Acceleration of electron bunches using periodic dielectric structures with and without coating

The numerical studies of high acceleration gradients obtaining for the dielectric laser accelerators (DLA) based on-chip structures with one-sided laser excitation at a wavelength of 800 nm are presented. The electron flight heights of 200 and 400 nm over a structure are presented. The influence of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Вопросы атомной науки и техники
Datum:2021
Hauptverfasser: Vasyliev, A.V., Bolshov, O.O., Galaydych, K.V., Povrozin, A.I., Sotnikov, G.V.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2021
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/195264
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Acceleration of electron bunches using periodic dielectric structures with and without coating / A.V. Vasyliev, O.O. Bolshov, K.V. Galaydych, A.I. Povrozin, G.V. Sotnikov // Problems of Atomic Science and Technology. — 2021. — № 4. — С. 60-64. — Бібліогр.: 11 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-195264
record_format dspace
spelling Vasyliev, A.V.
Bolshov, O.O.
Galaydych, K.V.
Povrozin, A.I.
Sotnikov, G.V.
2023-12-03T16:01:13Z
2023-12-03T16:01:13Z
2021
Acceleration of electron bunches using periodic dielectric structures with and without coating / A.V. Vasyliev, O.O. Bolshov, K.V. Galaydych, A.I. Povrozin, G.V. Sotnikov // Problems of Atomic Science and Technology. — 2021. — № 4. — С. 60-64. — Бібліогр.: 11 назв. — англ.
1562-6016
PACS: 41.75.Jv, 41.75.Ht, 42.25.Bs
DOI: https://doi.org/10.46813/2021-134-060
https://nasplib.isofts.kiev.ua/handle/123456789/195264
The numerical studies of high acceleration gradients obtaining for the dielectric laser accelerators (DLA) based on-chip structures with one-sided laser excitation at a wavelength of 800 nm are presented. The electron flight heights of 200 and 400 nm over a structure are presented. The influence of the geometric parameters of the structures on the acceleration gradients was also investigated. A study of changes in the acceleration gradients of structures, when applying a gold coating on these types of structures, has been carried out.
Представлено дослідження темпів прискорення методом чисельного моделювання для діелектричних лазерних прискорювачів на ЧІП-структурах із одностороннім лазерним збудженням на довжині хвилі 800 нм. Відстань пучка електронів 200 та 400 нм. Також досліджено вплив геометричних параметрів структур на темпи прискорення. Проведено дослідження зміни градієнтів прискорення структур при нанесенні золотого покриття на дані типи структур.
Представлено исследование темпов ускорения методом численного моделирования для диэлектрических лазерных ускорителей на ЧИП-структурах с односторонним лазерным возбуждением на длине волны 800 нм. Расстояние пучка электронов 200 и 400 нм. Также исследовано влияние геометрических параметров структур на темпы ускорения. Проведено исследование изменения градиентов ускорения структур, при нанесении золотого покрытия на данные типы структур.
Work supported by The National Research Foundation of Ukraine, program "Leading and Young Scientists Research Support" (project # 2020.02/0299).
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
New methods of charged particles acceleration
Acceleration of electron bunches using periodic dielectric structures with and without coating
Прискорення електронних згустків з використанням періодичних діелектричних структур з покриттям та без
Ускорение электронных сгустков с использованием периодических диэлектрических структур с покрытием и без
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Acceleration of electron bunches using periodic dielectric structures with and without coating
spellingShingle Acceleration of electron bunches using periodic dielectric structures with and without coating
Vasyliev, A.V.
Bolshov, O.O.
Galaydych, K.V.
Povrozin, A.I.
Sotnikov, G.V.
New methods of charged particles acceleration
title_short Acceleration of electron bunches using periodic dielectric structures with and without coating
title_full Acceleration of electron bunches using periodic dielectric structures with and without coating
title_fullStr Acceleration of electron bunches using periodic dielectric structures with and without coating
title_full_unstemmed Acceleration of electron bunches using periodic dielectric structures with and without coating
title_sort acceleration of electron bunches using periodic dielectric structures with and without coating
author Vasyliev, A.V.
Bolshov, O.O.
Galaydych, K.V.
Povrozin, A.I.
Sotnikov, G.V.
author_facet Vasyliev, A.V.
Bolshov, O.O.
Galaydych, K.V.
Povrozin, A.I.
Sotnikov, G.V.
topic New methods of charged particles acceleration
topic_facet New methods of charged particles acceleration
publishDate 2021
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Прискорення електронних згустків з використанням періодичних діелектричних структур з покриттям та без
Ускорение электронных сгустков с использованием периодических диэлектрических структур с покрытием и без
description The numerical studies of high acceleration gradients obtaining for the dielectric laser accelerators (DLA) based on-chip structures with one-sided laser excitation at a wavelength of 800 nm are presented. The electron flight heights of 200 and 400 nm over a structure are presented. The influence of the geometric parameters of the structures on the acceleration gradients was also investigated. A study of changes in the acceleration gradients of structures, when applying a gold coating on these types of structures, has been carried out. Представлено дослідження темпів прискорення методом чисельного моделювання для діелектричних лазерних прискорювачів на ЧІП-структурах із одностороннім лазерним збудженням на довжині хвилі 800 нм. Відстань пучка електронів 200 та 400 нм. Також досліджено вплив геометричних параметрів структур на темпи прискорення. Проведено дослідження зміни градієнтів прискорення структур при нанесенні золотого покриття на дані типи структур. Представлено исследование темпов ускорения методом численного моделирования для диэлектрических лазерных ускорителей на ЧИП-структурах с односторонним лазерным возбуждением на длине волны 800 нм. Расстояние пучка электронов 200 и 400 нм. Также исследовано влияние геометрических параметров структур на темпы ускорения. Проведено исследование изменения градиентов ускорения структур, при нанесении золотого покрытия на данные типы структур.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/195264
citation_txt Acceleration of electron bunches using periodic dielectric structures with and without coating / A.V. Vasyliev, O.O. Bolshov, K.V. Galaydych, A.I. Povrozin, G.V. Sotnikov // Problems of Atomic Science and Technology. — 2021. — № 4. — С. 60-64. — Бібліогр.: 11 назв. — англ.
work_keys_str_mv AT vasylievav accelerationofelectronbunchesusingperiodicdielectricstructureswithandwithoutcoating
AT bolshovoo accelerationofelectronbunchesusingperiodicdielectricstructureswithandwithoutcoating
AT galaydychkv accelerationofelectronbunchesusingperiodicdielectricstructureswithandwithoutcoating
AT povrozinai accelerationofelectronbunchesusingperiodicdielectricstructureswithandwithoutcoating
AT sotnikovgv accelerationofelectronbunchesusingperiodicdielectricstructureswithandwithoutcoating
AT vasylievav priskorennâelektronnihzgustkívzvikoristannâmperíodičnihdíelektričnihstrukturzpokrittâmtabez
AT bolshovoo priskorennâelektronnihzgustkívzvikoristannâmperíodičnihdíelektričnihstrukturzpokrittâmtabez
AT galaydychkv priskorennâelektronnihzgustkívzvikoristannâmperíodičnihdíelektričnihstrukturzpokrittâmtabez
AT povrozinai priskorennâelektronnihzgustkívzvikoristannâmperíodičnihdíelektričnihstrukturzpokrittâmtabez
AT sotnikovgv priskorennâelektronnihzgustkívzvikoristannâmperíodičnihdíelektričnihstrukturzpokrittâmtabez
AT vasylievav uskorenieélektronnyhsgustkovsispolʹzovaniemperiodičeskihdiélektričeskihstrukturspokrytiemibez
AT bolshovoo uskorenieélektronnyhsgustkovsispolʹzovaniemperiodičeskihdiélektričeskihstrukturspokrytiemibez
AT galaydychkv uskorenieélektronnyhsgustkovsispolʹzovaniemperiodičeskihdiélektričeskihstrukturspokrytiemibez
AT povrozinai uskorenieélektronnyhsgustkovsispolʹzovaniemperiodičeskihdiélektričeskihstrukturspokrytiemibez
AT sotnikovgv uskorenieélektronnyhsgustkovsispolʹzovaniemperiodičeskihdiélektričeskihstrukturspokrytiemibez
first_indexed 2025-11-25T21:10:21Z
last_indexed 2025-11-25T21:10:21Z
_version_ 1850547711094292480
fulltext ISSN 1562-6016. ВАНТ. 2021. № 4(134) 60 https://doi.org/10.46813/2021-134-060 ACCELERATION OF ELECTRON BUNCHES USING PERIODIC DIELECTRIC STRUCTURES WITH AND WITHOUT COATING A.V. Vasyliev, A.O. Bolshov, K.V. Galaydych, A.I. Povrozin, G.V. Sotnikov National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine E-mail: vasilyev.andrey90@gmail.com The numerical studies of high acceleration gradients obtaining for the dielectric laser accelerators (DLA) based on-chip structures with one-sided laser excitation at a wavelength of 800 nm are presented. The electron flight heights of 200 and 400 nm over a structure are presented. The influence of the geometric parameters of the struc- tures on the acceleration gradients was also investigated. A study of changes in the acceleration gradients of struc- tures, when applying a gold coating on these types of structures, has been carried out. PACS: 41.75.Jv, 41.75.Ht, 42.25.Bs INTRODUCTION Today, laser accelerators are given an increasing place in research practice, along with the development of laser-plasma accelerators [1], a special niche is occu- pied by the development of accelerators based on-chip structures [2 - 4]. For the accelerators based on CHIP structures, two directions are relevant. The first is ob- taining a maximum acceleration efficiency (with a maximum devices miniaturization), and the second is its optimization for this type of accelerator production for the fundamental and applied studies. Recent experimen- tal studies on the acceleration of sub-relativistic [3, 4], as well as relativistic electrons [2] on CHIP structures, have served as the beginning for the further comprehen- sive development of this direction. DLA works by stimulated laser an electric modefield excitation with a nonzero electrical component, parallel to the electron velocity. For synchronous interaction over long distances, the phase velocity of the excited mode should be equal to an electron velocity. Near-field modes are efficiently excited by a laser overthe dielec- tric periodic structures of various geometries. A change in the geometry of periodic structures leads to a change in the acceleration gradients of charged particles. Several early proposals were based on the use of re- flective (all-metal) diffraction gratings [5 - 7]. The ac- celeration mechanism used in these demonstrations was the opposite of the Smith-Purcell effect [8]. The earliest proposal for a stepped DLA based on a periodic nanos- tructure [9, 10] describes a design that used absorbing thin metal gratings deposited on flat dielectric surfaces. In our work, we investigate dielectric chip structures of various profiles, including those with a metal coating deposited on them, to assess the possibility of obtaining the highest gradient of electron acceleration. A general principle of acceleration can be demon- strated (Fig. 1) using a rectangular CHIP structure used at the SLAC [4]. An electron moves along a periodic CHIP structure from left to right. A laser excites a longitudinal compo- nent of an electric field in the structure, falling perpen- dicular to its surface from below. The CHIP structure forms an inhomogeneous electric field along the sur- face, which changes its directionality with a period equal to half the laser wavelength. Fig. 1. A general principle of the acceleration of the relativistic electrons in a CHIP structure. A period of the structure is equal to a laser wavelength Acceleration occurs at the moment when the elec- tron is in the accelerating field above the "pillar" of the lattice Fig. 1,a. After a quarter of a period, a neutral phase appears in the structure, when the moment of a change in the direction of the electric field occurs (see Fig. 1,b). After another quarter of the period, at the moment when the electric field on the structure is di- rected in the opposite direction, the electron is in the drift space. Under the condition of radiation incidence perpen- dicular to the plane of the grating and its lines, the ac- celeration of particles will occur along the surface of the grating also perpendicular to its lines [2]. Let's conven- tionally denote x-coordinate along the lattice lines and perpendicular to the motion of particles; y is the coordi- nate perpendicular to the lattice surface, and z is along the direction of particle motion. For the condition of synchronization of the electron velocity with the phase velocity of the exciting wave, one can use [3]: ,p n  (1) where n is the mode of the electromagnetic field excited by the incident wave; β = v/s is the dimensionless speed, v is the speed of electrons, c is the speed of light; λ is the wavelength of the exciting laser radiation. For the simplicity, we assume that the structure is excited from one side with a Gaussian laser pulse. When choosing the initial simulation parameters: the duration of the laser pulse and the electron beam, we were guided by our previous studies [11] and the parameters used at SLAC, i. e. Λ = 800 nm, τ = 120 fs, β = 0.9995, initial electron energy E = 50 MeV, beam diameter is 50 µm, bunch chargeis 10-17C, bunch duration is 0.35 fs. ISSN 1562-6016. ВАНТ. 2021. № 4(134) 61 The results of the numerical studies on acceleration processes modeling in periodic structures of various profiles with and without deposition under their excita- tion by a Gaussian beam are presented below. 1. SIMULATION RESULTS The Gaussian beam allows us to get the simulation results that are close to a real experiment. Its electric field can be represented as follows 2 2( )0( , , ) exp exp 2ln(2) 2 2 2( ) ( ) 0 2 exp ( ) ,0 0 0 2 ( ) w r z ctE r z t Ep w z w z c ri t ik z ik i zgR z                                (2) where pE is an amplitude of the electric field; 0w is a waist or the smallest transverse size of the laser in the focal plane (z = 0); c is a speed of light; 0 is full width at half maximum of the pulse duration; 0 02k   and 0 0сk  represent the wave number and angular fre- quency of the laser beam with the wavelength 0 re- spectively. The propagation of a Gaussian laser pulse is completely characterized by the beam waist ( ),w z the radius of curvature of the wave front ( )R z , and the Guy phase shift ( )g z as the function of z, 2 ( ) 1 ;0 zw z w zR          2 ( ) 1 ;zR z z zR            (3) ( ) arctan zzg zR          , where 2 0 0 /Rz w  is the Rayleigh length, which represents the position at which the transverse area of the laser beam is doubled compared to the area in the focal plane due to difraction. The laser beam with 0 10w  µm was focused on the surface of the chip structure. Fig. 2 shows the types of profiles of CHIP-structures that were used in the numerical simulation. Fig.. 2. The different profiles of the periodic CHIP-structures under investigation A height of the pillar in all cases was h = 400 nm. A width of the tooth for all cases, except for the triangular profile, was also 400 nm. The motivation for the choice of the profiles of CHIP structures considered here was that the types of profiles 3, 4, 5 (see Fig. 2) are available for use, since their industrial production in quality has been estab- lished as the diffraction gratings. Profile 1 is used in real experiments at laboratories [1 - 4], and profile 2 is easy to produce by etching. At all stages of modeling, structures with a length of L = 16 μm were used, which is 20 optical periods of the wavelength. 1.1. SIMULATION OF ACCELERATION USING UNCOATED STRUCTURES The structure was excited by the Gaussian pulse with an electric field amplitude Ep = 109 V/m. The pulse fell perpendicularly from the side of the structure sub- strate. The accelerated electrons had an initial input en- ergy of 50 MeV. Simulation was carried out for two different flight heights over the structure, y = 200 nm and y = 400 nm. Simulations were also performed for relativistic electrons with an initial energy of 2.1 MeV. this case is also shown in the graph in Figs. 3, 2 (red curve). Fig. 3. A longitudinal electric field distribution at fixed moment of time, excited by the Gaussian wave over the grooves structure and an increase in the elec- tron energy gain at y= 400 nm. Energy of electrons: 1 – blue curve, 50 MeV; 2 – red curve, 20 MeV Fig. 3 demonstrates the distribution of the electric field over the structure at a fixed moment of time, excited by a Gaussian beam (direction shown by arrows) and formed by a structure with a geometric profile (grooves). The blue curve in the graph shows the average increase in the energy of electrons with an initial energy of 50 MeV, which are in the optimal accelerating phase. Electrons with an initial energy of 2.1 MeV (red curve) in Fig. 3 are subject to the effect of desynchroniza- tion of the phase velocity of the wave with the electron velocity, compared to the case for 50 MeV (see Fig. 3, 1). This is characterized by an energy decrease, indicated by the curve bend. In turn, this indicates the need to comply with the conditions from the expression (1). Fig. 4 shows the graphs of changes in the average en- ergy gain of electron beams at y = 400 nm for various profiles of the structures. The graphs clearly show how the energy changes for each type of structure. It is also seen that the structure with a grooves profile has the ISSN 1562-6016. ВАНТ. 2021. № 4(134) 62 maximum increase in electron energy. The data from the simulation experiments are summarized in Table 1. Fig. 4. Mean energy of an electron beam for the various types of the structures Table 1 Acceleration gradients for the different profiles of the uncoated structures Structure type Acceleration gradient at y = 200 nm, MeV/m Acceleration gradient at y = 400 nm, MeV/m Rectangular 64.63 60.75 Cylindrical 55.19 51.94 Grooves 66.44 62.50 Sinusoidal 47.25 44.38 Triangular 25.63 25.63 Table 1 shows the results of the acceleration gradi- ents of the electron beam at a flight height y equal to 200 and 400 nm, obtained by modeling, for each of the structures under consideration. It can be seen that at a flight height of 400 nm, the acceleration gradient is ap- proximately 7% less than at a height of 200 nm. A better accelerating gradient, obtained as the results of simula- tions, is provided by the groove structure. Fig. 5. Energy gain of electrons and abs. beam energy spread of the electron bunch for the rectangular and grooves structures Fig. 5 illustrates shows the graphs of changes in the average beam energy and the beam energy spread for the currently most popular rectangular structure [1 - 4], and the grooves structure, which showed the best results in modeling. The graphs show results that are close in value. This demonstrates the possibility of using easier- to-manufacture groove structures for acceleration ex- periments. 1.2. SIMULATION OF ACCELERATION USING GOLD-PLATED STRUCTURES To carry out these experiments, we simulated a 200 nm thick gold layer deposited on the working sur- face of the structures. The structures were excited by a Gaussian pulse with an electric field strength Ep = 109 V/m, the pulse was incident perpendicular to the coated side of the structure. The accelerated electrons had initial input energy of 50 MeV; the simulation was carried out for two different heights of flight over the structure, namely 200 and 400 nm. Fig. 6. A longitudinal electric field distribution at fixed moment of time, excited by a Gaussian pulse over a triangular structure and the electron energy gain at y = 400 nm. The energy of electrons: 1. blue curve – 50 MeV; 2. red curve – 20 MeV Fig. 6 shows the distribution of the electric field at a fixed moment of time, excited by a Gaussian beam over a structure with a triangular profile. The blue curve in the graph shows the change of energy gain of electrons with initial input energy of 50 MeV, which are in the optimal accelerating phase. A significant increase in energy can be observed compared to the previous ex- periment (see Fig. 4). Fig. 7. Mean energy of an electron beam for the various types of structures with gold coating ISSN 1562-6016. ВАНТ. 2021. № 4(134) 63 Also, as in the previous experiment, we can observe the effect of the desynchronization for electrons with an initial energy of 2.1 MeV, which is shown by the red curve. Fig. 7 demonstrates the changes of energy gain of electron beams at y = 400 for various profiles with a deposited gold coating. A structure with a triangular profile with a coarse increase in energy along with the rest of the structures. The data from the simulation ex- periments are presented in Table 2. Table 2 Acceleration gradients for different profiles of gold-plated structures Structure type Acceleration gradient at y = 200 nm, MeV/m Acceleration gradient at y = 400 nm, MeV/m Rectangular 87.50 74.81 Cylindrical 46.88 35.00 Grooves 57.50 49.38 Sinusoidal 59.38 42.25 Triangular 208.13 183.75 Table 2 shows the results of the electron beam ac- celeration gradients obtained by simulation for heights of y= 200 nm and y= 400 nm, for each type of struc- ture. It can be seen from the results that an increase in the height y the acceleration gradient decreases by approximately 14%. It can also be seen a significant difference in the acceleration gradient for the triangular structure. We suppose that this is due to the interference of laser radiation caused by the shape of the structure profile. Fig. 8. Energy gain of electrons and abs. beam energy spread, of the electron bunch for rectangular and grooves structures Fig. 8 shows the graphs of the change of the average beam energy and the beam energy spread for the trian- gular structure, which proved to be the favorite and the structure of the grooves. We can note that the high ac- celeration gradient in the triangular structure increased the spread of electron beam energies by almost an order of magnitude. A comparison of the obtained data is pre- sented in Table 3. Table 3 A ratio of acceleration gradients obtained for gold-plated structures to acceleration gradients for uncoated structures With coating/without coating y = 200 nm y = 400 nm Rectangular 1.35 1.23 Cylindrical 0.85 0.67 Grooves 0.86 0.79 Sinusoidal 1.25 0.95 Triangular 8.12 7.16 Table 3 shows a ratio of acceleration gradient ob- tained for gold-plated structures to acceleration gradi- ents for uncoated structures. We can evaluate the effect of the applied coating on the acceleration gradient for each specific case. The best coating result can be get with the triangular structure. The acceleration gradient for this case increased more than 8 times. CONCLUSIONS The values of the accelerating gradients for the chip structures of various profiles and for conditions that are close to real experiments are obtained. The groove structure gave the maximal accelerating gradient for the case of the uncoated structure. The gold plating can either increase or decrease the accelerating gradient depending on the particular profile geometry. The maximal acceleration gradient of 208 MeV/m was obtained for the triangular structure, which is 2.5 times higher than for acceleration on the structure with the rectangular profile. A practical value of the obtained results is due to the possibility of carrying out the experiments using industrially manufactured diffrac- tion gratings. Based on the obtained results, further studies are planned to be done for the experiments with gold-coated chip structures, including those with the orientation of the exciting laser radiation at different angles. ACKNOWLEDGEMENTS Work supported by The National Research Founda- tion of Ukraine, program "Leading and Young Scien- tists Research Support" (project # 2020.02/0299). REFERENCES 1. ACHIP website: https://achip.stanford.edu 2. E.A. Peralta et al. Demonstration of electron accel- eration in a laser-driven dielectric microstructure // Nature. 2013, № 503, p. 91-94. 3. J. Breuer and P. Hommelhoff. Laser-Based Accel- eration of Nonrelativistic Electrons at a Dielectric Structure // Phys. Rev. Lett. 2013, v. 111, p. 134803. 4. K.J. Leedle et al. Laser acceleration and deflection of 96.3 keV electrons with a silicon dielectric struc- ture // Optics Letters. 2015, № 40, p. 18. 5. R.B. Palmer. A Laser-Drven Grating Linac // Pari- cle Accelartors. 1980, v. 11, p. 81-90. ISSN 1562-6016. ВАНТ. 2021. № 4(134) 64 6. Y. Takeda and I. Matsui. Laser linac with grating // Nucl. Instrum. Methods. 1968, № 62, p. 306. 7. K. Mizuno, S. Ono, and O. Shimoe. Interaction be- tween coherent light waves and free electrons with a reflection grating // Nature. 1975, № 253, p. 184. 8. K. Mizuno et al. Experimental evidence of the in- verse Smith-Purcell effect // Nature. 1987, № 328, p. 45. 9. A.W. Lohmann. Particle Accelerator Utilizing Co- herent Light: U.S. Patent 3267383, issued 16th Au- gust 1966. 10. A.W. Lohmann. Particle Accelerator: Canadian Pat- ent 773768, Issued 12th December 1967. 11. A.V. Vasyliev, O. Bolshov, K. Galaydych, A. Pov- rozin, G.V. Sotnikov. Influence of the profile of the dielectric structure on the electric fields excited by a laser in dielectric accelerators based on-chip // Proc. 13th Int. Conf. on Accelerator and Large Experi- mental Physics Control Systems (ICALEPCS’11), Grenoble, France, 2021, paper IDTUPAB247. pdf. Article received 22.06.2021 УСКОРЕНИЕ ЭЛЕКТРОННЫХ СГУСТКОВ C ИСПОЛЬЗОВАНИЕМ ПЕРИОДИЧЕСКИХ ДИЭЛЕКТРИЧЕСКИХ СТРУКТУР С ПОКРЫТИЕМ И БЕЗ А.В. Васильев, А.О. Большов, К.В. Галайдыч, А.И. Поврозин, Г.В. Сотников Представлено исследование темпов ускорения методом численного моделирования для диэлектрических лазерных ускорителей на ЧИП-структурах с односторонним лазерным возбуждением на длине волны 800 нм. Расстояние пучка электронов 200 и 400 нм. Также исследовано влияние геометрических параметров структур на темпы ускорения. Проведено исследование изменения градиентов ускорения структур, при на- несении золотого покрытия на данные типы структур. ПРИСКОРЕННЯ ЕЛЕКТРОННИХ ЗГУСТКІВ З ВИКОРИСТАННЯМ ПЕРІОДИЧНИХ ДІЕЛЕКТРИЧНИХ СТРУКТУР З ПОКРИТТЯМ ТА БЕЗ А.В. Васільєв, А.О. Большов, К.В. Галайдич, А.І. Поврозін, Г.В. Сотніков Представлено дослідження темпів прискорення методом чисельного моделювання для діелектричних ла- зерних прискорювачів на ЧІП-структурах із одностороннім лазерним збудженням на довжині хвилі 800 нм. Відстань пучка електронів 200 та 400 нм. Також досліджено вплив геометричних параметрів структур на темпи прискорення. Проведено дослідження зміни градієнтів прискорення структур при нанесенні золотого покриття на дані типи структур.