradiated
100 kGy dose. Comparison of the curves and values of
the activation energy ΔE in the Тable shows that the
parameters of the composites with a content of 1 and
10% bulk nano-Si and irradiated with a dose of 100
kGy are more resistant to gamma irradiation. And the
values of the irradiation dose of 100 kGy may be
adopted as a modification mode for P(VDF–
TeFE)/nano-Si composites. As can be seen from the
table, P(VDF–TeFE)/10% nano-Si composites can be
used as resistant materials to the effects of gamma
radiation. The radiation energy absorbed in the P(VDF–
TeFE)/10% nano-Si composites, obtained on the basis
of nanoscale Si particles, is distributed, the energy at the
interfacial boundary of the polymer matrix and
nanoparticles increases, and as a result the stable
conductivity of the samples is provided. We believe
that, during irradiation of polymer nanocomposites, the
absorbed radiation energy is redistributed in the
P(VDF–TeFE)/10% nano-Si composites. Part of the
energy supplied to the interfacial boundary of the
polymer matrix and the nanoparticles increases, and part
of the energy of the falling polymer matrix leads to an
increase in crosslinking and, as a result, is the stability
conductivity [26]. We know that, while the filler has the
same quantity, the concentration of particles in the
nanocomposite is relatively high compared to the micro-
composite.
The values of the activation energy ΔE of conductivity for P(VDF-TeFE), initial and irradiated at different doses
and P(VDF–TeFE)/Si composites obtained with micro- and nanoparticles
Sample Dose, kGy
micro-Si nano-Si
ΔE1, eV ΔE2, eV ΔE1, eV ΔE2, eV
100% P(VDF-ТеFE)
0 – 0.33 – 0.33
100 – 0.298 – 0.298
300 – 0.27 – 0.27
P(VDF-ТеFE)/1% Si
0 – 0.36 0.2 0.387
100 0.036 0.31 0.17 0.26
300 0.15 0.324 – 0.253
P(VDF-ТеFE)/10% Si
0 – 0.32 0.18 0.25
100 0.113 0.298 0.18 0.25
300 0.165 0.36 0.18 0.25
Transfer from microparticles to nanoparticles results
in an increase in the concentration of the filler's active
surface and the concentrations of C–O–Si bonds and,
consequently, in a decrease in the mobility and
conductivity of the polymer chains we experimentally
observe [24]. The concentration of C–O–Si bonds
decreases due to a decrease in the effective surface in
the case of composites obtained with microparticles, and
an increase in the mobility of the polymer chains and
conductivity is observed, respectively, which affects the
activation energy.
CONCLUSIONS
The reason for the observed changes depending on
the lgρv = f(Ф) of the irradiated composites obtained on
the basis of the copolymer P(VDF–TeFE) with micro-
and nanosized Si are both crosslinking in the matrix and
oxidation of the filler surface, as well as the uneven
distribution of absorbed energy radiation between the
components of the composite.
Thus, when the filler is nanosized, the concentration
becames higher and its even distribution in the volume
leads to more effective absorption of the absorbed dose
by the filler and, consequently, the attenuation of the
radiation effect on the matrix.
The stability of the ρv and ΔE parameters for
P(VDF–TeFE)/10% nano-Si composites up to a dose of
300 kGy can be estimated as the gamma-radiation
resistance of the composites in the indicated dose range.
REFERENCES
1. Наноструктурные материалы / Под ред.
Р. Ханнинка, А. Хилл. М.: Изд. «Техносфера», 2009,
488 с.
2. И.В. Бакеева. Наноструктуры: основные
понятия, классификация, способы получения. М.:
МИТХТ им. М.В. Ломоносова, 2008, 68 с.
3. А.Д. Помогайло, А.С. Розенберг, И.Е. Уф-
лянд. Наночастицы металлов в полимерах. М.:
«Химия», 2004, 672 с.
4. А.Д. Помогайло. Металлополимерные нано-
композиты с контролируемой молекулярной
архитектурой // Рос. хим. журнал (Журнал Рос. хим.
общества им. Д.И. Менделеева). 2002, т. XLVI, №5,
с. 64-73.
5. И.Ю. Гороховатский. Исследование стабиль-
ности электретного состояния в композитных
пленках на основе полиэтилена высокого давления с
наноразмерными включениями SiO2: Автореф. дис.
… канд. физ.-мат. н. Санкт-Петербург: ООО
«АБЕВЕГА», 2009, 16 с.
6. В.Б. Пикулев, С.В. Логинова, В.А. Гуртов,
Влияние естественного и стимулированного
окисления на люминесцентные свойства
нанокомпозитов «кремний-целлюлоза» // Письма в
ЖТФ. 2012, т. 38, в. 15, с. 74-81.
7. В.Г. Соловьев, С.Д. Ханин. Размерные
эффекты в наноструктурах на основе регулярных
пористых матриц // Известия Российского
государств. педагогического университета им.
А.И. Герцена: Естест. и точные науки. 2004, №4(8),
с. 84-93.
8. С.Н. Ткаченко, О.С. Гефле, С.М. Лебедев.
Исследование свойств поливинилиденфторида,
модифицированного наночастицами никеля //
Пластические массы. 2008, №2, с. 28-32.
9. Houda Rekik, Zied Ghallabi, Isabelle Royaud,
Mourad Arous, Gérard Seytre, Giséle Boiteux, Ali
Kallel. Dielectric relaxation behaviour in semi-
crystalline polyvinylidene fluoride (PVDF)/TiO2
nanocomposites // Composites: Part B. 2013, v. 45,
р. 1199-1206.
10. Javier Arranz-Andres, Nuria Pulido-Gonzalez,
Pilar Marin, Ana M. Aragon, Maria L. Cerrada.
Electromagnetic shielding features in lightweight pvdf-
aluminum based nanocomposites // Progress in
Electromagnetics Research B. 2013, v. 48, p. 175-196.
11. A.M. Magerramov, M.A. Nuriyev, I.A. Veliev,
S.I. Safarova. Coronoelectrets Based on Polypropylene
Composites Dispersed by a TlInxCe(1–x)Se2
Semiconductor Filler // Surface Engineering and
Applied Electrochemistry. 2010, v. 46, N 2, p. 169-172.
12. P. Thomasa, S. Satapathy, K. Dwarakanath,
K.B.R. Varma. Dielectric properties of Poly (vinylidene
fluoride)/ CaCu3Ti4O12 nanocrystal composite thick
films // ЕXPRESS Polymer Letters. 2010, v. 4, N 10,
р. 632-643.
13. А.В. Сухинина. Разработка радиационно-
сшиваемых наполненных композиций на основе
сэвилена для кабельных термоусаживаемых
изделий: Автореф. дис. … канд. физ.-мат. н. М.:
ООО «Петроруш», 2009, 19 с.
14. С.А. Хатипов, Е.М. Конова, Н.А. Арта-
монов. Радиационно-модифицированный политет-
рафторэтилен: структура и свойства // Рос. хим.
журнал (Журнал Рос. хим. общества им. Д.И. Мен-
делеева). 2008, т. LII, №5, с. 64-72.
15. A.M. Magerramov, M.A. Nuriyev, F.I. Akhme-
dov, and I.M. Ismailov. Radiothermoluminescence of γ-
irradiated Composites of Polypropilene and Dispersed
Oxides // Surface Engineering and Applied
Electrochemistry. 2009, v. 45, N 5, p. 437-440.
16. Zelimir Jelcic, Franjo Ranogajec. High impact
polystyrene modified by ionizing γ-radiation //
Polimeri. 2010, v. 31, N 2, p. 52-58.
17. K.K. Аметов, Б. Лаипов, С.М. Жолдасова,
А.Г. Лаврушко и др. Электропроводность полимер-
ных композитов. Композиты на основе пропилена и
кремния: Препринт №Р-9-308, ИЯФ АН УзССР,
1987, 10 с.
18. В.И. Фистул. Перколяция тока в полимеро-
полупроводниковой структуре // ФТП. 1993, т. 27,
в. 11/12, с. 1788-1794.
19. М.И. Василевский, А.М. де Паула,
Е.И. Акинкина, Е.В. Анда. Влияние дисперсии
размеров на оптическoе поглощение системы
полупроводниковых квантовых точек // ФТП. 1998,
т. 32, №11, с. 1378-1383.
20. В.И. Вигдорович, С.В. Мищенко,
Н.В. Шель. Пути прогнозирования наличия нано-
размерных эффектов наноматериалов // Вестник
ТГТУ. 2009, т. 15, №3, с. 561-571.
21. Д.М. Кульбацкий, Н.М. Ушаков, Г.Ю. Юр-
ков, В.Я. Подвигалкин. Исследование оптических
характеристик композитных материалов на основе
наночастиц сульфида кадмия, стабилизированных в
матрице полиэтилена высокого давления // Оптика
и спектроскопия. 2009, т. 106, №5, с. 780-784.
22. В.А. Соцков. О влиянии контактного
сопротивления частиц на интервал перколяции в
макронеупорядоченных системах проводник-
диэлектрик // Журнал технической физики. 2004,
т. 74, в. 11, с. 107-110;
23. В.Е. Гуль, Л.З. Шенфиль. Электропро-
водящие полимерные композиции. М.: «Химия»,
1984, 240 с.
24. A.M. Maharramov, I.M. Nuruyev, R.N. Meh-
diyeva, M.A. Nuriyev. The IR-spectroscopy and
electrical properties of the composites on the basis of
P(VDF-TeFE)/nano-Si // Journal of Radiation
Researches. 2017, v. 4, N 2, p. 35-46.
25. И.М. Нуриев, А.М. Магеррамов, Р.Н. Мех-
тиева, В.Г. Гасымова. Изменение проводимости
гамма-облученных микро- и нанокомпозитов
П(ВДФ-ТеФЭ)/Si // VIII Respublikanskiy Konfrans
“Radiasionnie issledovaniya i ix prakticeskie aspekti”,
20–21 Noyabr, 2013, Baku, Azerbaycan, s. 63-64.
26. Д.В. Алявдин, А.Р. Клестов, А.А. Шестаков.
Влияние наполнителей на химические процессы при
радиационной модификации полиолефинов //
Фазовые переходы, упорядоченные состояния и
новые материалы. 2012, №11, с. 1-5
27. А.А. Позняк, В.А. Полубок. Электрофизи-
ческие характеристики диэлектриков: Методи-
ческое пособие к лабораторным работам. Минск,
2009, 48 с.
Article received 29.07.2019
ЭЛЕКТРИЧЕСКИЕ СВОЙСТВА ГАММА-МОДИФИЦИРОВАННЫХ КОМПОЗИТОВ
СОПОЛИМЕРА ПОЛИВИНИЛИДЕНФТОРИДУ
С ТЕТРАФТОРЭТИЛЕНОМ И КРЕМНИЕМ
И.M. Нуруев
Исследованы концентрационные и температурные зависимости электрических свойств композитов,
полученных на основе сополимера поливинилиденфторида с тетрафторэтиленом P(VDF–TFE) с нано- и
микрочастицами кремния, и изучено влияние на них гамма-излучения. Показано, что причиной изменения в
концентрационных и температурных зависимостях электрических свойств облученных композитов P(VDF–
TeFE)/Si кроме сшивания и деструкции является и неравномерное распределение энергии поглощенного
излучения между компонентами композитного материала.
ЕЛЕКТРИЧНІ ВЛАСТИВОСТІ ГАММА-МОДИФІКОВАНИХ КОМПОЗИТІВ
СОПОЛІМЕРА ПОЛІВІНІЛІДЕНФТОРИДУ З ТЕТРАФТОРЕТІЛЕНОМ І КРЕМНІЄМ
І.M. Нуруєв
Досліджено концентраційні і температурні залежності електричних властивостей композитів, отриманих
на основі сополімера полівініліденфториду з тетрафторетіленом P(VDF–TFE) з нано- і мікрочастинками
кремнію, і вивчено вплив на них гамма-випромінювання. Показано, що причиною зміни в концентраційних і
температурних залежностях електричних властивостей опромінених композитів P(VDF–TeFE)/Si крім
зшивання і деструкції є і нерівномірний розподіл енергії поглиненого випромінювання між компонентами
композитного матеріалу.
|