Acceleration of electron bunches using periodic dielectric structures with and without coating
The numerical studies of high acceleration gradients obtaining for the dielectric laser accelerators (DLA) based on-chip structures with one-sided laser excitation at a wavelength of 800 nm are presented. The electron flight heights of 200 and 400 nm over a structure are presented. The influence of...
Gespeichert in:
| Veröffentlicht in: | Вопросы атомной науки и техники |
|---|---|
| Datum: | 2021 |
| Hauptverfasser: | , , , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2021
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/195264 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Acceleration of electron bunches using periodic dielectric structures with and without coating / A.V. Vasyliev, O.O. Bolshov, K.V. Galaydych, A.I. Povrozin, G.V. Sotnikov // Problems of Atomic Science and Technology. — 2021. — № 4. — С. 60-64. — Бібліогр.: 11 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-195264 |
|---|---|
| record_format |
dspace |
| spelling |
Vasyliev, A.V. Bolshov, O.O. Galaydych, K.V. Povrozin, A.I. Sotnikov, G.V. 2023-12-03T16:01:13Z 2023-12-03T16:01:13Z 2021 Acceleration of electron bunches using periodic dielectric structures with and without coating / A.V. Vasyliev, O.O. Bolshov, K.V. Galaydych, A.I. Povrozin, G.V. Sotnikov // Problems of Atomic Science and Technology. — 2021. — № 4. — С. 60-64. — Бібліогр.: 11 назв. — англ. 1562-6016 PACS: 41.75.Jv, 41.75.Ht, 42.25.Bs DOI: https://doi.org/10.46813/2021-134-060 https://nasplib.isofts.kiev.ua/handle/123456789/195264 The numerical studies of high acceleration gradients obtaining for the dielectric laser accelerators (DLA) based on-chip structures with one-sided laser excitation at a wavelength of 800 nm are presented. The electron flight heights of 200 and 400 nm over a structure are presented. The influence of the geometric parameters of the structures on the acceleration gradients was also investigated. A study of changes in the acceleration gradients of structures, when applying a gold coating on these types of structures, has been carried out. Представлено дослідження темпів прискорення методом чисельного моделювання для діелектричних лазерних прискорювачів на ЧІП-структурах із одностороннім лазерним збудженням на довжині хвилі 800 нм. Відстань пучка електронів 200 та 400 нм. Також досліджено вплив геометричних параметрів структур на темпи прискорення. Проведено дослідження зміни градієнтів прискорення структур при нанесенні золотого покриття на дані типи структур. Представлено исследование темпов ускорения методом численного моделирования для диэлектрических лазерных ускорителей на ЧИП-структурах с односторонним лазерным возбуждением на длине волны 800 нм. Расстояние пучка электронов 200 и 400 нм. Также исследовано влияние геометрических параметров структур на темпы ускорения. Проведено исследование изменения градиентов ускорения структур, при нанесении золотого покрытия на данные типы структур. Work supported by The National Research Foundation of Ukraine, program "Leading and Young Scientists Research Support" (project # 2020.02/0299). en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Вопросы атомной науки и техники New methods of charged particles acceleration Acceleration of electron bunches using periodic dielectric structures with and without coating Прискорення електронних згустків з використанням періодичних діелектричних структур з покриттям та без Ускорение электронных сгустков с использованием периодических диэлектрических структур с покрытием и без Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Acceleration of electron bunches using periodic dielectric structures with and without coating |
| spellingShingle |
Acceleration of electron bunches using periodic dielectric structures with and without coating Vasyliev, A.V. Bolshov, O.O. Galaydych, K.V. Povrozin, A.I. Sotnikov, G.V. New methods of charged particles acceleration |
| title_short |
Acceleration of electron bunches using periodic dielectric structures with and without coating |
| title_full |
Acceleration of electron bunches using periodic dielectric structures with and without coating |
| title_fullStr |
Acceleration of electron bunches using periodic dielectric structures with and without coating |
| title_full_unstemmed |
Acceleration of electron bunches using periodic dielectric structures with and without coating |
| title_sort |
acceleration of electron bunches using periodic dielectric structures with and without coating |
| author |
Vasyliev, A.V. Bolshov, O.O. Galaydych, K.V. Povrozin, A.I. Sotnikov, G.V. |
| author_facet |
Vasyliev, A.V. Bolshov, O.O. Galaydych, K.V. Povrozin, A.I. Sotnikov, G.V. |
| topic |
New methods of charged particles acceleration |
| topic_facet |
New methods of charged particles acceleration |
| publishDate |
2021 |
| language |
English |
| container_title |
Вопросы атомной науки и техники |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Прискорення електронних згустків з використанням періодичних діелектричних структур з покриттям та без Ускорение электронных сгустков с использованием периодических диэлектрических структур с покрытием и без |
| description |
The numerical studies of high acceleration gradients obtaining for the dielectric laser accelerators (DLA) based on-chip structures with one-sided laser excitation at a wavelength of 800 nm are presented. The electron flight heights of 200 and 400 nm over a structure are presented. The influence of the geometric parameters of the structures on the acceleration gradients was also investigated. A study of changes in the acceleration gradients of structures, when applying a gold coating on these types of structures, has been carried out.
Представлено дослідження темпів прискорення методом чисельного моделювання для діелектричних лазерних прискорювачів на ЧІП-структурах із одностороннім лазерним збудженням на довжині хвилі 800 нм. Відстань пучка електронів 200 та 400 нм. Також досліджено вплив геометричних параметрів структур на темпи прискорення. Проведено дослідження зміни градієнтів прискорення структур при нанесенні золотого покриття на дані типи структур.
Представлено исследование темпов ускорения методом численного моделирования для диэлектрических лазерных ускорителей на ЧИП-структурах с односторонним лазерным возбуждением на длине волны 800 нм. Расстояние пучка электронов 200 и 400 нм. Также исследовано влияние геометрических параметров структур на темпы ускорения. Проведено исследование изменения градиентов ускорения структур, при нанесении золотого покрытия на данные типы структур.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/195264 |
| citation_txt |
Acceleration of electron bunches using periodic dielectric structures with and without coating / A.V. Vasyliev, O.O. Bolshov, K.V. Galaydych, A.I. Povrozin, G.V. Sotnikov // Problems of Atomic Science and Technology. — 2021. — № 4. — С. 60-64. — Бібліогр.: 11 назв. — англ. |
| work_keys_str_mv |
AT vasylievav accelerationofelectronbunchesusingperiodicdielectricstructureswithandwithoutcoating AT bolshovoo accelerationofelectronbunchesusingperiodicdielectricstructureswithandwithoutcoating AT galaydychkv accelerationofelectronbunchesusingperiodicdielectricstructureswithandwithoutcoating AT povrozinai accelerationofelectronbunchesusingperiodicdielectricstructureswithandwithoutcoating AT sotnikovgv accelerationofelectronbunchesusingperiodicdielectricstructureswithandwithoutcoating AT vasylievav priskorennâelektronnihzgustkívzvikoristannâmperíodičnihdíelektričnihstrukturzpokrittâmtabez AT bolshovoo priskorennâelektronnihzgustkívzvikoristannâmperíodičnihdíelektričnihstrukturzpokrittâmtabez AT galaydychkv priskorennâelektronnihzgustkívzvikoristannâmperíodičnihdíelektričnihstrukturzpokrittâmtabez AT povrozinai priskorennâelektronnihzgustkívzvikoristannâmperíodičnihdíelektričnihstrukturzpokrittâmtabez AT sotnikovgv priskorennâelektronnihzgustkívzvikoristannâmperíodičnihdíelektričnihstrukturzpokrittâmtabez AT vasylievav uskorenieélektronnyhsgustkovsispolʹzovaniemperiodičeskihdiélektričeskihstrukturspokrytiemibez AT bolshovoo uskorenieélektronnyhsgustkovsispolʹzovaniemperiodičeskihdiélektričeskihstrukturspokrytiemibez AT galaydychkv uskorenieélektronnyhsgustkovsispolʹzovaniemperiodičeskihdiélektričeskihstrukturspokrytiemibez AT povrozinai uskorenieélektronnyhsgustkovsispolʹzovaniemperiodičeskihdiélektričeskihstrukturspokrytiemibez AT sotnikovgv uskorenieélektronnyhsgustkovsispolʹzovaniemperiodičeskihdiélektričeskihstrukturspokrytiemibez |
| first_indexed |
2025-11-25T21:10:21Z |
| last_indexed |
2025-11-25T21:10:21Z |
| _version_ |
1850547711094292480 |
| fulltext |
ISSN 1562-6016. ВАНТ. 2021. № 4(134) 60
https://doi.org/10.46813/2021-134-060
ACCELERATION OF ELECTRON BUNCHES USING PERIODIC
DIELECTRIC STRUCTURES WITH AND WITHOUT COATING
A.V. Vasyliev, A.O. Bolshov, K.V. Galaydych, A.I. Povrozin, G.V. Sotnikov
National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine
E-mail: vasilyev.andrey90@gmail.com
The numerical studies of high acceleration gradients obtaining for the dielectric laser accelerators (DLA) based
on-chip structures with one-sided laser excitation at a wavelength of 800 nm are presented. The electron flight
heights of 200 and 400 nm over a structure are presented. The influence of the geometric parameters of the struc-
tures on the acceleration gradients was also investigated. A study of changes in the acceleration gradients of struc-
tures, when applying a gold coating on these types of structures, has been carried out.
PACS: 41.75.Jv, 41.75.Ht, 42.25.Bs
INTRODUCTION
Today, laser accelerators are given an increasing
place in research practice, along with the development
of laser-plasma accelerators [1], a special niche is occu-
pied by the development of accelerators based on-chip
structures [2 - 4]. For the accelerators based on CHIP
structures, two directions are relevant. The first is ob-
taining a maximum acceleration efficiency (with a
maximum devices miniaturization), and the second is its
optimization for this type of accelerator production for
the fundamental and applied studies. Recent experimen-
tal studies on the acceleration of sub-relativistic [3, 4],
as well as relativistic electrons [2] on CHIP structures,
have served as the beginning for the further comprehen-
sive development of this direction.
DLA works by stimulated laser an electric modefield
excitation with a nonzero electrical component, parallel
to the electron velocity. For synchronous interaction
over long distances, the phase velocity of the excited
mode should be equal to an electron velocity. Near-field
modes are efficiently excited by a laser overthe dielec-
tric periodic structures of various geometries. A change
in the geometry of periodic structures leads to a change
in the acceleration gradients of charged particles.
Several early proposals were based on the use of re-
flective (all-metal) diffraction gratings [5 - 7]. The ac-
celeration mechanism used in these demonstrations was
the opposite of the Smith-Purcell effect [8]. The earliest
proposal for a stepped DLA based on a periodic nanos-
tructure [9, 10] describes a design that used absorbing
thin metal gratings deposited on flat dielectric surfaces.
In our work, we investigate dielectric chip structures
of various profiles, including those with a metal coating
deposited on them, to assess the possibility of obtaining
the highest gradient of electron acceleration.
A general principle of acceleration can be demon-
strated (Fig. 1) using a rectangular CHIP structure used
at the SLAC [4].
An electron moves along a periodic CHIP structure
from left to right. A laser excites a longitudinal compo-
nent of an electric field in the structure, falling perpen-
dicular to its surface from below. The CHIP structure
forms an inhomogeneous electric field along the sur-
face, which changes its directionality with a period
equal to half the laser wavelength.
Fig. 1. A general principle of the acceleration
of the relativistic electrons in a CHIP structure.
A period of the structure is equal to a laser wavelength
Acceleration occurs at the moment when the elec-
tron is in the accelerating field above the "pillar" of the
lattice Fig. 1,a. After a quarter of a period, a neutral
phase appears in the structure, when the moment of a
change in the direction of the electric field occurs (see
Fig. 1,b). After another quarter of the period, at the
moment when the electric field on the structure is di-
rected in the opposite direction, the electron is in the
drift space.
Under the condition of radiation incidence perpen-
dicular to the plane of the grating and its lines, the ac-
celeration of particles will occur along the surface of the
grating also perpendicular to its lines [2]. Let's conven-
tionally denote x-coordinate along the lattice lines and
perpendicular to the motion of particles; y is the coordi-
nate perpendicular to the lattice surface, and z is along
the direction of particle motion. For the condition of
synchronization of the electron velocity with the phase
velocity of the exciting wave, one can use [3]:
,p n (1)
where n is the mode of the electromagnetic field excited
by the incident wave; β = v/s is the dimensionless speed,
v is the speed of electrons, c is the speed of light; λ is the
wavelength of the exciting laser radiation.
For the simplicity, we assume that the structure is
excited from one side with a Gaussian laser pulse. When
choosing the initial simulation parameters: the duration
of the laser pulse and the electron beam, we were
guided by our previous studies [11] and the parameters
used at SLAC, i. e. Λ = 800 nm, τ = 120 fs, β = 0.9995,
initial electron energy E = 50 MeV, beam diameter is
50 µm, bunch chargeis 10-17C, bunch duration is
0.35 fs.
ISSN 1562-6016. ВАНТ. 2021. № 4(134) 61
The results of the numerical studies on acceleration
processes modeling in periodic structures of various
profiles with and without deposition under their excita-
tion by a Gaussian beam are presented below.
1. SIMULATION RESULTS
The Gaussian beam allows us to get the simulation
results that are close to a real experiment. Its electric
field can be represented as follows
2 2( )0( , , ) exp exp 2ln(2)
2 2 2( ) ( ) 0
2
exp ( ) ,0 0 0 2 ( )
w r z ctE r z t Ep w z w z c
ri t ik z ik i zgR z
(2)
where pE is an amplitude of the electric field; 0w is a
waist or the smallest transverse size of the laser in the
focal plane (z = 0); c is a speed of light; 0 is full width
at half maximum of the pulse duration; 0 02k and
0 0сk represent the wave number and angular fre-
quency of the laser beam with the wavelength 0 re-
spectively. The propagation of a Gaussian laser pulse is
completely characterized by the beam waist ( ),w z the
radius of curvature of the wave front ( )R z , and the Guy
phase shift ( )g z as the function of z,
2
( ) 1 ;0
zw z w
zR
2
( ) 1 ;zR z z
zR
(3)
( ) arctan zzg zR
,
where 2
0 0 /Rz w is the Rayleigh length, which
represents the position at which the transverse area of
the laser beam is doubled compared to the area in the
focal plane due to difraction.
The laser beam with 0 10w µm was focused on the
surface of the chip structure.
Fig. 2 shows the types of profiles of CHIP-structures
that were used in the numerical simulation.
Fig.. 2. The different profiles of the periodic
CHIP-structures under investigation
A height of the pillar in all cases was h = 400 nm. A
width of the tooth for all cases, except for the triangular
profile, was also 400 nm.
The motivation for the choice of the profiles of
CHIP structures considered here was that the types of
profiles 3, 4, 5 (see Fig. 2) are available for use, since
their industrial production in quality has been estab-
lished as the diffraction gratings. Profile 1 is used in real
experiments at laboratories [1 - 4], and profile 2 is easy
to produce by etching.
At all stages of modeling, structures with a length of
L = 16 μm were used, which is 20 optical periods of the
wavelength.
1.1. SIMULATION OF ACCELERATION USING
UNCOATED STRUCTURES
The structure was excited by the Gaussian pulse
with an electric field amplitude Ep = 109 V/m. The pulse
fell perpendicularly from the side of the structure sub-
strate. The accelerated electrons had an initial input en-
ergy of 50 MeV. Simulation was carried out for two
different flight heights over the structure, y = 200 nm
and y = 400 nm.
Simulations were also performed for relativistic
electrons with an initial energy of 2.1 MeV. this case is
also shown in the graph in Figs. 3, 2 (red curve).
Fig. 3. A longitudinal electric field distribution
at fixed moment of time, excited by the Gaussian wave
over the grooves structure and an increase in the elec-
tron energy gain at y= 400 nm. Energy of electrons:
1 – blue curve, 50 MeV; 2 – red curve, 20 MeV
Fig. 3 demonstrates the distribution of the electric
field over the structure at a fixed moment of time, excited
by a Gaussian beam (direction shown by arrows) and
formed by a structure with a geometric profile (grooves).
The blue curve in the graph shows the average increase in
the energy of electrons with an initial energy of 50 MeV,
which are in the optimal accelerating phase.
Electrons with an initial energy of 2.1 MeV (red
curve) in Fig. 3 are subject to the effect of desynchroniza-
tion of the phase velocity of the wave with the electron
velocity, compared to the case for 50 MeV (see Fig. 3, 1).
This is characterized by an energy decrease, indicated by
the curve bend. In turn, this indicates the need to comply
with the conditions from the expression (1).
Fig. 4 shows the graphs of changes in the average en-
ergy gain of electron beams at y = 400 nm for various
profiles of the structures. The graphs clearly show how
the energy changes for each type of structure. It is also
seen that the structure with a grooves profile has the
ISSN 1562-6016. ВАНТ. 2021. № 4(134) 62
maximum increase in electron energy. The data from the
simulation experiments are summarized in Table 1.
Fig. 4. Mean energy of an electron beam for the various
types of the structures
Table 1
Acceleration gradients for the different profiles
of the uncoated structures
Structure type
Acceleration
gradient
at y = 200 nm,
MeV/m
Acceleration
gradient
at y = 400 nm,
MeV/m
Rectangular 64.63 60.75
Cylindrical 55.19 51.94
Grooves 66.44 62.50
Sinusoidal 47.25 44.38
Triangular 25.63 25.63
Table 1 shows the results of the acceleration gradi-
ents of the electron beam at a flight height y equal to
200 and 400 nm, obtained by modeling, for each of the
structures under consideration. It can be seen that at a
flight height of 400 nm, the acceleration gradient is ap-
proximately 7% less than at a height of 200 nm. A better
accelerating gradient, obtained as the results of simula-
tions, is provided by the groove structure.
Fig. 5. Energy gain of electrons and abs. beam energy
spread of the electron bunch for the rectangular
and grooves structures
Fig. 5 illustrates shows the graphs of changes in the
average beam energy and the beam energy spread for
the currently most popular rectangular structure [1 - 4],
and the grooves structure, which showed the best results
in modeling. The graphs show results that are close in
value. This demonstrates the possibility of using easier-
to-manufacture groove structures for acceleration ex-
periments.
1.2. SIMULATION OF ACCELERATION USING
GOLD-PLATED STRUCTURES
To carry out these experiments, we simulated a
200 nm thick gold layer deposited on the working sur-
face of the structures. The structures were excited by a
Gaussian pulse with an electric field strength Ep =
109 V/m, the pulse was incident perpendicular to the
coated side of the structure. The accelerated electrons
had initial input energy of 50 MeV; the simulation was
carried out for two different heights of flight over the
structure, namely 200 and 400 nm.
Fig. 6. A longitudinal electric field distribution at fixed
moment of time, excited by a Gaussian pulse over
a triangular structure and the electron energy gain
at y = 400 nm. The energy of electrons:
1. blue curve – 50 MeV; 2. red curve – 20 MeV
Fig. 6 shows the distribution of the electric field at a
fixed moment of time, excited by a Gaussian beam over
a structure with a triangular profile. The blue curve in
the graph shows the change of energy gain of electrons
with initial input energy of 50 MeV, which are in the
optimal accelerating phase. A significant increase in
energy can be observed compared to the previous ex-
periment (see Fig. 4).
Fig. 7. Mean energy of an electron beam for the various
types of structures with gold coating
ISSN 1562-6016. ВАНТ. 2021. № 4(134) 63
Also, as in the previous experiment, we can observe
the effect of the desynchronization for electrons with an
initial energy of 2.1 MeV, which is shown by the red
curve.
Fig. 7 demonstrates the changes of energy gain of
electron beams at y = 400 for various profiles with a
deposited gold coating. A structure with a triangular
profile with a coarse increase in energy along with the
rest of the structures. The data from the simulation ex-
periments are presented in Table 2.
Table 2
Acceleration gradients for different profiles
of gold-plated structures
Structure type
Acceleration
gradient
at y = 200 nm,
MeV/m
Acceleration
gradient
at y = 400 nm,
MeV/m
Rectangular 87.50 74.81
Cylindrical 46.88 35.00
Grooves 57.50 49.38
Sinusoidal 59.38 42.25
Triangular 208.13 183.75
Table 2 shows the results of the electron beam ac-
celeration gradients obtained by simulation for heights
of y= 200 nm and y= 400 nm, for each type of struc-
ture. It can be seen from the results that an increase in
the height y the acceleration gradient decreases by
approximately 14%. It can also be seen a significant
difference in the acceleration gradient for the triangular
structure. We suppose that this is due to the interference
of laser radiation caused by the shape of the structure
profile.
Fig. 8. Energy gain of electrons and abs. beam
energy spread, of the electron bunch for rectangular
and grooves structures
Fig. 8 shows the graphs of the change of the average
beam energy and the beam energy spread for the trian-
gular structure, which proved to be the favorite and the
structure of the grooves. We can note that the high ac-
celeration gradient in the triangular structure increased
the spread of electron beam energies by almost an order
of magnitude. A comparison of the obtained data is pre-
sented in Table 3.
Table 3
A ratio of acceleration gradients obtained
for gold-plated structures to acceleration gradients
for uncoated structures
With coating/without
coating y = 200 nm y = 400 nm
Rectangular 1.35 1.23
Cylindrical 0.85 0.67
Grooves 0.86 0.79
Sinusoidal 1.25 0.95
Triangular 8.12 7.16
Table 3 shows a ratio of acceleration gradient ob-
tained for gold-plated structures to acceleration gradi-
ents for uncoated structures. We can evaluate the effect
of the applied coating on the acceleration gradient for
each specific case. The best coating result can be get
with the triangular structure. The acceleration gradient
for this case increased more than 8 times.
CONCLUSIONS
The values of the accelerating gradients for the chip
structures of various profiles and for conditions that are
close to real experiments are obtained.
The groove structure gave the maximal accelerating
gradient for the case of the uncoated structure.
The gold plating can either increase or decrease the
accelerating gradient depending on the particular profile
geometry.
The maximal acceleration gradient of 208 MeV/m
was obtained for the triangular structure, which is
2.5 times higher than for acceleration on the structure
with the rectangular profile. A practical value of the
obtained results is due to the possibility of carrying out
the experiments using industrially manufactured diffrac-
tion gratings.
Based on the obtained results, further studies are
planned to be done for the experiments with gold-coated
chip structures, including those with the orientation of
the exciting laser radiation at different angles.
ACKNOWLEDGEMENTS
Work supported by The National Research Founda-
tion of Ukraine, program "Leading and Young Scien-
tists Research Support" (project # 2020.02/0299).
REFERENCES
1. ACHIP website: https://achip.stanford.edu
2. E.A. Peralta et al. Demonstration of electron accel-
eration in a laser-driven dielectric microstructure //
Nature. 2013, № 503, p. 91-94.
3. J. Breuer and P. Hommelhoff. Laser-Based Accel-
eration of Nonrelativistic Electrons at a Dielectric
Structure // Phys. Rev. Lett. 2013, v. 111, p. 134803.
4. K.J. Leedle et al. Laser acceleration and deflection
of 96.3 keV electrons with a silicon dielectric struc-
ture // Optics Letters. 2015, № 40, p. 18.
5. R.B. Palmer. A Laser-Drven Grating Linac // Pari-
cle Accelartors. 1980, v. 11, p. 81-90.
ISSN 1562-6016. ВАНТ. 2021. № 4(134) 64
6. Y. Takeda and I. Matsui. Laser linac with grating //
Nucl. Instrum. Methods. 1968, № 62, p. 306.
7. K. Mizuno, S. Ono, and O. Shimoe. Interaction be-
tween coherent light waves and free electrons with a
reflection grating // Nature. 1975, № 253, p. 184.
8. K. Mizuno et al. Experimental evidence of the in-
verse Smith-Purcell effect // Nature. 1987, № 328,
p. 45.
9. A.W. Lohmann. Particle Accelerator Utilizing Co-
herent Light: U.S. Patent 3267383, issued 16th Au-
gust 1966.
10. A.W. Lohmann. Particle Accelerator: Canadian Pat-
ent 773768, Issued 12th December 1967.
11. A.V. Vasyliev, O. Bolshov, K. Galaydych, A. Pov-
rozin, G.V. Sotnikov. Influence of the profile of the
dielectric structure on the electric fields excited by a
laser in dielectric accelerators based on-chip // Proc.
13th Int. Conf. on Accelerator and Large Experi-
mental Physics Control Systems (ICALEPCS’11),
Grenoble, France, 2021, paper IDTUPAB247. pdf.
Article received 22.06.2021
УСКОРЕНИЕ ЭЛЕКТРОННЫХ СГУСТКОВ C ИСПОЛЬЗОВАНИЕМ ПЕРИОДИЧЕСКИХ
ДИЭЛЕКТРИЧЕСКИХ СТРУКТУР С ПОКРЫТИЕМ И БЕЗ
А.В. Васильев, А.О. Большов, К.В. Галайдыч, А.И. Поврозин, Г.В. Сотников
Представлено исследование темпов ускорения методом численного моделирования для диэлектрических
лазерных ускорителей на ЧИП-структурах с односторонним лазерным возбуждением на длине волны
800 нм. Расстояние пучка электронов 200 и 400 нм. Также исследовано влияние геометрических параметров
структур на темпы ускорения. Проведено исследование изменения градиентов ускорения структур, при на-
несении золотого покрытия на данные типы структур.
ПРИСКОРЕННЯ ЕЛЕКТРОННИХ ЗГУСТКІВ З ВИКОРИСТАННЯМ ПЕРІОДИЧНИХ
ДІЕЛЕКТРИЧНИХ СТРУКТУР З ПОКРИТТЯМ ТА БЕЗ
А.В. Васільєв, А.О. Большов, К.В. Галайдич, А.І. Поврозін, Г.В. Сотніков
Представлено дослідження темпів прискорення методом чисельного моделювання для діелектричних ла-
зерних прискорювачів на ЧІП-структурах із одностороннім лазерним збудженням на довжині хвилі 800 нм.
Відстань пучка електронів 200 та 400 нм. Також досліджено вплив геометричних параметрів структур на
темпи прискорення. Проведено дослідження зміни градієнтів прискорення структур при нанесенні золотого
покриття на дані типи структур.
|