Plasma lens for electron and positron beams

Focusing of both electron and positron bunches in electron-positron collider is necessary. When long electron/positron bunch is injected into the plasma, the focusing force is not uniform but oscillated. It is shown that a long positron bunch after focusing is destroyed faster than an electron bunch...

Full description

Saved in:
Bibliographic Details
Published in:Вопросы атомной науки и техники
Date:2021
Main Authors: Bondar, D.S., Maslov, V.I., Onishchenko, I.N., Ovsiannikov, R.T.
Format: Article
Language:English
Published: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2021
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/195259
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Plasma lens for electron and positron beams / D.S. Bondar, V.I. Maslov, I.N. Onishchenko, R.T. Ovsiannikov // Problems of Atomic Science and Technology. — 2021. — № 4. — С. 70-73. — Бібліогр.: 38 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-195259
record_format dspace
spelling Bondar, D.S.
Maslov, V.I.
Onishchenko, I.N.
Ovsiannikov, R.T.
2023-12-03T15:59:47Z
2023-12-03T15:59:47Z
2021
Plasma lens for electron and positron beams / D.S. Bondar, V.I. Maslov, I.N. Onishchenko, R.T. Ovsiannikov // Problems of Atomic Science and Technology. — 2021. — № 4. — С. 70-73. — Бібліогр.: 38 назв. — англ.
1562-6016
PACS: 29.17.+W; 41.75.LX
DOI: https://doi.org/10.46813/2021-134-070
https://nasplib.isofts.kiev.ua/handle/123456789/195259
Focusing of both electron and positron bunches in electron-positron collider is necessary. When long electron/positron bunch is injected into the plasma, the focusing force is not uniform but oscillated. It is shown that a long positron bunch after focusing is destroyed faster than an electron bunch due to betatron and plasma oscillations.
Необхідне фокусування як електронних, так і позитронних згустків в електрон-позитронних колайдерах. При інжекції довгого згустка електронів/позитронів у плазму утворювана фокусуюча сила не однорідна, а з деякими осциляціями. Показано, що довгий позитронний згусток після фокусування руйнується швидше, ніж електронний згусток за рахунок бетатронних коливань і плазмових осциляцій.
Необходима фокусировка как электронных, так и позитронных сгустков в электрон-позитронных коллайдерах. При инжекции длинного сгустка электронов/позитронов в плазму образующаяся фокусирующая сила не однородна, а с некоторыми осцилляциями. Показано, что длинный позитронный сгусток после фокусировки разрушается быстрее, чем электронный сгусток за счет бетатронных колебаний и плазменных осцилляций.
The study is supported by the National Research Foundation of Ukraine under the program “Leading and Young Scientists Research Support” (project # 2020.02/0299).
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
New methods of charged particles acceleration
Plasma lens for electron and positron beams
Плазмова лінза для електронних і позитронних пучків
Плазменная линза для электронного и позитронного пучков
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Plasma lens for electron and positron beams
spellingShingle Plasma lens for electron and positron beams
Bondar, D.S.
Maslov, V.I.
Onishchenko, I.N.
Ovsiannikov, R.T.
New methods of charged particles acceleration
title_short Plasma lens for electron and positron beams
title_full Plasma lens for electron and positron beams
title_fullStr Plasma lens for electron and positron beams
title_full_unstemmed Plasma lens for electron and positron beams
title_sort plasma lens for electron and positron beams
author Bondar, D.S.
Maslov, V.I.
Onishchenko, I.N.
Ovsiannikov, R.T.
author_facet Bondar, D.S.
Maslov, V.I.
Onishchenko, I.N.
Ovsiannikov, R.T.
topic New methods of charged particles acceleration
topic_facet New methods of charged particles acceleration
publishDate 2021
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Плазмова лінза для електронних і позитронних пучків
Плазменная линза для электронного и позитронного пучков
description Focusing of both electron and positron bunches in electron-positron collider is necessary. When long electron/positron bunch is injected into the plasma, the focusing force is not uniform but oscillated. It is shown that a long positron bunch after focusing is destroyed faster than an electron bunch due to betatron and plasma oscillations. Необхідне фокусування як електронних, так і позитронних згустків в електрон-позитронних колайдерах. При інжекції довгого згустка електронів/позитронів у плазму утворювана фокусуюча сила не однорідна, а з деякими осциляціями. Показано, що довгий позитронний згусток після фокусування руйнується швидше, ніж електронний згусток за рахунок бетатронних коливань і плазмових осциляцій. Необходима фокусировка как электронных, так и позитронных сгустков в электрон-позитронных коллайдерах. При инжекции длинного сгустка электронов/позитронов в плазму образующаяся фокусирующая сила не однородна, а с некоторыми осцилляциями. Показано, что длинный позитронный сгусток после фокусировки разрушается быстрее, чем электронный сгусток за счет бетатронных колебаний и плазменных осцилляций.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/195259
citation_txt Plasma lens for electron and positron beams / D.S. Bondar, V.I. Maslov, I.N. Onishchenko, R.T. Ovsiannikov // Problems of Atomic Science and Technology. — 2021. — № 4. — С. 70-73. — Бібліогр.: 38 назв. — англ.
work_keys_str_mv AT bondards plasmalensforelectronandpositronbeams
AT maslovvi plasmalensforelectronandpositronbeams
AT onishchenkoin plasmalensforelectronandpositronbeams
AT ovsiannikovrt plasmalensforelectronandpositronbeams
AT bondards plazmovalínzadlâelektronnihípozitronnihpučkív
AT maslovvi plazmovalínzadlâelektronnihípozitronnihpučkív
AT onishchenkoin plazmovalínzadlâelektronnihípozitronnihpučkív
AT ovsiannikovrt plazmovalínzadlâelektronnihípozitronnihpučkív
AT bondards plazmennaâlinzadlâélektronnogoipozitronnogopučkov
AT maslovvi plazmennaâlinzadlâélektronnogoipozitronnogopučkov
AT onishchenkoin plazmennaâlinzadlâélektronnogoipozitronnogopučkov
AT ovsiannikovrt plazmennaâlinzadlâélektronnogoipozitronnogopučkov
first_indexed 2025-11-25T22:15:35Z
last_indexed 2025-11-25T22:15:35Z
_version_ 1850561441016315904
fulltext ISSN 1562-6016. ВАНТ. 2021. № 4(134) 70 https://doi.org/10.46813/2021-134-070 PLASMA LENS FOR ELECTRON AND POSITRON BEAMS D.S. Bondar1,2, V.I. Maslov1,2, I.N. Onishchenko1, R.T. Ovsiannikov2 1National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine; 2V.N. Karazin Kharkiv National University, Kharkiv, Ukraine E-mail: vmaslov@kipt.kharkov.ua Focusing of both electron and positron bunches in electron-positron collider is necessary. When long elec- tron/positron bunch is injected into the plasma, the focusing force is not uniform but oscillated. It is shown that a long positron bunch after focusing is destroyed faster than an electron bunch due to betatron and plasma oscillations. PACS: 29.17.+W; 41.75.LX INTRODUCTION Plasma wakefield accelerators provide an extremely high accelerating gradient [1 - 13], long sequence focus- ing and large transformer ratio obtaining [14 - 23], reso- nant wakefield excitation by a nonresonant sequence of electron bunches [24, 25]. Focusing of relativistic elec- tron bunches by wakefield, excited in the plasma, is important previously studied effect [26 - 37]. Mecha- nism of focusing in the plasma, by which all bunches of a sequence are focused identically and uniformly, is proposed and investigated by numerical simulation in [14 - 16]. The plasma lens for long relativistic electron and positron bunch focusing is studied in this paper by nu- merical simulation using code lcode [38]. Unbounded non-magnetized homogeneous plasma is considered. The Gaussian ( 2cos A ) in longitudinal direction bunch (current profile) is considered. The purpose of this paper is to show by numerical simulation that one can achieve conditions of focusing of long relativistic electron and positron bunch. In this paper the authors present the results of numerical simu- lation on the focusing force distribution for long elec- tron and positron bunches. We use the cylindrical coordinate system ( , )r z . The time  is normalized to 1 pe  , all the distances and coor- dinate  – to 1 pec , the density  to the unperturbed plasma electron density, the beam current bI – to 3 / 17 kAmc e  , the fields – to /pemc e , where m is the electron mass, e is the electron charge, c is the speed of light, pe is the plasma electron frequency.  is the plasma wavelength. The simulation time is 160.1 pe . 5b  for all bunches. The length of all bunches is 8bL  . These normalisations are used also in the Fig- ures. The arrow on all Figures indicates the direction of movement of the bunches. We present the numerical simulation data on plasma wakefield excitation by a relativistic electron and posi- tron bunch, obtained with the 2.5D quasi-static code lcode. It treats the plasma as a cold electron fluid (mag- netohydrodynamics model), and the bunches as ensem- bles of macro-particles. Spatial step equals 10.1 pec . Time step for plasma electrons equals 10.1 pe . Time step for beam electrons equals 10.1 b pe  . Spatial dependences in selected points of observation are presented. RESULTS OF NUMERICAL SIMULATION At first, the excited field distribution, formed by long Gaussian electron bunch in the plasma (Fig. 1) is considered. Fig. 1. Spatial distribution of Gaussian bunch electron density  ,bn r (minus indicates to the electron bunches) at 5b  , 2 25z  , 0.1r  , maximum initial electron bunch current 30.6 10bI   In this case, a rather smooth electrons  ,en r (Fig. 2) density pit is formed in the plasma in the Gaus- sian bunch region. Fig. 2. Spatial distribution of plasma electron density  ,en r (corresponds to Fig. 1) In addition, smooth focusing force is observed in the region of the bunch (Fig. 3). First (approximately, during the first half of the simulation time), the focusing of the electron bunch is observed (Figs. 4-6). The centers of the bunches are subjected to the strongest focusing (see Fig. 5). t1 t1 ISSN 1562-6016. ВАНТ. 2021. № 4(134) 71 Fig. 3. Longitudinal distribution of focusing force  eF  (corresponds to Figs. 1, 2) Fig. 4. Spatial distribution of focused Gaussian bunch electron density  ,bn r Fig. 5. Longitudinal distribution of bunch electron density  ,b bn r r  : before focusing (a); after focusing (b) a b Fig. 6. Longitudinal distribution of bunch electron den- sity  , 0bn r  : before focusing (a); after focusing (b) Then (after approximately 1 130 40pe pet     ) beta- tron oscillations develop. Since the frequency of beta- tron oscillations for electrons of the bunch located at different radii is different, the bunch stratifies and the electrons of the bunch peripheral along the radius are defocused (Fig. 7). In general, the destruction of the bunch can be observed along the entire diameter. Fig. 7. Spatial distribution of Gaussian bunch electron density  ,bn r due to betatron and plasma oscillations Fig. 8. Spatial distribution of Gaussian bunch positron density  ,bn r From comparison Figs. 7 and 8 it can be seen that for the same time the positron bunch is destroyed more strongly than electron. From the beginning, oscillations are observed in the second part (after 30 / pec  ) of the plasma electron density pit (Fig. 9). Fig. 9. On-axis longitudinal distribution of plasma elec- tron density  , 0en r  (corresponds to Figs. 1, 2) Then oscillations are excited in the plasma electron density (Fig. 10). The development of oscillations can be seen on  rF  graph (Fig. 11). As a result, the bunch is modulated (see Fig. 12). a b ISSN 1562-6016. ВАНТ. 2021. № 4(134) 72 Fig. 10. Spatial distribution of plasma electron density  ,en r Fig. 11. Longitudinal distribution of focusing force  rF  Fig. 12. Longitudinal distribution of bunch electron density  ,b bn r r  at large (end of simulation) times In general, the destruction of the bunch is visible along the entire diameter. Thus, the inhomogeneity of the focusing force and the modulation of relativistic bunches of electrons and positrons during their propaga- tion in the plasma due to betatron and plasma oscilla- tions are shown. In addition, it has been shown that positron bunch is destroyed more strongly and faster than electron bunch. CONCLUSIONS A numerical simulation of the focusing of electron and positron bunches by a plasma lens is carried out. When a long electron/positron bunch is injected into the plasma, the resulting focusing force is not uniform, but oscillates. It was shown that a long bunch of positrons after focusing is destroyed faster than an electron bunch due to betatron and plasma oscillations. ACKNOWLEDGEMENTS The study is supported by the National Research Foundation of Ukraine under the program “Leading and Young Scientists Research Support” (project # 2020.02/0299). REFERENCES 1. E. Esarey, S. Sprangle, J. Krall, A. Ting. Overview of Plasma-Based Accelerator Concepts // IEEE Trans. Plasma Sci. 1996, v. PS-24(2), p. 252-88. 2. A.V. Brantov, T.Zh. Esirkepov, M. Kando, H. Ko- taki, V.Yu. Bychenkov, and S.V. Bulanov. Con- trolled electron injection into the wake wave using plasma density inhomogeneity // Phys. Plas. 2008, v. 15, p. 073111. 3. S. Lee, T. Katsouleas, R. Hemkel, and Mori. W2000 Simulations of a meter-long plasma wakefield accel- erator // Phys. Rev. E. 2000, v. 61(6), p. 7014-21. 4. N. Kumar, A. Pukhov, K. Lotov. Self-modulation instability of a long proton bunch in plasmas // Phys. Rev. Lett. 2010, v. 104(25), p. 255003. 5. P. Muggli et al. Е-157: A plasma wakefield accel- eration experiment // SLAC-PUB-8656. 2000, p. 1-6. 6. M. Hogan et al. Multi-GeV Energy Gain in a Plasma-Wakefield Accelerator // Phys. Rev. Lett. 2005, v. 95, p. 054802. 7. I. Blumenfeld et al. Energy doubling of 42 GeV electrons in a metre-scale plasma wakefield accel- erator // Nature. 2007, v. 445(7129), p. 741-44. 8. V.V. Tsakanov. On collinear wake field acceleration with high transformer ratio // NIMA. 1999, v. 432(2- 3), p. 202-13. 9. A. Marocchino et al. High Brightness Electron Beams from Plasma-Based Acceleration // LINAC2018. (Beijing: China), p. 637. 10. M.C. Thompson, J. Rosenzweig, H. Band Suk. Plasma density transition trapping as a possible high-brightness electron beam source // Phys. Rev. Spec. Top. Accel. and Beams. 2004, № 7, p. 011301. 11. K.V. Lotov, V.I. Maslov, I.N. Onishchenko, and E.N. Svistun. Simulation of plasma wakefield excita- tion by a sequence of electron bunches // Problems of Atomic Science and Technology. 2008, № 6, p. 114-116. 12. K.V. Lotov, V.I. Maslov, I.N. Onishchenko. Long sequence of relativistic electron bunches as a driver in wakefield method of charged particles accelera- tion in plasma // Problems of Atomic Science and Technology. 2010, № 6, p. 103-107. 13. K.V. Lotov, V.I. Maslov, I.N. Onishchenko, M.S. Vesnovskaya. 2d3v Numerical simulation of instability of cylindrical relativistic electron beam in plasma // Problems of Atomic Science and Technol- ogy. 2010, № 4, p. 12-16. 14. K.V. Lotov, V.I. Maslov, I.N. Onishchenko, and E.N. Svistun. Homogeneous Focusing of Electron Bunch Sequence by Plasma Wakefield // Problems of Atomic Science and Technology. 2012, № 31, p. 59-63. 15. V.I. Maslov, I.N. Onishchenko, I.P. Yarovaya. Plasma Wakefield Excitation, Possessing of Homo- geneous Focusing of Electron Bunches // Problems of Atomic Science and Technology. 2013, № 1, p. 134-136. 16. V.I. Maslov, I.N. Onishchenko, I.P. Yarovaya. Fields excited and providing a uniform focusing of short relativistic electron bunches in plasma // East European Journal of Physics. 2014, v. 2, p. 92-95. 17. K.V. Lotov, V.I. Maslov, I.N. Onishchenko I.P. Yarovaya. Transformer Ratio at Interaction of t2>t1 ISSN 1562-6016. ВАНТ. 2021. № 4(134) 73 Long Sequence of Electron Bunches with Plasma // Problems of Atomic Science and Technology. 2011, № 3, p. 87-91. 18. V.I. Maslov, I.N. Onishchenko, I.P. Yarovaya. Transformer Ratio at Excitation of Nonlinear Wake- field in Plasma by Shaped Sequence of Electron Bunches with Linear Growth of Charge // Problems of Atomic Science and Technology. 2012, № 4, p. 128-130. 19. V.I. Maslov, I.N. Onishchenko, and I.P. Yarovaya. Wakefield Excitation in Plasma by Sequence of Shaped Electron Bunches // Problems of Atomic Science and Technology. 2012, № 6, p. 161-63. 20. I.P. Levchuk, V.I. Maslov, I.N. Onishchenko. Transformation ratio at wakefield excitation by line- arly shaped sequence of short relativistic electron bunches in plasma // Problems of Atomic Science and Technology. 2015, № 6, p. 37-41. 21. V.I. Maslov, I.N. Onishchenko. Transformation ratio at wakefield excitation in dielectric resonator accel- erator by shaped sequence of electron bunches with linear growth of current // Problems of Atomic Sci- ence and Technology. 2013, № 4, p. 69-72. 22. K.V. Lotov, V.I. Maslov, I.N. Onishchenko. Transformation ratio in wakefield method of accel- eration for sequence of relativistic electron bunches // Problems of Atomic Science and Technology. 2010, № 4, p. 85-89. 23. V.I. Maslov, I.P. Levchuk, I.N. Onishchenko. Focusing of relativistic electron bunches by nonreso- nant wakefield excited in plasma // Problems of Atomic Science and Technology. 2010, № 4, p. 120-123. 24. K.V. Lotov, V.I. Maslov, I.N. Onishchenko, and E.N. Svystun. 2.5D simulation of plasma wakefield excitation by a nonresonant chain of relativistic elec- tron bunches // Problems of Atomic Science and Technology. 2010, № 2, p. 122-24. 25. K.V. Lotov, V.I. Maslov, I.N. Onishchenko, and I.P. Yarovaya. Mechanisms of Synchronization of Relativistic Electron Bunches at Wakefield Excita- tion in Plasma // Problems of Atomic Science and Technology. 2013, № 4, p. 73-76. 26. Ya. Fainberg, M. Ayzatsky, V. Balakirev, et al. Fo- cusing of Relativistic Electron Bunches at the Wake- field Excitation in Plasma // Proc. PAC’97. 12-16 May, 1997 Vancouver, Canada. V. II, p. 651-653. 27. C. O’Connell et al. Dynamic focusing of an electron beam through a long plasma // Phys. Rev. ST Accel. Beams. 2002, v. 5, p. 121301. 28. M.C. Tompson et al. CP877 // Adv. Accel. Concepts 12 Workshop. 2006, p. 561. 29. M.C. Tompson et al. Observations of low-aberration plasma lens focusing of relativistic electron beams at the underdense threshold // Phys. Plasmas. 2010, v. 17, p. 073105. 30. S. Yu. Kalmykov et al. Injection, trapping, and ac- celeration of electrons in a three-dimensional nonlinear laser wakefield // Phys. Plas. 2006, v. 13, p. 113102. 31. M.J. Hogan, C.E. Clayton, C. Huang, et al. Ultrare- lativistic-Positron-Beam Transport through Meter- Scale Plasmas // Phys. Rev. Lett. 2003, v. 90(20), p. 205002. 32. P. Muggli, B.E. Blue, C.E. Clayton, et al. Halo For- mation and Emittance Growth of Positron Beams in Plasmas // Phys. Rev. Lett. 2008, v. 101, p. 055001. 33. M. Reiser, H. Li. Solutions of the matched KV enve- lope equations for a ‘‘smooth’’ asymmetric focusing channel // J. Appl. Phys. 2004, v. 96 (№ 1), p. 784-790. 34. I. L. Sheynman, A. Kanareykin. Definition of Focus- ing System Parameters on the Basis of the Analysis of a Transverse Bunch Dynamics in Dielectric Loaded Wakefield Accelerator // Proc. IPAC’10, Kyoto, Japan. 2009, p. 4416-4418. 35. A.J.W. Reitsma, V.V. Goloviznin, L.P.J. Kamp, T.J. Schep. Bunch Self-Focusing Regime of Laser Wakefield Acceleration with Reduced Emittance Growth // Phys. Rev. Lett. 2002, v. 88, p. 014802. 36. C.B. Schroeder, J.S. Wurtele. Particle Beam Stabil- ity in the Hollow Plasma Channel Wake Field Ac- celerator. CP569 // Advanced Accelerator Concepts: Ninth Workshop. 2000, p. 616-629. 37. J.B. Rosenzweig et al. Acceleration and Focusing of Electrons in Two-Dimensional Nonlinear Plasma Wake Fields // Phys. Rev. A. 1991, v. 44 (№ 10), p. R6190-R6192. 38. K.V. Lotov. Simulation of Ultrarelativistic Beam Dynamics in Plasma Wakefield Accelerator // Phys. Plasmas. 1998, v. 5 (№ 3), p. 785-791. Article received 16.06.2021 ПЛАЗМЕННАЯ ЛИНЗА ДЛЯ ЭЛЕКТРОННОГО И ПОЗИТРОННОГО ПУЧКОВ Д.С. Бондарь, В.И. Маслов, И.Н. Онищенко, Р.Т. Овсянников Необходима фокусировка как электронных, так и позитронных сгустков в электрон-позитронных кол- лайдерах. При инжекции длинного сгустка электронов/позитронов в плазму образующаяся фокусирующая сила не однородна, а с некоторыми осцилляциями. Показано, что длинный позитронный сгусток после фо- кусировки разрушается быстрее, чем электронный сгусток за счет бетатронных колебаний и плазменных осцилляций. ПЛАЗМОВА ЛІНЗА ДЛЯ ЕЛЕКТРОННОГО І ПОЗИТРОННОГО ПУЧКІВ Д.С. Бондарь, В.І. Маслов, І.М. Онiщенко, Р.Т. Овсянніков Необхідне фокусування як електронних, так і позитронних згустків в електрон-позитронних колайдерах. При інжекції довгого згустка електронів/позитронів у плазму утворювана фокусуюча сила не однорідна, а з деякими осциляціями. Показано, що довгий позитронний згусток після фокусування руйнується швидше, ніж електронний згусток за рахунок бетатронних коливань і плазмових осциляцій.