Dependence of wakefield excitation in plasma by non-resonant sequence of electron bunches on their lengths
The present paper describes the results of numerical simulation (using 2d3v code LCODE) of the regime, when the wakefield is excited at maximum growth rate in the plasma by a nonresonant sequence of relativistic electron bunches. As a result, the wakefield increases approximately in steps. The paper...
Saved in:
| Published in: | Вопросы атомной науки и техники |
|---|---|
| Date: | 2021 |
| Main Authors: | , , , , |
| Format: | Article |
| Language: | English |
| Published: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2021
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/195256 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Dependence of wakefield excitation in plasma by non-resonant sequence of electron bunches on their lengths / D.S. Bondar, A.P. Boychenko, V.I. Maslov, I.N. Onishchenko, R.T. Ovsiannikov // Problems of Atomic Science and Technology. — 2021. — № 4. — С. 65-69. — Бібліогр.: 28 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-195256 |
|---|---|
| record_format |
dspace |
| spelling |
Bondar, D.S. Boychenko, A.P. Maslov, V.I. Onishchenko, I.N. Ovsiannikov, R.T. 2023-12-03T15:58:22Z 2023-12-03T15:58:22Z 2021 Dependence of wakefield excitation in plasma by non-resonant sequence of electron bunches on their lengths / D.S. Bondar, A.P. Boychenko, V.I. Maslov, I.N. Onishchenko, R.T. Ovsiannikov // Problems of Atomic Science and Technology. — 2021. — № 4. — С. 65-69. — Бібліогр.: 28 назв. — англ. 1562-6016 PACS: 29.17.+w; 41.75.Lx DOI: https://doi.org/10.46813/2021-134-065 https://nasplib.isofts.kiev.ua/handle/123456789/195256 The present paper describes the results of numerical simulation (using 2d3v code LCODE) of the regime, when the wakefield is excited at maximum growth rate in the plasma by a nonresonant sequence of relativistic electron bunches. As a result, the wakefield increases approximately in steps. The paper gives the parameters, at which this regime is achieved. It is shown that for smaller bunch radii, the amplitude of the excited wakefield is larger. At long lengths of the bunches, the amplitude of the wakefield is larger, in contrast to the excitation by the resonant sequence of bunches. Описані результати чисельного моделювання (з використанням коду 2d3v LCODE) режиму, коли кільватерне поле збуджується з максимальною швидкістю росту в плазмі нерезонансною послідовністю релятивістських електронних згустків. У результаті кільватерне поле збільшується приблизно поступово. Наведено параметри, при яких досягається цей режим. Показано, що для менших радіусів згустка амплітуда збудженого кільватерного поля більше. При великих довжинах згустків амплітуда кільватерного поля більше, на відміну від режиму збудження резонансною послідовністю згустків. Описаны результаты численного моделирования (с использованием кода 2d3v LCODE) режима, когда кильватерное поле возбуждается с максимальной скоростью роста в плазме нерезонансной последовательностью релятивистских электронных сгустков. В результате кильватерное поле увеличивается примерно ступенчато. Приведены параметры, при которых достигается этот режим. Показано, что для меньших радиусов сгустка амплитуда возбужденного кильватерного поля больше. При больших длинах сгустков амплитуда кильватерного поля больше в отличие от режима возбуждения резонансной последовательностью сгустков. The study is supported by the National Research Foundation of Ukraine under the program “Leading and Young Scientists Research Support” (project # 2020.02/0299). en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Вопросы атомной науки и техники New methods of charged particles acceleration Dependence of wakefield excitation in plasma by non-resonant sequence of electron bunches on their lengths Залежність резонансного збудження кільватерного поля в плазмі нерезонансною послідовністю електронних згустків від їх довжин Зависимость резонансного возбуждения кильватерного поля в плазме нерезонансной последовательностью электронных сгустков от их длин Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Dependence of wakefield excitation in plasma by non-resonant sequence of electron bunches on their lengths |
| spellingShingle |
Dependence of wakefield excitation in plasma by non-resonant sequence of electron bunches on their lengths Bondar, D.S. Boychenko, A.P. Maslov, V.I. Onishchenko, I.N. Ovsiannikov, R.T. New methods of charged particles acceleration |
| title_short |
Dependence of wakefield excitation in plasma by non-resonant sequence of electron bunches on their lengths |
| title_full |
Dependence of wakefield excitation in plasma by non-resonant sequence of electron bunches on their lengths |
| title_fullStr |
Dependence of wakefield excitation in plasma by non-resonant sequence of electron bunches on their lengths |
| title_full_unstemmed |
Dependence of wakefield excitation in plasma by non-resonant sequence of electron bunches on their lengths |
| title_sort |
dependence of wakefield excitation in plasma by non-resonant sequence of electron bunches on their lengths |
| author |
Bondar, D.S. Boychenko, A.P. Maslov, V.I. Onishchenko, I.N. Ovsiannikov, R.T. |
| author_facet |
Bondar, D.S. Boychenko, A.P. Maslov, V.I. Onishchenko, I.N. Ovsiannikov, R.T. |
| topic |
New methods of charged particles acceleration |
| topic_facet |
New methods of charged particles acceleration |
| publishDate |
2021 |
| language |
English |
| container_title |
Вопросы атомной науки и техники |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Залежність резонансного збудження кільватерного поля в плазмі нерезонансною послідовністю електронних згустків від їх довжин Зависимость резонансного возбуждения кильватерного поля в плазме нерезонансной последовательностью электронных сгустков от их длин |
| description |
The present paper describes the results of numerical simulation (using 2d3v code LCODE) of the regime, when the wakefield is excited at maximum growth rate in the plasma by a nonresonant sequence of relativistic electron bunches. As a result, the wakefield increases approximately in steps. The paper gives the parameters, at which this regime is achieved. It is shown that for smaller bunch radii, the amplitude of the excited wakefield is larger. At long lengths of the bunches, the amplitude of the wakefield is larger, in contrast to the excitation by the resonant sequence of bunches.
Описані результати чисельного моделювання (з використанням коду 2d3v LCODE) режиму, коли кільватерне поле збуджується з максимальною швидкістю росту в плазмі нерезонансною послідовністю релятивістських електронних згустків. У результаті кільватерне поле збільшується приблизно поступово. Наведено параметри, при яких досягається цей режим. Показано, що для менших радіусів згустка амплітуда збудженого кільватерного поля більше. При великих довжинах згустків амплітуда кільватерного поля більше, на відміну від режиму збудження резонансною послідовністю згустків.
Описаны результаты численного моделирования (с использованием кода 2d3v LCODE) режима, когда кильватерное поле возбуждается с максимальной скоростью роста в плазме нерезонансной последовательностью релятивистских электронных сгустков. В результате кильватерное поле увеличивается примерно ступенчато. Приведены параметры, при которых достигается этот режим. Показано, что для меньших радиусов сгустка амплитуда возбужденного кильватерного поля больше. При больших длинах сгустков амплитуда кильватерного поля больше в отличие от режима возбуждения резонансной последовательностью сгустков.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/195256 |
| citation_txt |
Dependence of wakefield excitation in plasma by non-resonant sequence of electron bunches on their lengths / D.S. Bondar, A.P. Boychenko, V.I. Maslov, I.N. Onishchenko, R.T. Ovsiannikov // Problems of Atomic Science and Technology. — 2021. — № 4. — С. 65-69. — Бібліогр.: 28 назв. — англ. |
| work_keys_str_mv |
AT bondards dependenceofwakefieldexcitationinplasmabynonresonantsequenceofelectronbunchesontheirlengths AT boychenkoap dependenceofwakefieldexcitationinplasmabynonresonantsequenceofelectronbunchesontheirlengths AT maslovvi dependenceofwakefieldexcitationinplasmabynonresonantsequenceofelectronbunchesontheirlengths AT onishchenkoin dependenceofwakefieldexcitationinplasmabynonresonantsequenceofelectronbunchesontheirlengths AT ovsiannikovrt dependenceofwakefieldexcitationinplasmabynonresonantsequenceofelectronbunchesontheirlengths AT bondards zaležnístʹrezonansnogozbudžennâkílʹvaternogopolâvplazmínerezonansnoûposlídovnístûelektronnihzgustkívvídíhdovžin AT boychenkoap zaležnístʹrezonansnogozbudžennâkílʹvaternogopolâvplazmínerezonansnoûposlídovnístûelektronnihzgustkívvídíhdovžin AT maslovvi zaležnístʹrezonansnogozbudžennâkílʹvaternogopolâvplazmínerezonansnoûposlídovnístûelektronnihzgustkívvídíhdovžin AT onishchenkoin zaležnístʹrezonansnogozbudžennâkílʹvaternogopolâvplazmínerezonansnoûposlídovnístûelektronnihzgustkívvídíhdovžin AT ovsiannikovrt zaležnístʹrezonansnogozbudžennâkílʹvaternogopolâvplazmínerezonansnoûposlídovnístûelektronnihzgustkívvídíhdovžin AT bondards zavisimostʹrezonansnogovozbuždeniâkilʹvaternogopolâvplazmenerezonansnoiposledovatelʹnostʹûélektronnyhsgustkovotihdlin AT boychenkoap zavisimostʹrezonansnogovozbuždeniâkilʹvaternogopolâvplazmenerezonansnoiposledovatelʹnostʹûélektronnyhsgustkovotihdlin AT maslovvi zavisimostʹrezonansnogovozbuždeniâkilʹvaternogopolâvplazmenerezonansnoiposledovatelʹnostʹûélektronnyhsgustkovotihdlin AT onishchenkoin zavisimostʹrezonansnogovozbuždeniâkilʹvaternogopolâvplazmenerezonansnoiposledovatelʹnostʹûélektronnyhsgustkovotihdlin AT ovsiannikovrt zavisimostʹrezonansnogovozbuždeniâkilʹvaternogopolâvplazmenerezonansnoiposledovatelʹnostʹûélektronnyhsgustkovotihdlin |
| first_indexed |
2025-11-26T01:39:54Z |
| last_indexed |
2025-11-26T01:39:54Z |
| _version_ |
1850604071255277568 |
| fulltext |
ISSN 1562-6016. ВАНТ. 2021. № 4(134) 70
https://doi.org/10.46813/2021-134-070
PLASMA LENS FOR ELECTRON AND POSITRON BEAMS
D.S. Bondar1,2, V.I. Maslov1,2, I.N. Onishchenko1, R.T. Ovsiannikov2
1National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine;
2V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
E-mail: vmaslov@kipt.kharkov.ua
Focusing of both electron and positron bunches in electron-positron collider is necessary. When long elec-
tron/positron bunch is injected into the plasma, the focusing force is not uniform but oscillated. It is shown that a
long positron bunch after focusing is destroyed faster than an electron bunch due to betatron and plasma oscillations.
PACS: 29.17.+W; 41.75.LX
INTRODUCTION
Plasma wakefield accelerators provide an extremely
high accelerating gradient [1 - 13], long sequence focus-
ing and large transformer ratio obtaining [14 - 23], reso-
nant wakefield excitation by a nonresonant sequence of
electron bunches [24, 25]. Focusing of relativistic elec-
tron bunches by wakefield, excited in the plasma, is
important previously studied effect [26 - 37]. Mecha-
nism of focusing in the plasma, by which all bunches of
a sequence are focused identically and uniformly, is
proposed and investigated by numerical simulation in
[14 - 16].
The plasma lens for long relativistic electron and
positron bunch focusing is studied in this paper by nu-
merical simulation using code lcode [38]. Unbounded
non-magnetized homogeneous plasma is considered.
The Gaussian ( 2cos A ) in longitudinal direction bunch
(current profile) is considered.
The purpose of this paper is to show by numerical
simulation that one can achieve conditions of focusing
of long relativistic electron and positron bunch. In this
paper the authors present the results of numerical simu-
lation on the focusing force distribution for long elec-
tron and positron bunches.
We use the cylindrical coordinate system ( , )r z . The
time is normalized to 1
pe , all the distances and coor-
dinate – to 1
pec , the density to the unperturbed
plasma electron density, the beam current bI – to
3 / 17 kAmc e , the fields – to /pemc e , where m is
the electron mass, e is the electron charge, c is the
speed of light, pe is the plasma electron frequency. is
the plasma wavelength. The simulation time is 160.1 pe .
5b for all bunches. The length of all bunches is
8bL . These normalisations are used also in the Fig-
ures. The arrow on all Figures indicates the direction of
movement of the bunches.
We present the numerical simulation data on plasma
wakefield excitation by a relativistic electron and posi-
tron bunch, obtained with the 2.5D quasi-static code
lcode. It treats the plasma as a cold electron fluid (mag-
netohydrodynamics model), and the bunches as ensem-
bles of macro-particles.
Spatial step equals 10.1 pec . Time step for plasma
electrons equals 10.1 pe . Time step for beam electrons
equals 10.1 b pe . Spatial dependences in selected
points of observation are presented.
RESULTS OF NUMERICAL SIMULATION
At first, the excited field distribution, formed by
long Gaussian electron bunch in the plasma (Fig. 1) is
considered.
Fig. 1. Spatial distribution of Gaussian bunch electron
density ,bn r (minus indicates to the electron
bunches) at 5b , 2 25z , 0.1r , maximum initial
electron bunch current 30.6 10bI
In this case, a rather smooth electrons ,en r
(Fig. 2) density pit is formed in the plasma in the Gaus-
sian bunch region.
Fig. 2. Spatial distribution of plasma electron density
,en r (corresponds to Fig. 1)
In addition, smooth focusing force is observed in the
region of the bunch (Fig. 3).
First (approximately, during the first half of the
simulation time), the focusing of the electron bunch is
observed (Figs. 4-6). The centers of the bunches are
subjected to the strongest focusing (see Fig. 5).
t1
t1
ISSN 1562-6016. ВАНТ. 2021. № 4(134) 71
Fig. 3. Longitudinal distribution of focusing force
eF (corresponds to Figs. 1, 2)
Fig. 4. Spatial distribution of focused Gaussian bunch
electron density ,bn r
Fig. 5. Longitudinal distribution of bunch electron
density ,b bn r r : before focusing (a); after focusing (b)
a
b
Fig. 6. Longitudinal distribution of bunch electron den-
sity , 0bn r : before focusing (a); after focusing (b)
Then (after approximately 1 130 40pe pet ) beta-
tron oscillations develop. Since the frequency of beta-
tron oscillations for electrons of the bunch located at
different radii is different, the bunch stratifies and the
electrons of the bunch peripheral along the radius are
defocused (Fig. 7). In general, the destruction of the
bunch can be observed along the entire diameter.
Fig. 7. Spatial distribution of Gaussian bunch
electron density ,bn r due to betatron
and plasma oscillations
Fig. 8. Spatial distribution of Gaussian bunch
positron density ,bn r
From comparison Figs. 7 and 8 it can be seen that
for the same time the positron bunch is destroyed more
strongly than electron.
From the beginning, oscillations are observed in the
second part (after 30 / pec ) of the plasma electron
density pit (Fig. 9).
Fig. 9. On-axis longitudinal distribution of plasma elec-
tron density , 0en r (corresponds to Figs. 1, 2)
Then oscillations are excited in the plasma electron
density (Fig. 10).
The development of oscillations can be seen on
rF graph (Fig. 11).
As a result, the bunch is modulated (see Fig. 12).
a
b
ISSN 1562-6016. ВАНТ. 2021. № 4(134) 72
Fig. 10. Spatial distribution of plasma
electron density ,en r
Fig. 11. Longitudinal distribution
of focusing force rF
Fig. 12. Longitudinal distribution of bunch electron
density ,b bn r r at large (end of simulation) times
In general, the destruction of the bunch is visible
along the entire diameter. Thus, the inhomogeneity of
the focusing force and the modulation of relativistic
bunches of electrons and positrons during their propaga-
tion in the plasma due to betatron and plasma oscilla-
tions are shown. In addition, it has been shown that
positron bunch is destroyed more strongly and faster
than electron bunch.
CONCLUSIONS
A numerical simulation of the focusing of electron
and positron bunches by a plasma lens is carried out.
When a long electron/positron bunch is injected into the
plasma, the resulting focusing force is not uniform, but
oscillates. It was shown that a long bunch of positrons
after focusing is destroyed faster than an electron bunch
due to betatron and plasma oscillations.
ACKNOWLEDGEMENTS
The study is supported by the National Research
Foundation of Ukraine under the program “Leading and
Young Scientists Research Support” (project #
2020.02/0299).
REFERENCES
1. E. Esarey, S. Sprangle, J. Krall, A. Ting. Overview
of Plasma-Based Accelerator Concepts // IEEE
Trans. Plasma Sci. 1996, v. PS-24(2), p. 252-88.
2. A.V. Brantov, T.Zh. Esirkepov, M. Kando, H. Ko-
taki, V.Yu. Bychenkov, and S.V. Bulanov. Con-
trolled electron injection into the wake wave using
plasma density inhomogeneity // Phys. Plas. 2008,
v. 15, p. 073111.
3. S. Lee, T. Katsouleas, R. Hemkel, and Mori. W2000
Simulations of a meter-long plasma wakefield accel-
erator // Phys. Rev. E. 2000, v. 61(6), p. 7014-21.
4. N. Kumar, A. Pukhov, K. Lotov. Self-modulation
instability of a long proton bunch in plasmas // Phys.
Rev. Lett. 2010, v. 104(25), p. 255003.
5. P. Muggli et al. Е-157: A plasma wakefield accel-
eration experiment // SLAC-PUB-8656. 2000, p. 1-6.
6. M. Hogan et al. Multi-GeV Energy Gain in a
Plasma-Wakefield Accelerator // Phys. Rev. Lett.
2005, v. 95, p. 054802.
7. I. Blumenfeld et al. Energy doubling of 42 GeV
electrons in a metre-scale plasma wakefield accel-
erator // Nature. 2007, v. 445(7129), p. 741-44.
8. V.V. Tsakanov. On collinear wake field acceleration
with high transformer ratio // NIMA. 1999, v. 432(2-
3), p. 202-13.
9. A. Marocchino et al. High Brightness Electron
Beams from Plasma-Based Acceleration //
LINAC2018. (Beijing: China), p. 637.
10. M.C. Thompson, J. Rosenzweig, H. Band Suk.
Plasma density transition trapping as a possible
high-brightness electron beam source // Phys. Rev.
Spec. Top. Accel. and Beams. 2004, № 7, p. 011301.
11. K.V. Lotov, V.I. Maslov, I.N. Onishchenko, and
E.N. Svistun. Simulation of plasma wakefield excita-
tion by a sequence of electron bunches // Problems of
Atomic Science and Technology. 2008, № 6, p. 114-116.
12. K.V. Lotov, V.I. Maslov, I.N. Onishchenko. Long
sequence of relativistic electron bunches as a driver
in wakefield method of charged particles accelera-
tion in plasma // Problems of Atomic Science and
Technology. 2010, № 6, p. 103-107.
13. K.V. Lotov, V.I. Maslov, I.N. Onishchenko,
M.S. Vesnovskaya. 2d3v Numerical simulation of
instability of cylindrical relativistic electron beam in
plasma // Problems of Atomic Science and Technol-
ogy. 2010, № 4, p. 12-16.
14. K.V. Lotov, V.I. Maslov, I.N. Onishchenko, and
E.N. Svistun. Homogeneous Focusing of Electron
Bunch Sequence by Plasma Wakefield // Problems of
Atomic Science and Technology. 2012, № 31, p. 59-63.
15. V.I. Maslov, I.N. Onishchenko, I.P. Yarovaya.
Plasma Wakefield Excitation, Possessing of Homo-
geneous Focusing of Electron Bunches // Problems
of Atomic Science and Technology. 2013, № 1,
p. 134-136.
16. V.I. Maslov, I.N. Onishchenko, I.P. Yarovaya.
Fields excited and providing a uniform focusing of
short relativistic electron bunches in plasma // East
European Journal of Physics. 2014, v. 2, p. 92-95.
17. K.V. Lotov, V.I. Maslov, I.N. Onishchenko
I.P. Yarovaya. Transformer Ratio at Interaction of
t2>t1
ISSN 1562-6016. ВАНТ. 2021. № 4(134) 73
Long Sequence of Electron Bunches with Plasma //
Problems of Atomic Science and Technology. 2011,
№ 3, p. 87-91.
18. V.I. Maslov, I.N. Onishchenko, I.P. Yarovaya.
Transformer Ratio at Excitation of Nonlinear Wake-
field in Plasma by Shaped Sequence of Electron
Bunches with Linear Growth of Charge // Problems of
Atomic Science and Technology. 2012, № 4, p. 128-130.
19. V.I. Maslov, I.N. Onishchenko, and I.P. Yarovaya.
Wakefield Excitation in Plasma by Sequence of
Shaped Electron Bunches // Problems of Atomic
Science and Technology. 2012, № 6, p. 161-63.
20. I.P. Levchuk, V.I. Maslov, I.N. Onishchenko.
Transformation ratio at wakefield excitation by line-
arly shaped sequence of short relativistic electron
bunches in plasma // Problems of Atomic Science
and Technology. 2015, № 6, p. 37-41.
21. V.I. Maslov, I.N. Onishchenko. Transformation ratio
at wakefield excitation in dielectric resonator accel-
erator by shaped sequence of electron bunches with
linear growth of current // Problems of Atomic Sci-
ence and Technology. 2013, № 4, p. 69-72.
22. K.V. Lotov, V.I. Maslov, I.N. Onishchenko.
Transformation ratio in wakefield method of accel-
eration for sequence of relativistic electron bunches
// Problems of Atomic Science and Technology.
2010, № 4, p. 85-89.
23. V.I. Maslov, I.P. Levchuk, I.N. Onishchenko.
Focusing of relativistic electron bunches by nonreso-
nant wakefield excited in plasma // Problems of Atomic
Science and Technology. 2010, № 4, p. 120-123.
24. K.V. Lotov, V.I. Maslov, I.N. Onishchenko, and
E.N. Svystun. 2.5D simulation of plasma wakefield
excitation by a nonresonant chain of relativistic elec-
tron bunches // Problems of Atomic Science and
Technology. 2010, № 2, p. 122-24.
25. K.V. Lotov, V.I. Maslov, I.N. Onishchenko, and
I.P. Yarovaya. Mechanisms of Synchronization of
Relativistic Electron Bunches at Wakefield Excita-
tion in Plasma // Problems of Atomic Science and
Technology. 2013, № 4, p. 73-76.
26. Ya. Fainberg, M. Ayzatsky, V. Balakirev, et al. Fo-
cusing of Relativistic Electron Bunches at the Wake-
field Excitation in Plasma // Proc. PAC’97. 12-16
May, 1997 Vancouver, Canada. V. II, p. 651-653.
27. C. O’Connell et al. Dynamic focusing of an electron
beam through a long plasma // Phys. Rev. ST Accel.
Beams. 2002, v. 5, p. 121301.
28. M.C. Tompson et al. CP877 // Adv. Accel. Concepts
12 Workshop. 2006, p. 561.
29. M.C. Tompson et al. Observations of low-aberration
plasma lens focusing of relativistic electron beams at
the underdense threshold // Phys. Plasmas. 2010,
v. 17, p. 073105.
30. S. Yu. Kalmykov et al. Injection, trapping, and ac-
celeration of electrons in a three-dimensional
nonlinear laser wakefield // Phys. Plas. 2006, v. 13,
p. 113102.
31. M.J. Hogan, C.E. Clayton, C. Huang, et al. Ultrare-
lativistic-Positron-Beam Transport through Meter-
Scale Plasmas // Phys. Rev. Lett. 2003, v. 90(20),
p. 205002.
32. P. Muggli, B.E. Blue, C.E. Clayton, et al. Halo For-
mation and Emittance Growth of Positron Beams in
Plasmas // Phys. Rev. Lett. 2008, v. 101, p. 055001.
33. M. Reiser, H. Li. Solutions of the matched KV enve-
lope equations for a ‘‘smooth’’ asymmetric focusing
channel // J. Appl. Phys. 2004, v. 96 (№ 1), p. 784-790.
34. I. L. Sheynman, A. Kanareykin. Definition of Focus-
ing System Parameters on the Basis of the Analysis
of a Transverse Bunch Dynamics in Dielectric
Loaded Wakefield Accelerator // Proc. IPAC’10,
Kyoto, Japan. 2009, p. 4416-4418.
35. A.J.W. Reitsma, V.V. Goloviznin, L.P.J. Kamp,
T.J. Schep. Bunch Self-Focusing Regime of Laser
Wakefield Acceleration with Reduced Emittance
Growth // Phys. Rev. Lett. 2002, v. 88, p. 014802.
36. C.B. Schroeder, J.S. Wurtele. Particle Beam Stabil-
ity in the Hollow Plasma Channel Wake Field Ac-
celerator. CP569 // Advanced Accelerator Concepts:
Ninth Workshop. 2000, p. 616-629.
37. J.B. Rosenzweig et al. Acceleration and Focusing of
Electrons in Two-Dimensional Nonlinear Plasma
Wake Fields // Phys. Rev. A. 1991, v. 44 (№ 10),
p. R6190-R6192.
38. K.V. Lotov. Simulation of Ultrarelativistic Beam
Dynamics in Plasma Wakefield Accelerator // Phys.
Plasmas. 1998, v. 5 (№ 3), p. 785-791.
Article received 16.06.2021
ПЛАЗМЕННАЯ ЛИНЗА ДЛЯ ЭЛЕКТРОННОГО И ПОЗИТРОННОГО ПУЧКОВ
Д.С. Бондарь, В.И. Маслов, И.Н. Онищенко, Р.Т. Овсянников
Необходима фокусировка как электронных, так и позитронных сгустков в электрон-позитронных кол-
лайдерах. При инжекции длинного сгустка электронов/позитронов в плазму образующаяся фокусирующая
сила не однородна, а с некоторыми осцилляциями. Показано, что длинный позитронный сгусток после фо-
кусировки разрушается быстрее, чем электронный сгусток за счет бетатронных колебаний и плазменных
осцилляций.
ПЛАЗМОВА ЛІНЗА ДЛЯ ЕЛЕКТРОННОГО І ПОЗИТРОННОГО ПУЧКІВ
Д.С. Бондарь, В.І. Маслов, І.М. Онiщенко, Р.Т. Овсянніков
Необхідне фокусування як електронних, так і позитронних згустків в електрон-позитронних колайдерах.
При інжекції довгого згустка електронів/позитронів у плазму утворювана фокусуюча сила не однорідна, а з
деякими осциляціями. Показано, що довгий позитронний згусток після фокусування руйнується швидше,
ніж електронний згусток за рахунок бетатронних коливань і плазмових осциляцій.
|