Radiation friction of relativistic charged particles moving in a periodic field
The motion of relativistic charged particles beam in an external periodic field is considered, taking into account the influence of incoherent fields produced by particles on this motion. On the basis of the dynamics of individual particles motion under the action of the pair interaction forces each...
Saved in:
| Published in: | Вопросы атомной науки и техники |
|---|---|
| Date: | 2022 |
| Main Author: | |
| Format: | Article |
| Language: | English |
| Published: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2022
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/195399 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Radiation friction of relativistic charged particles moving in a periodic field / V.V. Ognivenko // Problems of Atomic Science and Technology. — 2022. — № 3. — С. 91-93. — Бібліогр.: 7 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-195399 |
|---|---|
| record_format |
dspace |
| spelling |
Ognivenko, V.V. 2023-12-05T09:47:34Z 2023-12-05T09:47:34Z 2022 Radiation friction of relativistic charged particles moving in a periodic field / V.V. Ognivenko // Problems of Atomic Science and Technology. — 2022. — № 3. — С. 91-93. — Бібліогр.: 7 назв. — англ. 1562-6016 PACS: 41.60.−m, 52.25.Gj https://nasplib.isofts.kiev.ua/handle/123456789/195399 The motion of relativistic charged particles beam in an external periodic field is considered, taking into account the influence of incoherent fields produced by particles on this motion. On the basis of the dynamics of individual particles motion under the action of the pair interaction forces each of them we derived the coefficient of friction. The expression for the friction force, which describes the average change in the momentum of charged particles per unit time, in the case of motion of an initially monoenergetic particle beam, is obtained. Розглянуто рух пучка релятивістських заряджених частинок у зовнішньому періодичному полі, з урахуванням впливу на цей рух некогерентних полів, створюваних частинками. На основі динаміки руху окремих частинок під дією сил парної взаємодії кожної з них отриманий коефіцієнт тертя. Отримано вираз для сили тертя, що описує середню зміну імпульсу заряджених частинок за одиницю часу у випадку руху початково моноенергетичного пучку частинок. Установлений взаємозв’язок між средньоквадратичним розкидом по імпульсах і силою гальмування частинок. Рассмотрено движение пучка релятивистских заряженных частиц во внешнем периодическом поле, с учетом влияния на это движение некогерентных полей, создаваемых частицами. На основе динамики движения отдельных частиц под действием сил парного взаимодействия каждой из них получен коэффициент трения. Получено выражение для силы трения, описывающее изменение среднего значения импульса заряженных частиц за единицу времени в случае движения первоначально моноэнергетического потока частиц. Установлена взаимосвязь между среднеквадратическим разбросом по импульсам и силой торможения частиц. en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Вопросы атомной науки и техники Beam dynamics Radiation friction of relativistic charged particles moving in a periodic field Радіаційне тертя релятивістських заряджених частинок, що рухаються в періодичному полі Радиационное трение релятивистских заряженных частиц, движущихся в периодическом поле Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Radiation friction of relativistic charged particles moving in a periodic field |
| spellingShingle |
Radiation friction of relativistic charged particles moving in a periodic field Ognivenko, V.V. Beam dynamics |
| title_short |
Radiation friction of relativistic charged particles moving in a periodic field |
| title_full |
Radiation friction of relativistic charged particles moving in a periodic field |
| title_fullStr |
Radiation friction of relativistic charged particles moving in a periodic field |
| title_full_unstemmed |
Radiation friction of relativistic charged particles moving in a periodic field |
| title_sort |
radiation friction of relativistic charged particles moving in a periodic field |
| author |
Ognivenko, V.V. |
| author_facet |
Ognivenko, V.V. |
| topic |
Beam dynamics |
| topic_facet |
Beam dynamics |
| publishDate |
2022 |
| language |
English |
| container_title |
Вопросы атомной науки и техники |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Радіаційне тертя релятивістських заряджених частинок, що рухаються в періодичному полі Радиационное трение релятивистских заряженных частиц, движущихся в периодическом поле |
| description |
The motion of relativistic charged particles beam in an external periodic field is considered, taking into account the influence of incoherent fields produced by particles on this motion. On the basis of the dynamics of individual particles motion under the action of the pair interaction forces each of them we derived the coefficient of friction. The expression for the friction force, which describes the average change in the momentum of charged particles per unit time, in the case of motion of an initially monoenergetic particle beam, is obtained.
Розглянуто рух пучка релятивістських заряджених частинок у зовнішньому періодичному полі, з урахуванням впливу на цей рух некогерентних полів, створюваних частинками. На основі динаміки руху окремих частинок під дією сил парної взаємодії кожної з них отриманий коефіцієнт тертя. Отримано вираз для сили тертя, що описує середню зміну імпульсу заряджених частинок за одиницю часу у випадку руху початково моноенергетичного пучку частинок. Установлений взаємозв’язок між средньоквадратичним розкидом по імпульсах і силою гальмування частинок.
Рассмотрено движение пучка релятивистских заряженных частиц во внешнем периодическом поле, с учетом влияния на это движение некогерентных полей, создаваемых частицами. На основе динамики движения отдельных частиц под действием сил парного взаимодействия каждой из них получен коэффициент трения. Получено выражение для силы трения, описывающее изменение среднего значения импульса заряженных частиц за единицу времени в случае движения первоначально моноэнергетического потока частиц. Установлена взаимосвязь между среднеквадратическим разбросом по импульсам и силой торможения частиц.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/195399 |
| citation_txt |
Radiation friction of relativistic charged particles moving in a periodic field / V.V. Ognivenko // Problems of Atomic Science and Technology. — 2022. — № 3. — С. 91-93. — Бібліогр.: 7 назв. — англ. |
| work_keys_str_mv |
AT ognivenkovv radiationfrictionofrelativisticchargedparticlesmovinginaperiodicfield AT ognivenkovv radíacíinetertârelâtivístsʹkihzarâdženihčastinokŝoruhaûtʹsâvperíodičnomupolí AT ognivenkovv radiacionnoetrenierelâtivistskihzarâžennyhčasticdvižuŝihsâvperiodičeskompole |
| first_indexed |
2025-11-25T22:45:22Z |
| last_indexed |
2025-11-25T22:45:22Z |
| _version_ |
1850571188456128512 |
| fulltext |
ISSN 1562-6016. ВАНТ. 2022. №3(139) 91
https://doi.org/10.46813/2022-139-091
RADIATION FRICTION OF RELATIVISTIC CHARGED PARTICLES
MOVING IN A PERIODIC FIELD
V.V. Ognivenko
National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine
E-mail: ognivenko@kipt.kharkov.ua
The motion of relativistic charged particles beam in an external periodic field is considered, taking into account
the influence of incoherent fields produced by particles on this motion. On the basis of the dynamics of individual
particles motion under the action of the pair interaction forces each of them we derived the coefficient of friction.
The expression for the friction force, which describes the average change in the momentum of charged particles per
unit time, in the case of motion of an initially monoenergetic particle beam, is obtained.
PACS: 41.60.−m, 52.25.Gj
INTRODUCTION
As is known, charged particles moving in external
periodic fields emit electromagnetic radiation. For parti-
cles with very high energy, the main part of the intensity
of the radiation is concentrated in the region of high
frequencies [1]. The effect of this radiation on the mo-
tion of charged particles leads to a change in the rms
value of the momentum of the particles. These effects
are significant in the case when the system of charged
particles is homogeneous in space, and the self-
consistent fields are negligible. The flow of relativistic
electrons moving in an external periodic field
(undulator), which is a source of intense ultrashort-
wavelength electromagnetic radiation, satisfies just such
conditions. The change in the rms value of the longitu-
dinal momentum of electrons moving in an external
static and periodic in space magnetic field is considered
in [2, 3]. These studies are of particular importance in
connection with the work aimed at creating X-ray free
electron lasers (FEL) operating in the mode of self-
amplified of spontaneous emission (see, for example,
[4]). The question naturally arises of how the incoherent
field of spontaneous electromagnetic radiation affects
the change in the mean value of the electron momen-
tum. This work is devoted to the study of this issue.
1. BASIC EQUATIONS
We consider an external field that is periodic along
the z-axis of the Cartesian coordinate system and uni-
form in the transverse direction (perpendicular to the z-
axis). Let the flow of relativistic charged particles move
along the z axis in this periodic field. We will assume
that the forces of pair interaction between particles are
known. The equations of longitudinal motion of an in-
dividual charged particle can be written in the form:
s
ss
s
zzz xtXttxFp
dt
d
0,F, , (1)
m
p
z
dt
d z
s , (2)
where zp and z are the momentum and the longitudinal
coordinate of a particle, s
zF is the force of pair interac-
tion between particles, ssss xtxttxxtX 00 ,;,, ,
pr,x is the set of coordinates and momentum of a
particle, 000 ,prx are the initial values of coordi-
nates and momentum of a particle, is the relativistic
factor.
We will consider the motion of particles in the time
t , when the trajectory of the particles does not change
significantly Then, on the right-hand side of equation
(1), expanding the expression for the force in a series in
small parameters tzzz ss
0 and
0zzz ppp , we obtain the following equation
txtx
zzz ttxFttxFp
dt
d
0
,,0
ξ
ξ , (3)
where zpz,ξ , zpz ,ξ .
The change in the momentum and coordinate, ac-
cording to (1) and (2) is determined by the equations
t
t
zz txFtdp
0
,0
, (4)
t
t
zs txFtt
td
m
z
0
,
1 0
3
. (5)
Substituting (4) and (5) into (3), we obtain the fol-
lowing equation describing the change with time in the
average value of the momentum of the particle
zzz AttxFp
dt
d
,0 , (6)
where
0
0 0
t
z z z
t
ˆA dt F x t ,t L x,t t F x t ,t , (7)
3
z
t
L̂ x,t
z pm
, the angle brackets denote en-
semble averaging.
The first term in equation (6) describes the average
force acting on the test particle, or the deceleration force
of an individual charge by the field of its own radiation.
The second term in equation (6) is the radiation friction
force.
Averaging in the right-hand side of Eq. (7) is per-
formed using the distribution function of dynamic states
of the particles in the phase space of the coordinates and
momentum of the particles at initial time 0t (in the co-
ordinate 0z ) [5, 6]. We consider the influence of
92 ISSN 1562-6016. ВАНТ. 2022. №3(139)
average forces on the motion of particles insignificant if
these forces are not equal to zero.
Averaging in the integrand of Eq. (7) in the same
way as it was done in [2, 6], neglecting the particle cor-
relation at the initial moment of time, and taking into
account Eq. (1) for the microscopic force, we obtain
0
0
0 0 0
t
s
z z s s
t
s
z s s s s
A dt F X t ,x
L̂ x,t t F X t,x f x dx ,
(8)
where sxf 0 is the one-particle distribution function.
To calculate Az we note that the force of pair interac-
tion in the integrand (8) is determined by the motion of
the charged particles along equilibrium trajectories in an
external periodic field.
2. FLOW OF PARTICLES
IN A PERIODIC FIELD
Let charged particles move in a static and periodic in
space magnetic field
zkzkH uyux sincos0 eeH , (9)
where 0H , u are the amplitude and period of the
magnetic field, uuk 2 .
We consider the interaction of charged particles via
the electromagnetic field produced by them. The trans-
verse equilibrium velocity of charged particles in the
magnetic field (9) has the form
tzktzkt suysuxs sinvcosv0
eev .
The expression for the force of pair interaction be-
tween particles under the assumption of a small value of
the amplitude of the external periodic field
( 12 2
00 mceH ) can be written in the form [3]
s
uzss
z qtrG
trR
kKe
tx 0
*
22
;,
,
,F
, (10)
where
,
cos
sin
2
;,
**
0
22
*
2
0
*
2
0*
0
0
RkR
R
R
R
RkR
R
qtrG
os
z
zs
zs
zs
s
zsz
zss
*0
2 RRk zszuzs , 22
0
2
0* zsz RRR ,
20
2
00 ss yyxxR , tzzR sz 0 ,
uzszss kk 2
0 ,
0
v
cK
,
ukmc
He
K
2
0
.
Let's consider the initial (pre-Brownian) stage of
charged particles diffusion in momentum space, assum-
ing that particles are monoenergetic at the entrance to
the external periodic field. Furthermore, we are interest-
ed in small changes in the energy of charged particles
due to their radiation friction 0 .
Substituting the expression for the force (10) into
right-hand side of Eq. (8), after integration over the
momentum, we obtain the following equation for the
radiation friction force
t ss
ssss
bs
t
t
uz
xtRxtR
xtXGxtXG
ndq
tdkKeA
0*0*
00
0
244
,,
,,
0
,
(11)
where sssszs dtdydxdq 00000 v , is the range of inte-
gration over the initial coordinates of the emitting
charges.
We assume that the beam is a solid cylindrical of ra-
dius rb with a uniform average density nb.
On the right-hand side of equation (11), it is conven-
ient to pass from the integration variables x0s, y0s, t0s to
new variables r', , , using the formulas:
sincosxx 00 rzss , sinsinyy 00 rzss ,
cos1 rzzs , 20 , 0 .
The limits of integration over the initial coordinates
in equation (11) can be written in the form (cf. [2]):
at rzz
cos
,,
2
1
111max
zmzm
z
zrzr , (12)
at rzz
2,
sin
0,,
,
1*
1*11
1max z
r
zzr
zr
zm
b , (13)
where zzarctgz r2* , bzmzmr rz .
Substituting the expression (10) into equation (11)
and integrating over the initial coordinates using bound-
ary conditions (12), we obtain the following expression
for the radiation friction force at z<zr
z
buz
z
nkreA
2
24
0
2 K
32
15
, (14)
where
2
2
0
mc
e
r .
For z>zr, calculating the integrals on the right-hand
side of Eq. (11), taking into account the limits of inte-
gration (13), we obtain
r
bbuz
z
z
zBrnkreA 24
0
2 K , (15)
where
2
5 1 35
1
3 16 4
2 1 15
ln .
2 32
B x arctgx
x
x
x x
.
Let's note that in the limiting case z>>zr
216
35
3
5
xB .
CONCLUSIONS
Thus, an expression for the force of radiation friction
of relativistic charged particles passing in an external
periodic field is obtained in this work. The pre-
Brownian stage of charged particles motion is investi-
gated, when the difference in the initial velocities of
particles at the entrance to the undulator can be neglect-
ISSN 1562-6016. ВАНТ. 2022. №3(139) 93
ed. It should also be noted that expression for the fric-
tion force in the case of the pre-Brownian motion of
Coulomb interacting charged particles was obtained in
[7].
As follows from (14, 15), the radiation friction force
is proportional to the beam density. This force increases
as the beam of particles moves in a periodic field.
At distances z>zr this force increases in proportion
to the distance in the first degree. At distances z<zr, the
radiation friction force increases in proportion to the
square of the distance passed by the beam. This depend-
ence of the force on the distance is due to an increase in
the number of particles in the field of which the test
particle is located, as the beam passes through an exter-
nal periodic field.
From formulae (14, 15) and the expression for the
diffusion coefficient zD , obtained in [2], the relation
follows
z
z
z
p
D
A ,
which relates the force of radiation friction and the dif-
fusion coefficient.
As follows from formulae (14, 15) for
ultrarelativistic electron beams, which are used to obtain
ultrashort-wavelength radiation in the FELs, the radia-
tion friction force must be taken into account along with
the radiation damping force of an individual charge. In
addition, explicit expressions for the radiation friction
force make it possible to kinetically describe the relaxa-
tion of relativistic flows of charged particles in external
periodic fields.
REFERENCES
1. L.D. Landau, E.M. Lifshitz. The classical theory of
fields. Pergamon Press, Oxford, 1968.
2. V.V. Ognivenko. Momentum spread in a relativistic
electron beam in an undulator // J. Exp. Theor. Phys.
2012, v. 115, № 5, p. 938-946.
3. V.V. Ognivenko // J. Exp. Theor. Phys. 2021,
v. 132, № 5, p. 766-775.
4. Ye.N. Ragozin, I.I. Sobel'man. Lazernyye istoch-
niki v myagkoy rentgenovskoy oblasti spectra //
UFN. 2005, № 12, p. 1339-1341.
5. N.N. Bogolyubov. Problems of Dynamical Theory in
Statictical Physics. M.: “Gostekhteorizdat”, 1946;
Interscience, New York, 1962.
6. V.V. Ognivenko. Dynamical derivation of momen-
tum diffusion coefficients at collisions of relativistic
charged particles // J. Exp. Theor. Phys. 2016,
v. 122, № 1, p. 203-208.
7. V.V. Ognivenko. The pair interaction forces and the
friction and diffusion coefficients of particles in
momentum space // Problems of Atomic Science and
Technology. Series “Plasma Physics”. 2017, № 1,
p. 195-198.
Article received 11.01.2022
РАДІАЦІЙНЕ ТЕРТЯ РЕЛЯТИВІСТСЬКИХ ЗАРЯДЖЕНИХ ЧАСТИНОК,
ЩО РУХАЮТЬСЯ В ПЕРІОДИЧНОМУ ПОЛІ
В.В. Огнівенко
Розглянуто рух пучка релятивістських заряджених частинок у зовнішньому періодичному полі, з
урахуванням впливу на цей рух некогерентних полів, створюваних частинками. На основі динаміки руху
окремих частинок під дією сил парної взаємодії кожної з них отриманий коефіцієнт тертя. Отримано вираз
для сили тертя, що описує середню зміну імпульсу заряджених частинок за одиницю часу у випадку руху
початково моноенергетичного пучку частинок. Установлений взаємозв'язок між средньоквадратичним
розкидом по імпульсах і силою гальмування частинок.
РАДИАЦИОННОЕ ТРЕНИЕ РЕЛЯТИВИСТСКИХ ЗАРЯЖЕННЫХ ЧАСТИЦ,
ДВИЖУЩИХСЯ В ПЕРИОДИЧЕСКОМ ПОЛЕ
В.В. Огнивенко
Рассмотрено движение пучка релятивистских заряженных частиц во внешнем периодическом поле, с
учетом влияния на это движение некогерентных полей, создаваемых частицами. На основе динамики дви-
жения отдельных частиц под действием сил парного взаимодействия каждой из них получен коэффициент
трения. Получено выражение для силы трения, описывающее изменение среднего значения импульса заря-
женных частиц за единицу времени в случае движения первоначально моноэнергетического потока частиц.
Установлена взаимосвязь между среднеквадратическим разбросом по импульсам и силой торможения час-
тиц.
|