Constructional materials experimental researches on the helium ions linear accelerator
The basic parameters of an irradiation and their registration system for constructional materials irradiated on the helium ions linear accelerator are resulted. Experimental techniques and some researches results of the microscopic, electrophysical, frictional and ultrasonic characteristics of atomi...
Gespeichert in:
| Veröffentlicht in: | Вопросы атомной науки и техники |
|---|---|
| Datum: | 2021 |
| Hauptverfasser: | , , , , , , , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2021
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/195265 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Constructional materials experimental researches on the helium ions linear accelerator / V.I. Butenko, S.N. Dubniuk, A.F. Dyachenko, А.P. Коbets, O.V. Manuilenko, K.V. Pavlii, V.A. Soshenkо, S.S. Tishkin, B.V. Zajtsev // Problems of Atomic Science and Technology. — 2021. — № 4. — С. 85-89. — Бібліогр.: 18 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-195265 |
|---|---|
| record_format |
dspace |
| spelling |
Butenko, V.I. Dubniuk, S.N. Dyachenko, A.F. Коbets, А.P. Manuilenko, O.V. Pavlii, K.V. Soshenkо, V.A. Tishkin, S.S. Zajtsev, B.V. 2023-12-03T16:01:27Z 2023-12-03T16:01:27Z 2021 Constructional materials experimental researches on the helium ions linear accelerator / V.I. Butenko, S.N. Dubniuk, A.F. Dyachenko, А.P. Коbets, O.V. Manuilenko, K.V. Pavlii, V.A. Soshenkо, S.S. Tishkin, B.V. Zajtsev // Problems of Atomic Science and Technology. — 2021. — № 4. — С. 85-89. — Бібліогр.: 18 назв. — англ. 1562-6016 PACS: 29.17.w, 29.27.Bd DOI: https://doi.org/10.46813/2021-134-085 https://nasplib.isofts.kiev.ua/handle/123456789/195265 The basic parameters of an irradiation and their registration system for constructional materials irradiated on the helium ions linear accelerator are resulted. Experimental techniques and some researches results of the microscopic, electrophysical, frictional and ultrasonic characteristics of atomic power stations (APS) and fusion reactors (FR) constructional materials irradiated on a linear accelerator of the helium ions with energies 0.12 and 4 MeV are presented. Наведені основні параметри опромінення конструкційних матеріалів, що опромінюються на лінійному прискорювачі іонів гелію, та система реєстрації цих параметрів. Подано експериментальні методики й деякі результати досліджень мікроскопічних, електрофізичних, фрикційних і ультразвукових характеристик конструкційних матеріалів атомних електричних станцій і термоядерних реакторів, що опромінюються на лінійному прискорювачі іонів гелію з енергіями 0,12 і 4 МеВ. Приведены основные параметры облучения конструкционных материалов, облучаемых на линейном ускорителе ионов гелия, и система регистрации этих параметров. Представлены экспериментальные методики и некоторые результаты исследований микроскопических, электрофизических, фрикционных и ультразвуковых характеристик конструкционных материалов атомных электрических станций и термоядерных реакторов, которые облучаются на линейном ускорителе ионов гелия с энергиями 0,12 и 4 МэВ. en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Вопросы атомной науки и техники New methods of charged particles acceleration Constructional materials experimental researches on the helium ions linear accelerator Експериментальні дослідження конструкційних матеріалів на лінійному прискорювачі іонів гелію Экспериментальные исследования конструкционных материалов на линейном ускорителе ионов гелия Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Constructional materials experimental researches on the helium ions linear accelerator |
| spellingShingle |
Constructional materials experimental researches on the helium ions linear accelerator Butenko, V.I. Dubniuk, S.N. Dyachenko, A.F. Коbets, А.P. Manuilenko, O.V. Pavlii, K.V. Soshenkо, V.A. Tishkin, S.S. Zajtsev, B.V. New methods of charged particles acceleration |
| title_short |
Constructional materials experimental researches on the helium ions linear accelerator |
| title_full |
Constructional materials experimental researches on the helium ions linear accelerator |
| title_fullStr |
Constructional materials experimental researches on the helium ions linear accelerator |
| title_full_unstemmed |
Constructional materials experimental researches on the helium ions linear accelerator |
| title_sort |
constructional materials experimental researches on the helium ions linear accelerator |
| author |
Butenko, V.I. Dubniuk, S.N. Dyachenko, A.F. Коbets, А.P. Manuilenko, O.V. Pavlii, K.V. Soshenkо, V.A. Tishkin, S.S. Zajtsev, B.V. |
| author_facet |
Butenko, V.I. Dubniuk, S.N. Dyachenko, A.F. Коbets, А.P. Manuilenko, O.V. Pavlii, K.V. Soshenkо, V.A. Tishkin, S.S. Zajtsev, B.V. |
| topic |
New methods of charged particles acceleration |
| topic_facet |
New methods of charged particles acceleration |
| publishDate |
2021 |
| language |
English |
| container_title |
Вопросы атомной науки и техники |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Експериментальні дослідження конструкційних матеріалів на лінійному прискорювачі іонів гелію Экспериментальные исследования конструкционных материалов на линейном ускорителе ионов гелия |
| description |
The basic parameters of an irradiation and their registration system for constructional materials irradiated on the helium ions linear accelerator are resulted. Experimental techniques and some researches results of the microscopic, electrophysical, frictional and ultrasonic characteristics of atomic power stations (APS) and fusion reactors (FR) constructional materials irradiated on a linear accelerator of the helium ions with energies 0.12 and 4 MeV are presented.
Наведені основні параметри опромінення конструкційних матеріалів, що опромінюються на лінійному прискорювачі іонів гелію, та система реєстрації цих параметрів. Подано експериментальні методики й деякі результати досліджень мікроскопічних, електрофізичних, фрикційних і ультразвукових характеристик конструкційних матеріалів атомних електричних станцій і термоядерних реакторів, що опромінюються на лінійному прискорювачі іонів гелію з енергіями 0,12 і 4 МеВ.
Приведены основные параметры облучения конструкционных материалов, облучаемых на линейном ускорителе ионов гелия, и система регистрации этих параметров. Представлены экспериментальные методики и некоторые результаты исследований микроскопических, электрофизических, фрикционных и ультразвуковых характеристик конструкционных материалов атомных электрических станций и термоядерных реакторов, которые облучаются на линейном ускорителе ионов гелия с энергиями 0,12 и 4 МэВ.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/195265 |
| citation_txt |
Constructional materials experimental researches on the helium ions linear accelerator / V.I. Butenko, S.N. Dubniuk, A.F. Dyachenko, А.P. Коbets, O.V. Manuilenko, K.V. Pavlii, V.A. Soshenkо, S.S. Tishkin, B.V. Zajtsev // Problems of Atomic Science and Technology. — 2021. — № 4. — С. 85-89. — Бібліогр.: 18 назв. — англ. |
| work_keys_str_mv |
AT butenkovi constructionalmaterialsexperimentalresearchesontheheliumionslinearaccelerator AT dubniuksn constructionalmaterialsexperimentalresearchesontheheliumionslinearaccelerator AT dyachenkoaf constructionalmaterialsexperimentalresearchesontheheliumionslinearaccelerator AT kobetsap constructionalmaterialsexperimentalresearchesontheheliumionslinearaccelerator AT manuilenkoov constructionalmaterialsexperimentalresearchesontheheliumionslinearaccelerator AT pavliikv constructionalmaterialsexperimentalresearchesontheheliumionslinearaccelerator AT soshenkova constructionalmaterialsexperimentalresearchesontheheliumionslinearaccelerator AT tishkinss constructionalmaterialsexperimentalresearchesontheheliumionslinearaccelerator AT zajtsevbv constructionalmaterialsexperimentalresearchesontheheliumionslinearaccelerator AT butenkovi eksperimentalʹnídoslídžennâkonstrukcíinihmateríalívnalíníinomupriskorûvačííonívgelíû AT dubniuksn eksperimentalʹnídoslídžennâkonstrukcíinihmateríalívnalíníinomupriskorûvačííonívgelíû AT dyachenkoaf eksperimentalʹnídoslídžennâkonstrukcíinihmateríalívnalíníinomupriskorûvačííonívgelíû AT kobetsap eksperimentalʹnídoslídžennâkonstrukcíinihmateríalívnalíníinomupriskorûvačííonívgelíû AT manuilenkoov eksperimentalʹnídoslídžennâkonstrukcíinihmateríalívnalíníinomupriskorûvačííonívgelíû AT pavliikv eksperimentalʹnídoslídžennâkonstrukcíinihmateríalívnalíníinomupriskorûvačííonívgelíû AT soshenkova eksperimentalʹnídoslídžennâkonstrukcíinihmateríalívnalíníinomupriskorûvačííonívgelíû AT tishkinss eksperimentalʹnídoslídžennâkonstrukcíinihmateríalívnalíníinomupriskorûvačííonívgelíû AT zajtsevbv eksperimentalʹnídoslídžennâkonstrukcíinihmateríalívnalíníinomupriskorûvačííonívgelíû AT butenkovi éksperimentalʹnyeissledovaniâkonstrukcionnyhmaterialovnalineinomuskoriteleionovgeliâ AT dubniuksn éksperimentalʹnyeissledovaniâkonstrukcionnyhmaterialovnalineinomuskoriteleionovgeliâ AT dyachenkoaf éksperimentalʹnyeissledovaniâkonstrukcionnyhmaterialovnalineinomuskoriteleionovgeliâ AT kobetsap éksperimentalʹnyeissledovaniâkonstrukcionnyhmaterialovnalineinomuskoriteleionovgeliâ AT manuilenkoov éksperimentalʹnyeissledovaniâkonstrukcionnyhmaterialovnalineinomuskoriteleionovgeliâ AT pavliikv éksperimentalʹnyeissledovaniâkonstrukcionnyhmaterialovnalineinomuskoriteleionovgeliâ AT soshenkova éksperimentalʹnyeissledovaniâkonstrukcionnyhmaterialovnalineinomuskoriteleionovgeliâ AT tishkinss éksperimentalʹnyeissledovaniâkonstrukcionnyhmaterialovnalineinomuskoriteleionovgeliâ AT zajtsevbv éksperimentalʹnyeissledovaniâkonstrukcionnyhmaterialovnalineinomuskoriteleionovgeliâ |
| first_indexed |
2025-11-27T07:50:11Z |
| last_indexed |
2025-11-27T07:50:11Z |
| _version_ |
1850806958063353856 |
| fulltext |
ISSN 1562-6016. ВАНТ. 2021. № 4(134) 85
https://doi.org/10.46813/2021-134-085
CONSTRUCTIONAL MATERIALS EXPERIMENTAL RESEARCHES
ON THE HELIUM IONS LINEAR ACCELERATOR
V.I. Butenko, S.N. Dubniuk, A.F. Dyachenko, А.P. Коbets, O.V. Manuilenko, K.V. Pavlii,
V.A. Soshenkо, S.S. Tishkin, B.V. Zajtsev
National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine
E-mail: dubnjuk@kipt.kharkov.ua
The basic parameters of an irradiation and their registration system for constructional materials irradiated on the
helium ions linear accelerator are resulted. Experimental techniques and some researches results of the microscopic,
electrophysical, frictional and ultrasonic characteristics of atomic power stations (APS) and fusion reactors (FR)
constructional materials irradiated on a linear accelerator of the helium ions with energies 0.12 and 4 MeV are pre-
sented.
PACS: 29.17.w, 29.27.Bd
INTRODUCTION
An atomic power engineering development puts in
the forefront safety and reliability problems of nuclear
power facilities (NPF), their economy and ecological
cleanliness [1, 2]. One of the basic conditions of these
problems decision is application of materials (fuel, con-
structional, absorbing, etc.), satisfying necessary re-
quirements. The basic goal of researches is receiving of
experimental data for perfection used and creation of
new materials for NPF various type.
Development of a thermonuclear power, taking into
account necessary requirements on safety and reliabil-
ity, is defined by an optimum set of constructional mate-
rials for each of reactor knots and systems from the
point of view of such materials availability and their
cost [2 - 6]. The most rigid requirements are produced
to materials of the first wall and FR diverter. For them
the acceptable set mechanical, thermalphysic, corrosive,
activational, etc. properties which will define opera-
tional characteristics of the reactor should be found.
Therefore, only the complex approach to studying of
radiating characteristics will allow to define the basic
types of perspective materials for nuclear and thermo-
nuclear power.
PARAMETERS OF THE
CONSTRUCTIONAL MATERIALS
IRRADIATION ON THE HELIUM IONS
ACCELERATOR
Now the majority of researches directed on studying
of radiating damages, are carried out by means of ionic
implantation. For studying of the processes connected
with an irradiation of constructional materials in NSC
KhIPT the linear accelerator (He+) of the helium ions
with energies 0.12 and 4 MeV [7, 8] is applied. In ac-
celerating structure of an interdigital H-type for beam
focusing the method of alternating-phase focusing with
step-by-step change of a synchronous phase along the
focusing periods [9, 10] is used. For beam injection in
accelerating section the injector of helium ions which
consists of a duoplasmatron type source with oscillate
electrons in anode area, extraction and beam focusing
systems, and also an accelerating tube [8] is applied.
On the linear accelerator of the helium ions the
chamber for an irradiation with energies 0.12 and
4 MeV of the constructional materials and research of
their characteristics and as the system of experimental
parameters measurement is created [11].
In the chamber vacuum is carried out with the help
vacuum and turbo-molecular pumps, it provides oxy-
gen-free environment in the chamber volume and the
same vacuum as in accelerating structure.
A temperature of the sample is set by the heating el-
ement located directly in the irradiation chamber and
measured by the thermocouple attached to the sample.
For increase of a current density of a beam which fal-
ling on the sample and reduction of an irradiation time in
front of a chamber the focusing triplet is established.
Triplet allows to change beam radius, and, hence, and a
current density depending on experiment requirements. It
has allowed to increase current density of a beam falling
on a target in 3-7 times and has made value of
1.2∙1013 part./s in a spot diameter of ~1 сm [12].
Beam currents are measured by means of the induc-
tion contactless flying gauges established on an input
and an output from a triplet, and as directly ahead of the
irradiated sample [13]. With application of Kalman fil-
ter "thermal" noise of induction gauges managed to be
lowered to 2%.
Basic parameters of the helium ions beam at samples
irradiation are resulted in the Table 1.
Table 1
Parameters of samples irradiation
Parameter Value
Pulse current 700…900 mkА
Pulse length 500 mkс
Repetition frequency 2…5 imp./с
Average current 0.7…2 mkА
Current density (0.15…0.44)∙1013 part./сm2
Temperature to 900°С
For registration of irradiated samples parameters were
used digital oscillograph ZET-302 and DAC/ADC ZET-
210 which were connected to the computer with the fur-
ther processing of the measured data were used. In sys-
tem SCAD ZETView programs for interaction with
DAC/ADC ZET-210 and ZET-302 have been developed
[11].
86
During an irradiation of samples following parame-
ters, such as a sample temperature, a beam current and
the form beam falling on the sample, an irradiation
dose, profiles of ionization, damageability and helium
occurrence in the sample are measured [11]. In the Ta-
ble 2 ranges and measurement errors of the basic ex-
perimental parameters are resulted.
Table 2
Ranges and measurement errors of the experimental
parameters
Parameter Range Error, %
Pulse current 400…1200 mkА ± 2
Pulse length 450…800 mkс ± 1.65
Temperature 20…1000°С ± 1
RESEARCH TECHNIQUES
CALCULATED CHARACTERISTICS
The understanding of radiating influence mecha-
nisms is a basis of steady constructions designing NPF
and FR and working out of new materials steadier
against radiating influences.
For calculation of ions range in firm bodies various
programs of computer modeling are used. Software
package SRIM uses wide popularity [14, 15] which
along with possibility of ranges calculation allows to
receive following important information: distribution of
vacancies in targets, atoms redistribution of irradiated
materials, dispersion factors, the phenomena connected
with loss of ions energy, the distribution of ionization
and formation phonons etc.
Before samples irradiation in the program SRIM all
listed processes were calculated, taking into account
cascades of displacement for irradiated materials. For an
example on the Figs. 1, 2 profiles of atoms redistribu-
tion and damageability in the alloy EI-993 irradiated
with the helium ions with an energy of 0.12 MeV are
resulted.
0.0 0.1 0.2 0.3 0.4 0.5
-1.0
-0.8
-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8
1.0
Re
la
tiv
e
un
its
L, micron
He
Fe
Cr
Mo
W
V
Nb
C
Si
Mn
Ni
Vacancy
EI - 993
Е = 0.12 МeV
L, m
Fig. 1. Occurrence (the top curves) and damageability
(the bottom curve) profiles in the alloy EI-993
at an irradiation energy of EHe = 0.12 MeV
From these figures follows that there is a change of a
material density along of helium ions range. In the Ta-
ble 3 energy losses on ionization, damageability and
formation phonons are presented. Whence follows that
the basic part of helium ions energy in a range
0.12…4 MeV goes on ionization of the sample and only
less than 0.33% go on damageability. Such calculations
are made for all irradiated samples.
0.0 0.1 0.2 0.3 0.4 0.5
0.0
1.0x10-4
2.0x10-4
3.0x10-4
4.0x10-4
5.0x10-4
EI - 993
Re
la
tiv
e
un
its
Mo
W
V
Nb
C
Si
Mn
Ni
Е = 0.12 МeV
L, m
Fig. 2. Occurrence profiles of the helium and alloy
the EI-993 atoms at an irradiation energy of 0.12 MeV
Table 3
Energy loss and damageability for the alloy EI-993
at energy of the helium ions irradiation
of 0.12 and 4 MeV
Energy loss EI-993, ЕНе = 0.12 МeV.
Damageability – 175.3 displacements/ion
Parameters Ionization,
%
Displace-
ments, %
Phonons,
%
Ions He+ 92.52 0.09 0.99
Cascade of
displacement 0.95 0.33 5.12
Energy loss EI-993, ЕНе = 4 МeV.
Damageability – 303,6 displacements/ion
Parameters Ionization,
%
Displace-
ments, %
Phonons,
%
Ions He+ 99.62 0.00 0.04
Cascade of
displacement 0.06 0.02 0.25
The important role in a choice of a perspective mate-
rial for the first wall and divertor of FR is played the
sputtering ratio of material atoms. In the Table 4 the
sputtering ratio and sputtering average energy for Al2O3
the helium ions irradiated with energy of 0.12 and
4 MeV are presented.
Table 4
Sputtered atoms quantity and sputtered average
energy of Al2O3
Sputtered atoms
quantity,
N10–5 atom/ion
Sputtered
average energy,
eV/atom
Beam energy,
EHe, MeV
Al O Al O
0.12 1470 2140 168.2 214.9
Sputtered
ratio 3.6∙10–2 - -
4 40.9 96.9 4841.3 36.5
Sputtering
ratio 0.14∙10–2 - -
This data also influences change of a material den-
sity along run of the helium ions range and on formation
blistering and flaking processes. The given values are
ISSN 1562-6016. ВАНТ. 2021. № 4(134) 87
received for all alloys atoms irradiated by the helium
ions on the linear accelerator.
Hence, the calculations spent in the program SRIM
give us profiles of damageability and redistribution of
irradiated material atoms, and also the sputtering ratio
of materials atoms. These characteristics define change
of density along of helium ions range. Also in the pro-
gram SRIM we receive phonons ionization and forma-
tion profiles. Besides, all power characteristics calculate
such as: energies, going on ionization, damageability,
formations phonons and energies of atoms sputtering.
EXPERIMENTAL RESEARCH TECHNIQUES
The following experimental research techniques we
develop: microscopic, measurements of electrophysical
parameters of ceramic materials, measurements of fric-
tional characteristics, ultrasonic researches.
After grinding and polishing of samples and as after
a set of a certain irradiation dose microscopic researches
are conducted which allow to study blistering and flak-
ing formations and their dynamics of change from a
dose irradiation and temperature, dimensional stability
(swelling, "sintering"), changes of grains size, to inves-
tigate of a surface roughness and to study influence of
processes of various materials dusting at an irradiation
on the blistering and flaking dynamics. For this purpose
microscope ММU-3 and 5 and 18 megapixel ZZCAT
cameras is used.
On the Figs. 3, 4 photos of microstructures of irradi-
ated alloy EI-993 and TiO2 are resulted respectively. On
Fig. 3 blistering and flaking in alloy EI-993 is visible at
an irradiation dose of 1018 сm–2 and temperature 450°С.
On the Fig. 4 grains and the beginning of process of
superficial metallization in TiO2 at an irradiation dose of
1018 cm–2 are visible. Microscopic researches give the
big experimental data array which can be used for fore-
casting of constructional materials properties and physi-
cal representations, occurring at their irradiation.
Fig. 3. An alloy EI-993 microstructure.
Тirrad. = 450°С, Е = 0.12 MeV. Dose = 1018 сm–2
Fig. 4. TiO2 microstructure.
Тirrad. = 50°С, Е = 0.12 MeV. Dose = 1018 сm–2
Ceramic materials (Al2O3, MgO, MgAl2O4, BN,
Si3N4, TiO2, etc.) with melting temperature from 2000
to 3000°К are widely applied as functional and con-
structional composite materials in nuclear and thermo-
nuclear reactors [16 - 18]. Thereby researches represent
a great interest of electrophysical properties of dielec-
trics at their irradiation and after an irradiation different
spectra, including ions. The ions irradiation leads to
change of some electrophysical characteristics, such as
conductivity, capacity, dielectric permeability, dissipa-
tion factor and etc. Prospects of a nanotechnology ap-
plication in nuclear power are connected with creation
nanostructural ceramic materials and coverings of con-
structional elements of the atomic power station and
future fusion reactors for the purpose of increase of
hardness, corrosive and radiative resistance, methods
development of nuclear fuel modifying and etc. On the
Fig. 5, for an example, dependence of TiO2 surface elec-
troresistance on irradiation dose is presented.
1 2 3 4 5 6 7 8
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0
4.2
2 - experiment
6
5
4
M
oh
m
/c
m
TiO2 EHe = 0.12 МеV Sample parameters
h = 2.69 mm
D = 15 mm
S = 1.78 cm2
R0П(D0 = 0) => 100 Gohm/cm
1
2
3
1 - experiment
D*10171/cm2
Fig. 5. Dependence of TiO2 surface electroresistance
on irradiation dose
The measuring system is collected on the basis of an
immitans-milliommetr gauge Е7-24, the device for
measurement of capacity LC100-A and developed and
made megaohmmeter. From the Fig. 5 follows that at
increase of an irradiation dose, electroresistance falls for
account of dissipation TiO2 with the subsequent metalli-
zation of the sample surface, and after a dose
(4…5)∙1017 сm–2 there is a growth, it is obvious for ac-
count of partial restoration TiO2.
Characteristics of a metal – ceramics frictional inter-
action play an essential role in NPF the loaded knots of
friction. In the couple ceramics – metal processes of
carrying over of a metal and its oxides on a ceramics
surface take place. As a result of it the so-called layer of
carrying over is formed. For definition of these charac-
teristics a facility has been developed and created which
allows in a wide interval of temperatures to 800°С to
define dependences of static and sliding friction factors
from an irradiation dose, quantity of cycles and tem-
perature.
On the Fig. 6 dependence of the pair TiO2 – steel
sliding friction factor from quantity cycles of a frictional
interaction of irradiated and not irradiated samples TiO2
at a dose of 1018 cm–2 and temperatures 20 and 200°С is
resulted. From graphs follows that the irradiation leads
to increase of a friction factor for account of a surface
88
disturbance (the roughness is formed) and metal plating
formation on a ceramics surface.
Fig. 6. Dependence of the pair TiO2 – steel sliding
friction factor from quantity cycles
The ultrasonic research technique is constructed on
the basis of the digital oscillograph ZET-302 and
DAC/ADC ZET-210 which are connected to the com-
puter for registration and processing of experimental
data. The purpose of a developed technique is definition
of materials damageability both during an irradiation,
and after an irradiation. For excitation and registration
of ultrasonic waves KS-P1640H12TR sensors are used.
The measurement facility consists of the receiver-
transmitter pair between which the investigated sample
is located. Sensors work in the frequencies range
35…50 kHz, in this range and the peak-frequency char-
acteristic of system is measured. On the Fig. 7 calibrat-
ing curve (the top graph) and measured curve with the
alloy EI-993 sample at a sinusoidal signal on an ultra-
sonic source are resulted. Further the measurement sys-
tem will be put on the linear accelerator of helium ions
with a sample under a beam.
37 38 39 40 41 42 43 44 45 46 47 48 49
70
75
80
85
90
95
100
105
110
115
120
125
130
A
m
pl
itu
de
, d
ec
ib
el
s
Frequency, kHz
source/destination
EI - 993
Amplitude entrance - 4 volt (132 dB)
Fig. 7. The peak-frequency characteristic: calibrating
curve (the top graph), the measured curve of the alloy
EI-993 (the bottom graph)
CONCLUSIONS
On a basis of the helium ions linear accelerator the
experimental complex for an irradiation of construc-
tional materials samples is created. Microscopic re-
searches, studying of electrophysical, frictional and ul-
trasonic characteristics of the APS and FR construc-
tional materials irradiated on the linear accelerator of
helium ions with energies of 0.12 and 4 MeV are devel-
oped and implemented. Such complex approach will
allow defining the basic types of perspective materials
for the nuclear and thermonuclear power.
REFERENCES
1. V.N. Voyevodin. Constructional materials of nuclear
power – a call of 21 centuries // Problems of Atomic
Science and Technology. Series “Physics of Radia-
tion Effects and Radiation Materials Science”. 2007,
№ 2, p. 10-22.
2. W. Hafele, J.P. Holden, G. Kessler, et al. Fusion and
fast breeder reactors: Rep. RR-77-8 at the Interna-
tional Institute for Applied Systems Analysis, Lux-
emburg, Austria, July 1977.
3. D. Maisonnier, D. Campbell, L. Cook, et al. Power
plant conceptual studies in Europe // Nuclear Fu-
sion. 2007, v. 47, p. 1524-1532.
4. V.P. Smirnov. Thermonuclear power – the largest
international innovative // Rus. Chem. J. 2008,
v. LII, № 6.
5. S.V. Mirnov, E.A. Azizov, V.A. Evtikhin, et al. //
Plasma Physics and Controlled Fusion. 2006, v. 48,
№ 6, p. 821-837.
6. M. Zucchetti, L. Di Pace, L. El-Guebaly, et al. The
back end of the fusion materials cycle // Fusion Sci.
Techn. 2009, v. 55, p. 109-139.
7. V.O. Bomko, O.F. Dyachenko, Ye.V. Ivakhno, et al.
New prestripping section of the MILAC linear ac-
celerator designed for accelerating a high current
beam of light ions // Proceedings of EPAC 2006 Ed-
inburgh, Scotland. 2006, p. 1627-1629.
8. S.N. Dubniuk, B.V. Zajtsev. The linear accelerator
for radiation structural materials // Problems of
Atomic Science and Technology. Series “Nuclear
Physics Investigations”. 2014, № 3, p. 172-176.
9. V.О. Bomko, О.F. Dyachenko, O.M. Yegorov, et al.
Development of investigations on the MILAC heavy
ion linear accelerator // Proceedings LINAC08, Van-
couver, Victoria, Canada. 2008, p. 187-189.
10. V.O. Bomko, O.F. Dyachenko, B.V. Zajtsev, et al.
Inductance-capacitor system for tuning of interdigi-
tal structure of the ion linear accelerator // Problems
of Atomic Science and Technology. Series “Nuclear
Physics Investigations”. 2007, № 5(48), p. 180-183.
11. R.A. Anokhin, B.V. Zaitsev, K.V. Pavlii, et al. Ex-
perimental complex for investigation of construction
materials on the helium ions linear accelerator //
Problems of Atomic Science and Technology. Series
“Nuclear Physics Investigations”. 2017, № 6,
p. 167-171.
12. A.F. Dyachenko, S.N. Dubniuk, А.P. Коbets, еt al.
The bunch formation and transport system to the
target of the helium ions linac // Problems of Atomic
Science and Technology. Series “Plasma Electron-
ics and New Methods of Acceleration”. 2018,
№ 4(116), p. 52-55.
13. А.F. Dyachenko. Highly sensitive induction sensor
of the beam-current of heavy ion linear accelerator //
Journal of Kharkiv National University. Physical.
Series “Nuclei, Particles, Fields”. 2010, № 887,
iss. 1(45), p. 118-121.
ISSN 1562-6016. ВАНТ. 2021. № 4(134) 89
14. http://www.srim.org...
15. B. Widrow, J.R. Glover, J.M. McCool, et al. Adap-
tive noise cancelling: principles and applications //
Proc. IEEE. 1963, p. 1692-1716.
16. V.M. Chernov, G.I. Khorasanov, O.A. Plaksin, еt al.
Electrical and optical characteristics of dielectrics
for fusion use under irradiation // J. Nucl. Mater.
1998, v. 253, p. 175-179.
17. V.A. Stepanov, V.M. Chernov. Radiation-induced
processes and their influence on the functional prop-
erties of dielectrics for different types of irradiation
// J. Nucl. Mater. 2000, v. 283/287, p. 932-936.
18. V.A. Stepanov, E.I. Isaev, L.M. Kryukova, еt al. The
high-dose and high-temperature monitors of reactor
irradiation based on insulators // Nucl. Energy and
Technology. 2015, v. 1, p. 93-98.
Article received 08.06.2021
ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ
НА ЛИНЕЙНОМ УСКОРИТЕЛЕ ИОНОВ ГЕЛИЯ
В.И. Бутенко, С.Н. Дубнюк, А.Ф. Дьяченко, А.Ф. Кобец, О.В. Мануйленко, К.В. Павлий,
В.А. Сошенко, С.С. Тишкин, Б.В. Зайцев
Приведены основные параметры облучения конструкционных материалов, облучаемых на линейном ус-
корителе ионов гелия, и система регистрации этих параметров. Представлены экспериментальные методики
и некоторые результаты исследований микроскопических, электрофизических, фрикционных и ультразву-
ковых характеристик конструкционных материалов атомных электрических станций и термоядерных реак-
торов, которые облучаются на линейном ускорителе ионов гелия с энергиями 0,12 и 4 МэВ.
ЕКСПЕРИМЕНТАЛЬНІ ДОСЛІДЖЕННЯ КОНСТРУКЦІЙНИХ МАТЕРІАЛІВ
НА ЛІНІЙНОМУ ПРИСКОРЮВАЧІ ІОНІВ ГЕЛІЮ
В.І. Бутенко, С.М. Дубнюк, О.Ф. Дьяченко, А.П. Кобець, О.В. Мануйленко, К.В. Павлій,
В.А. Сошенко, С.С. Тішкін, Б.В. Зайцев
Наведені основні параметри опромінення конструкційних матеріалів, що опромінюються на лінійному
прискорювачі іонів гелію, та система реєстрації цих параметрів. Подано експериментальні методики й деякі
результати досліджень мікроскопічних, електрофізичних, фрикційних і ультразвукових характеристик конс-
трукційних матеріалів атомних електричних станцій і термоядерних реакторів, що опромінюються на ліній-
ному прискорювачі іонів гелію з енергіями 0,12 і 4 МеВ.
|