Constructional materials experimental researches on the helium ions linear accelerator

The basic parameters of an irradiation and their registration system for constructional materials irradiated on the helium ions linear accelerator are resulted. Experimental techniques and some researches results of the microscopic, electrophysical, frictional and ultrasonic characteristics of atomi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Вопросы атомной науки и техники
Datum:2021
Hauptverfasser: Butenko, V.I., Dubniuk, S.N., Dyachenko, A.F., Коbets, А.P., Manuilenko, O.V., Pavlii, K.V., Soshenkо, V.A., Tishkin, S.S., Zajtsev, B.V.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2021
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/195265
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Constructional materials experimental researches on the helium ions linear accelerator / V.I. Butenko, S.N. Dubniuk, A.F. Dyachenko, А.P. Коbets, O.V. Manuilenko, K.V. Pavlii, V.A. Soshenkо, S.S. Tishkin, B.V. Zajtsev // Problems of Atomic Science and Technology. — 2021. — № 4. — С. 85-89. — Бібліогр.: 18 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-195265
record_format dspace
spelling Butenko, V.I.
Dubniuk, S.N.
Dyachenko, A.F.
Коbets, А.P.
Manuilenko, O.V.
Pavlii, K.V.
Soshenkо, V.A.
Tishkin, S.S.
Zajtsev, B.V.
2023-12-03T16:01:27Z
2023-12-03T16:01:27Z
2021
Constructional materials experimental researches on the helium ions linear accelerator / V.I. Butenko, S.N. Dubniuk, A.F. Dyachenko, А.P. Коbets, O.V. Manuilenko, K.V. Pavlii, V.A. Soshenkо, S.S. Tishkin, B.V. Zajtsev // Problems of Atomic Science and Technology. — 2021. — № 4. — С. 85-89. — Бібліогр.: 18 назв. — англ.
1562-6016
PACS: 29.17.w, 29.27.Bd
DOI: https://doi.org/10.46813/2021-134-085
https://nasplib.isofts.kiev.ua/handle/123456789/195265
The basic parameters of an irradiation and their registration system for constructional materials irradiated on the helium ions linear accelerator are resulted. Experimental techniques and some researches results of the microscopic, electrophysical, frictional and ultrasonic characteristics of atomic power stations (APS) and fusion reactors (FR) constructional materials irradiated on a linear accelerator of the helium ions with energies 0.12 and 4 MeV are presented.
Наведені основні параметри опромінення конструкційних матеріалів, що опромінюються на лінійному прискорювачі іонів гелію, та система реєстрації цих параметрів. Подано експериментальні методики й деякі результати досліджень мікроскопічних, електрофізичних, фрикційних і ультразвукових характеристик конструкційних матеріалів атомних електричних станцій і термоядерних реакторів, що опромінюються на лінійному прискорювачі іонів гелію з енергіями 0,12 і 4 МеВ.
Приведены основные параметры облучения конструкционных материалов, облучаемых на линейном ускорителе ионов гелия, и система регистрации этих параметров. Представлены экспериментальные методики и некоторые результаты исследований микроскопических, электрофизических, фрикционных и ультразвуковых характеристик конструкционных материалов атомных электрических станций и термоядерных реакторов, которые облучаются на линейном ускорителе ионов гелия с энергиями 0,12 и 4 МэВ.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
New methods of charged particles acceleration
Constructional materials experimental researches on the helium ions linear accelerator
Експериментальні дослідження конструкційних матеріалів на лінійному прискорювачі іонів гелію
Экспериментальные исследования конструкционных материалов на линейном ускорителе ионов гелия
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Constructional materials experimental researches on the helium ions linear accelerator
spellingShingle Constructional materials experimental researches on the helium ions linear accelerator
Butenko, V.I.
Dubniuk, S.N.
Dyachenko, A.F.
Коbets, А.P.
Manuilenko, O.V.
Pavlii, K.V.
Soshenkо, V.A.
Tishkin, S.S.
Zajtsev, B.V.
New methods of charged particles acceleration
title_short Constructional materials experimental researches on the helium ions linear accelerator
title_full Constructional materials experimental researches on the helium ions linear accelerator
title_fullStr Constructional materials experimental researches on the helium ions linear accelerator
title_full_unstemmed Constructional materials experimental researches on the helium ions linear accelerator
title_sort constructional materials experimental researches on the helium ions linear accelerator
author Butenko, V.I.
Dubniuk, S.N.
Dyachenko, A.F.
Коbets, А.P.
Manuilenko, O.V.
Pavlii, K.V.
Soshenkо, V.A.
Tishkin, S.S.
Zajtsev, B.V.
author_facet Butenko, V.I.
Dubniuk, S.N.
Dyachenko, A.F.
Коbets, А.P.
Manuilenko, O.V.
Pavlii, K.V.
Soshenkо, V.A.
Tishkin, S.S.
Zajtsev, B.V.
topic New methods of charged particles acceleration
topic_facet New methods of charged particles acceleration
publishDate 2021
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Експериментальні дослідження конструкційних матеріалів на лінійному прискорювачі іонів гелію
Экспериментальные исследования конструкционных материалов на линейном ускорителе ионов гелия
description The basic parameters of an irradiation and their registration system for constructional materials irradiated on the helium ions linear accelerator are resulted. Experimental techniques and some researches results of the microscopic, electrophysical, frictional and ultrasonic characteristics of atomic power stations (APS) and fusion reactors (FR) constructional materials irradiated on a linear accelerator of the helium ions with energies 0.12 and 4 MeV are presented. Наведені основні параметри опромінення конструкційних матеріалів, що опромінюються на лінійному прискорювачі іонів гелію, та система реєстрації цих параметрів. Подано експериментальні методики й деякі результати досліджень мікроскопічних, електрофізичних, фрикційних і ультразвукових характеристик конструкційних матеріалів атомних електричних станцій і термоядерних реакторів, що опромінюються на лінійному прискорювачі іонів гелію з енергіями 0,12 і 4 МеВ. Приведены основные параметры облучения конструкционных материалов, облучаемых на линейном ускорителе ионов гелия, и система регистрации этих параметров. Представлены экспериментальные методики и некоторые результаты исследований микроскопических, электрофизических, фрикционных и ультразвуковых характеристик конструкционных материалов атомных электрических станций и термоядерных реакторов, которые облучаются на линейном ускорителе ионов гелия с энергиями 0,12 и 4 МэВ.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/195265
citation_txt Constructional materials experimental researches on the helium ions linear accelerator / V.I. Butenko, S.N. Dubniuk, A.F. Dyachenko, А.P. Коbets, O.V. Manuilenko, K.V. Pavlii, V.A. Soshenkо, S.S. Tishkin, B.V. Zajtsev // Problems of Atomic Science and Technology. — 2021. — № 4. — С. 85-89. — Бібліогр.: 18 назв. — англ.
work_keys_str_mv AT butenkovi constructionalmaterialsexperimentalresearchesontheheliumionslinearaccelerator
AT dubniuksn constructionalmaterialsexperimentalresearchesontheheliumionslinearaccelerator
AT dyachenkoaf constructionalmaterialsexperimentalresearchesontheheliumionslinearaccelerator
AT kobetsap constructionalmaterialsexperimentalresearchesontheheliumionslinearaccelerator
AT manuilenkoov constructionalmaterialsexperimentalresearchesontheheliumionslinearaccelerator
AT pavliikv constructionalmaterialsexperimentalresearchesontheheliumionslinearaccelerator
AT soshenkova constructionalmaterialsexperimentalresearchesontheheliumionslinearaccelerator
AT tishkinss constructionalmaterialsexperimentalresearchesontheheliumionslinearaccelerator
AT zajtsevbv constructionalmaterialsexperimentalresearchesontheheliumionslinearaccelerator
AT butenkovi eksperimentalʹnídoslídžennâkonstrukcíinihmateríalívnalíníinomupriskorûvačííonívgelíû
AT dubniuksn eksperimentalʹnídoslídžennâkonstrukcíinihmateríalívnalíníinomupriskorûvačííonívgelíû
AT dyachenkoaf eksperimentalʹnídoslídžennâkonstrukcíinihmateríalívnalíníinomupriskorûvačííonívgelíû
AT kobetsap eksperimentalʹnídoslídžennâkonstrukcíinihmateríalívnalíníinomupriskorûvačííonívgelíû
AT manuilenkoov eksperimentalʹnídoslídžennâkonstrukcíinihmateríalívnalíníinomupriskorûvačííonívgelíû
AT pavliikv eksperimentalʹnídoslídžennâkonstrukcíinihmateríalívnalíníinomupriskorûvačííonívgelíû
AT soshenkova eksperimentalʹnídoslídžennâkonstrukcíinihmateríalívnalíníinomupriskorûvačííonívgelíû
AT tishkinss eksperimentalʹnídoslídžennâkonstrukcíinihmateríalívnalíníinomupriskorûvačííonívgelíû
AT zajtsevbv eksperimentalʹnídoslídžennâkonstrukcíinihmateríalívnalíníinomupriskorûvačííonívgelíû
AT butenkovi éksperimentalʹnyeissledovaniâkonstrukcionnyhmaterialovnalineinomuskoriteleionovgeliâ
AT dubniuksn éksperimentalʹnyeissledovaniâkonstrukcionnyhmaterialovnalineinomuskoriteleionovgeliâ
AT dyachenkoaf éksperimentalʹnyeissledovaniâkonstrukcionnyhmaterialovnalineinomuskoriteleionovgeliâ
AT kobetsap éksperimentalʹnyeissledovaniâkonstrukcionnyhmaterialovnalineinomuskoriteleionovgeliâ
AT manuilenkoov éksperimentalʹnyeissledovaniâkonstrukcionnyhmaterialovnalineinomuskoriteleionovgeliâ
AT pavliikv éksperimentalʹnyeissledovaniâkonstrukcionnyhmaterialovnalineinomuskoriteleionovgeliâ
AT soshenkova éksperimentalʹnyeissledovaniâkonstrukcionnyhmaterialovnalineinomuskoriteleionovgeliâ
AT tishkinss éksperimentalʹnyeissledovaniâkonstrukcionnyhmaterialovnalineinomuskoriteleionovgeliâ
AT zajtsevbv éksperimentalʹnyeissledovaniâkonstrukcionnyhmaterialovnalineinomuskoriteleionovgeliâ
first_indexed 2025-11-27T07:50:11Z
last_indexed 2025-11-27T07:50:11Z
_version_ 1850806958063353856
fulltext ISSN 1562-6016. ВАНТ. 2021. № 4(134) 85 https://doi.org/10.46813/2021-134-085 CONSTRUCTIONAL MATERIALS EXPERIMENTAL RESEARCHES ON THE HELIUM IONS LINEAR ACCELERATOR V.I. Butenko, S.N. Dubniuk, A.F. Dyachenko, А.P. Коbets, O.V. Manuilenko, K.V. Pavlii, V.A. Soshenkо, S.S. Tishkin, B.V. Zajtsev National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine E-mail: dubnjuk@kipt.kharkov.ua The basic parameters of an irradiation and their registration system for constructional materials irradiated on the helium ions linear accelerator are resulted. Experimental techniques and some researches results of the microscopic, electrophysical, frictional and ultrasonic characteristics of atomic power stations (APS) and fusion reactors (FR) constructional materials irradiated on a linear accelerator of the helium ions with energies 0.12 and 4 MeV are pre- sented. PACS: 29.17.w, 29.27.Bd INTRODUCTION An atomic power engineering development puts in the forefront safety and reliability problems of nuclear power facilities (NPF), their economy and ecological cleanliness [1, 2]. One of the basic conditions of these problems decision is application of materials (fuel, con- structional, absorbing, etc.), satisfying necessary re- quirements. The basic goal of researches is receiving of experimental data for perfection used and creation of new materials for NPF various type. Development of a thermonuclear power, taking into account necessary requirements on safety and reliabil- ity, is defined by an optimum set of constructional mate- rials for each of reactor knots and systems from the point of view of such materials availability and their cost [2 - 6]. The most rigid requirements are produced to materials of the first wall and FR diverter. For them the acceptable set mechanical, thermalphysic, corrosive, activational, etc. properties which will define opera- tional characteristics of the reactor should be found. Therefore, only the complex approach to studying of radiating characteristics will allow to define the basic types of perspective materials for nuclear and thermo- nuclear power. PARAMETERS OF THE CONSTRUCTIONAL MATERIALS IRRADIATION ON THE HELIUM IONS ACCELERATOR Now the majority of researches directed on studying of radiating damages, are carried out by means of ionic implantation. For studying of the processes connected with an irradiation of constructional materials in NSC KhIPT the linear accelerator (He+) of the helium ions with energies 0.12 and 4 MeV [7, 8] is applied. In ac- celerating structure of an interdigital H-type for beam focusing the method of alternating-phase focusing with step-by-step change of a synchronous phase along the focusing periods [9, 10] is used. For beam injection in accelerating section the injector of helium ions which consists of a duoplasmatron type source with oscillate electrons in anode area, extraction and beam focusing systems, and also an accelerating tube [8] is applied. On the linear accelerator of the helium ions the chamber for an irradiation with energies 0.12 and 4 MeV of the constructional materials and research of their characteristics and as the system of experimental parameters measurement is created [11]. In the chamber vacuum is carried out with the help vacuum and turbo-molecular pumps, it provides oxy- gen-free environment in the chamber volume and the same vacuum as in accelerating structure. A temperature of the sample is set by the heating el- ement located directly in the irradiation chamber and measured by the thermocouple attached to the sample. For increase of a current density of a beam which fal- ling on the sample and reduction of an irradiation time in front of a chamber the focusing triplet is established. Triplet allows to change beam radius, and, hence, and a current density depending on experiment requirements. It has allowed to increase current density of a beam falling on a target in 3-7 times and has made value of 1.2∙1013 part./s in a spot diameter of ~1 сm [12]. Beam currents are measured by means of the induc- tion contactless flying gauges established on an input and an output from a triplet, and as directly ahead of the irradiated sample [13]. With application of Kalman fil- ter "thermal" noise of induction gauges managed to be lowered to 2%. Basic parameters of the helium ions beam at samples irradiation are resulted in the Table 1. Table 1 Parameters of samples irradiation Parameter Value Pulse current 700…900 mkА Pulse length 500 mkс Repetition frequency 2…5 imp./с Average current 0.7…2 mkА Current density (0.15…0.44)∙1013 part./сm2 Temperature to 900°С For registration of irradiated samples parameters were used digital oscillograph ZET-302 and DAC/ADC ZET- 210 which were connected to the computer with the fur- ther processing of the measured data were used. In sys- tem SCAD ZETView programs for interaction with DAC/ADC ZET-210 and ZET-302 have been developed [11]. 86 During an irradiation of samples following parame- ters, such as a sample temperature, a beam current and the form beam falling on the sample, an irradiation dose, profiles of ionization, damageability and helium occurrence in the sample are measured [11]. In the Ta- ble 2 ranges and measurement errors of the basic ex- perimental parameters are resulted. Table 2 Ranges and measurement errors of the experimental parameters Parameter Range Error, % Pulse current 400…1200 mkА ± 2 Pulse length 450…800 mkс ± 1.65 Temperature 20…1000°С ± 1 RESEARCH TECHNIQUES CALCULATED CHARACTERISTICS The understanding of radiating influence mecha- nisms is a basis of steady constructions designing NPF and FR and working out of new materials steadier against radiating influences. For calculation of ions range in firm bodies various programs of computer modeling are used. Software package SRIM uses wide popularity [14, 15] which along with possibility of ranges calculation allows to receive following important information: distribution of vacancies in targets, atoms redistribution of irradiated materials, dispersion factors, the phenomena connected with loss of ions energy, the distribution of ionization and formation phonons etc. Before samples irradiation in the program SRIM all listed processes were calculated, taking into account cascades of displacement for irradiated materials. For an example on the Figs. 1, 2 profiles of atoms redistribu- tion and damageability in the alloy EI-993 irradiated with the helium ions with an energy of 0.12 MeV are resulted. 0.0 0.1 0.2 0.3 0.4 0.5 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 Re la tiv e un its L, micron He Fe Cr Mo W V Nb C Si Mn Ni Vacancy EI - 993 Е = 0.12 МeV L, m Fig. 1. Occurrence (the top curves) and damageability (the bottom curve) profiles in the alloy EI-993 at an irradiation energy of EHe = 0.12 MeV From these figures follows that there is a change of a material density along of helium ions range. In the Ta- ble 3 energy losses on ionization, damageability and formation phonons are presented. Whence follows that the basic part of helium ions energy in a range 0.12…4 MeV goes on ionization of the sample and only less than 0.33% go on damageability. Such calculations are made for all irradiated samples. 0.0 0.1 0.2 0.3 0.4 0.5 0.0 1.0x10-4 2.0x10-4 3.0x10-4 4.0x10-4 5.0x10-4 EI - 993 Re la tiv e un its Mo W V Nb C Si Mn Ni Е = 0.12 МeV L, m Fig. 2. Occurrence profiles of the helium and alloy the EI-993 atoms at an irradiation energy of 0.12 MeV Table 3 Energy loss and damageability for the alloy EI-993 at energy of the helium ions irradiation of 0.12 and 4 MeV Energy loss EI-993, ЕНе = 0.12 МeV. Damageability – 175.3 displacements/ion Parameters Ionization, % Displace- ments, % Phonons, % Ions He+ 92.52 0.09 0.99 Cascade of displacement 0.95 0.33 5.12 Energy loss EI-993, ЕНе = 4 МeV. Damageability – 303,6 displacements/ion Parameters Ionization, % Displace- ments, % Phonons, % Ions He+ 99.62 0.00 0.04 Cascade of displacement 0.06 0.02 0.25 The important role in a choice of a perspective mate- rial for the first wall and divertor of FR is played the sputtering ratio of material atoms. In the Table 4 the sputtering ratio and sputtering average energy for Al2O3 the helium ions irradiated with energy of 0.12 and 4 MeV are presented. Table 4 Sputtered atoms quantity and sputtered average energy of Al2O3 Sputtered atoms quantity, N10–5 atom/ion Sputtered average energy, eV/atom Beam energy, EHe, MeV Al O Al O 0.12 1470 2140 168.2 214.9 Sputtered ratio 3.6∙10–2 - - 4 40.9 96.9 4841.3 36.5 Sputtering ratio 0.14∙10–2 - - This data also influences change of a material den- sity along run of the helium ions range and on formation blistering and flaking processes. The given values are ISSN 1562-6016. ВАНТ. 2021. № 4(134) 87 received for all alloys atoms irradiated by the helium ions on the linear accelerator. Hence, the calculations spent in the program SRIM give us profiles of damageability and redistribution of irradiated material atoms, and also the sputtering ratio of materials atoms. These characteristics define change of density along of helium ions range. Also in the pro- gram SRIM we receive phonons ionization and forma- tion profiles. Besides, all power characteristics calculate such as: energies, going on ionization, damageability, formations phonons and energies of atoms sputtering. EXPERIMENTAL RESEARCH TECHNIQUES The following experimental research techniques we develop: microscopic, measurements of electrophysical parameters of ceramic materials, measurements of fric- tional characteristics, ultrasonic researches. After grinding and polishing of samples and as after a set of a certain irradiation dose microscopic researches are conducted which allow to study blistering and flak- ing formations and their dynamics of change from a dose irradiation and temperature, dimensional stability (swelling, "sintering"), changes of grains size, to inves- tigate of a surface roughness and to study influence of processes of various materials dusting at an irradiation on the blistering and flaking dynamics. For this purpose microscope ММU-3 and 5 and 18 megapixel ZZCAT cameras is used. On the Figs. 3, 4 photos of microstructures of irradi- ated alloy EI-993 and TiO2 are resulted respectively. On Fig. 3 blistering and flaking in alloy EI-993 is visible at an irradiation dose of 1018 сm–2 and temperature 450°С. On the Fig. 4 grains and the beginning of process of superficial metallization in TiO2 at an irradiation dose of 1018 cm–2 are visible. Microscopic researches give the big experimental data array which can be used for fore- casting of constructional materials properties and physi- cal representations, occurring at their irradiation. Fig. 3. An alloy EI-993 microstructure. Тirrad. = 450°С, Е = 0.12 MeV. Dose = 1018 сm–2 Fig. 4. TiO2 microstructure. Тirrad. = 50°С, Е = 0.12 MeV. Dose = 1018 сm–2 Ceramic materials (Al2O3, MgO, MgAl2O4, BN, Si3N4, TiO2, etc.) with melting temperature from 2000 to 3000°К are widely applied as functional and con- structional composite materials in nuclear and thermo- nuclear reactors [16 - 18]. Thereby researches represent a great interest of electrophysical properties of dielec- trics at their irradiation and after an irradiation different spectra, including ions. The ions irradiation leads to change of some electrophysical characteristics, such as conductivity, capacity, dielectric permeability, dissipa- tion factor and etc. Prospects of a nanotechnology ap- plication in nuclear power are connected with creation nanostructural ceramic materials and coverings of con- structional elements of the atomic power station and future fusion reactors for the purpose of increase of hardness, corrosive and radiative resistance, methods development of nuclear fuel modifying and etc. On the Fig. 5, for an example, dependence of TiO2 surface elec- troresistance on irradiation dose is presented. 1 2 3 4 5 6 7 8 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 2 - experiment 6 5 4 M oh m /c m TiO2 EHe = 0.12 МеV Sample parameters h = 2.69 mm D = 15 mm S = 1.78 cm2 R0П(D0 = 0) => 100 Gohm/cm 1 2 3 1 - experiment D*10171/cm2 Fig. 5. Dependence of TiO2 surface electroresistance on irradiation dose The measuring system is collected on the basis of an immitans-milliommetr gauge Е7-24, the device for measurement of capacity LC100-A and developed and made megaohmmeter. From the Fig. 5 follows that at increase of an irradiation dose, electroresistance falls for account of dissipation TiO2 with the subsequent metalli- zation of the sample surface, and after a dose (4…5)∙1017 сm–2 there is a growth, it is obvious for ac- count of partial restoration TiO2. Characteristics of a metal – ceramics frictional inter- action play an essential role in NPF the loaded knots of friction. In the couple ceramics – metal processes of carrying over of a metal and its oxides on a ceramics surface take place. As a result of it the so-called layer of carrying over is formed. For definition of these charac- teristics a facility has been developed and created which allows in a wide interval of temperatures to 800°С to define dependences of static and sliding friction factors from an irradiation dose, quantity of cycles and tem- perature. On the Fig. 6 dependence of the pair TiO2 – steel sliding friction factor from quantity cycles of a frictional interaction of irradiated and not irradiated samples TiO2 at a dose of 1018 cm–2 and temperatures 20 and 200°С is resulted. From graphs follows that the irradiation leads to increase of a friction factor for account of a surface 88 disturbance (the roughness is formed) and metal plating formation on a ceramics surface. Fig. 6. Dependence of the pair TiO2 – steel sliding friction factor from quantity cycles The ultrasonic research technique is constructed on the basis of the digital oscillograph ZET-302 and DAC/ADC ZET-210 which are connected to the com- puter for registration and processing of experimental data. The purpose of a developed technique is definition of materials damageability both during an irradiation, and after an irradiation. For excitation and registration of ultrasonic waves KS-P1640H12TR sensors are used. The measurement facility consists of the receiver- transmitter pair between which the investigated sample is located. Sensors work in the frequencies range 35…50 kHz, in this range and the peak-frequency char- acteristic of system is measured. On the Fig. 7 calibrat- ing curve (the top graph) and measured curve with the alloy EI-993 sample at a sinusoidal signal on an ultra- sonic source are resulted. Further the measurement sys- tem will be put on the linear accelerator of helium ions with a sample under a beam. 37 38 39 40 41 42 43 44 45 46 47 48 49 70 75 80 85 90 95 100 105 110 115 120 125 130 A m pl itu de , d ec ib el s Frequency, kHz source/destination EI - 993 Amplitude entrance - 4 volt (132 dB) Fig. 7. The peak-frequency characteristic: calibrating curve (the top graph), the measured curve of the alloy EI-993 (the bottom graph) CONCLUSIONS On a basis of the helium ions linear accelerator the experimental complex for an irradiation of construc- tional materials samples is created. Microscopic re- searches, studying of electrophysical, frictional and ul- trasonic characteristics of the APS and FR construc- tional materials irradiated on the linear accelerator of helium ions with energies of 0.12 and 4 MeV are devel- oped and implemented. Such complex approach will allow defining the basic types of perspective materials for the nuclear and thermonuclear power. REFERENCES 1. V.N. Voyevodin. Constructional materials of nuclear power – a call of 21 centuries // Problems of Atomic Science and Technology. Series “Physics of Radia- tion Effects and Radiation Materials Science”. 2007, № 2, p. 10-22. 2. W. Hafele, J.P. Holden, G. Kessler, et al. Fusion and fast breeder reactors: Rep. RR-77-8 at the Interna- tional Institute for Applied Systems Analysis, Lux- emburg, Austria, July 1977. 3. D. Maisonnier, D. Campbell, L. Cook, et al. Power plant conceptual studies in Europe // Nuclear Fu- sion. 2007, v. 47, p. 1524-1532. 4. V.P. Smirnov. Thermonuclear power – the largest international innovative // Rus. Chem. J. 2008, v. LII, № 6. 5. S.V. Mirnov, E.A. Azizov, V.A. Evtikhin, et al. // Plasma Physics and Controlled Fusion. 2006, v. 48, № 6, p. 821-837. 6. M. Zucchetti, L. Di Pace, L. El-Guebaly, et al. The back end of the fusion materials cycle // Fusion Sci. Techn. 2009, v. 55, p. 109-139. 7. V.O. Bomko, O.F. Dyachenko, Ye.V. Ivakhno, et al. New prestripping section of the MILAC linear ac- celerator designed for accelerating a high current beam of light ions // Proceedings of EPAC 2006 Ed- inburgh, Scotland. 2006, p. 1627-1629. 8. S.N. Dubniuk, B.V. Zajtsev. The linear accelerator for radiation structural materials // Problems of Atomic Science and Technology. Series “Nuclear Physics Investigations”. 2014, № 3, p. 172-176. 9. V.О. Bomko, О.F. Dyachenko, O.M. Yegorov, et al. Development of investigations on the MILAC heavy ion linear accelerator // Proceedings LINAC08, Van- couver, Victoria, Canada. 2008, p. 187-189. 10. V.O. Bomko, O.F. Dyachenko, B.V. Zajtsev, et al. Inductance-capacitor system for tuning of interdigi- tal structure of the ion linear accelerator // Problems of Atomic Science and Technology. Series “Nuclear Physics Investigations”. 2007, № 5(48), p. 180-183. 11. R.A. Anokhin, B.V. Zaitsev, K.V. Pavlii, et al. Ex- perimental complex for investigation of construction materials on the helium ions linear accelerator // Problems of Atomic Science and Technology. Series “Nuclear Physics Investigations”. 2017, № 6, p. 167-171. 12. A.F. Dyachenko, S.N. Dubniuk, А.P. Коbets, еt al. The bunch formation and transport system to the target of the helium ions linac // Problems of Atomic Science and Technology. Series “Plasma Electron- ics and New Methods of Acceleration”. 2018, № 4(116), p. 52-55. 13. А.F. Dyachenko. Highly sensitive induction sensor of the beam-current of heavy ion linear accelerator // Journal of Kharkiv National University. Physical. Series “Nuclei, Particles, Fields”. 2010, № 887, iss. 1(45), p. 118-121. ISSN 1562-6016. ВАНТ. 2021. № 4(134) 89 14. http://www.srim.org... 15. B. Widrow, J.R. Glover, J.M. McCool, et al. Adap- tive noise cancelling: principles and applications // Proc. IEEE. 1963, p. 1692-1716. 16. V.M. Chernov, G.I. Khorasanov, O.A. Plaksin, еt al. Electrical and optical characteristics of dielectrics for fusion use under irradiation // J. Nucl. Mater. 1998, v. 253, p. 175-179. 17. V.A. Stepanov, V.M. Chernov. Radiation-induced processes and their influence on the functional prop- erties of dielectrics for different types of irradiation // J. Nucl. Mater. 2000, v. 283/287, p. 932-936. 18. V.A. Stepanov, E.I. Isaev, L.M. Kryukova, еt al. The high-dose and high-temperature monitors of reactor irradiation based on insulators // Nucl. Energy and Technology. 2015, v. 1, p. 93-98. Article received 08.06.2021 ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ НА ЛИНЕЙНОМ УСКОРИТЕЛЕ ИОНОВ ГЕЛИЯ В.И. Бутенко, С.Н. Дубнюк, А.Ф. Дьяченко, А.Ф. Кобец, О.В. Мануйленко, К.В. Павлий, В.А. Сошенко, С.С. Тишкин, Б.В. Зайцев Приведены основные параметры облучения конструкционных материалов, облучаемых на линейном ус- корителе ионов гелия, и система регистрации этих параметров. Представлены экспериментальные методики и некоторые результаты исследований микроскопических, электрофизических, фрикционных и ультразву- ковых характеристик конструкционных материалов атомных электрических станций и термоядерных реак- торов, которые облучаются на линейном ускорителе ионов гелия с энергиями 0,12 и 4 МэВ. ЕКСПЕРИМЕНТАЛЬНІ ДОСЛІДЖЕННЯ КОНСТРУКЦІЙНИХ МАТЕРІАЛІВ НА ЛІНІЙНОМУ ПРИСКОРЮВАЧІ ІОНІВ ГЕЛІЮ В.І. Бутенко, С.М. Дубнюк, О.Ф. Дьяченко, А.П. Кобець, О.В. Мануйленко, К.В. Павлій, В.А. Сошенко, С.С. Тішкін, Б.В. Зайцев Наведені основні параметри опромінення конструкційних матеріалів, що опромінюються на лінійному прискорювачі іонів гелію, та система реєстрації цих параметрів. Подано експериментальні методики й деякі результати досліджень мікроскопічних, електрофізичних, фрикційних і ультразвукових характеристик конс- трукційних матеріалів атомних електричних станцій і термоядерних реакторів, що опромінюються на ліній- ному прискорювачі іонів гелію з енергіями 0,12 і 4 МеВ.