Effects of gamma-irradiation on nanostructured Na-bentonite silicate layers at room temperature
The aim of this paper to study the effects of γ-rays on nanostructured Na-bentonite clay from Alpoid deposit. The effect of high doses (up to 256 kGy) of γ-radiation on the short-range structural organization in montmorillonite was studied using infrared spectroscopy. Significant change attributable...
Збережено в:
| Опубліковано в: : | Вопросы атомной науки и техники |
|---|---|
| Дата: | 2021 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2021
|
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/195437 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Effects of gamma-irradiation on nanostructured Na-bentonite silicate layers at room temperature / M.K. Ismayilova // Problems of Atomic Science and Technology. — 2021. — № 5. — С. 51-56. — Бібліогр.: 23 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-195437 |
|---|---|
| record_format |
dspace |
| spelling |
Ismayilova, M.K. 2023-12-05T10:27:53Z 2023-12-05T10:27:53Z 2021 Effects of gamma-irradiation on nanostructured Na-bentonite silicate layers at room temperature / M.K. Ismayilova // Problems of Atomic Science and Technology. — 2021. — № 5. — С. 51-56. — Бібліогр.: 23 назв. — англ. 1562-6016 DOI: https://doi.org/10.46813/2021-135-051 https://nasplib.isofts.kiev.ua/handle/123456789/195437 541.183:547:211:539.104 The aim of this paper to study the effects of γ-rays on nanostructured Na-bentonite clay from Alpoid deposit. The effect of high doses (up to 256 kGy) of γ-radiation on the short-range structural organization in montmorillonite was studied using infrared spectroscopy. Significant change attributable to irradiation was observed at dose of 57 kGy. No significant changes were observed after 57 kGy of γ-radiation. A small variation in the water content was noted but it is not systematic. The results show that the montmorillonite structure can accumulate high doses of radiation with damage. The modifications most likely to be generated by the radiation were expected to be within the silicate layers. The morphology of the nanocomposites was studied with scanning electron microscopy. In this paper, the effects of ionizing radiation on the Na-bentonite clay investigated by FT-IR method. These spectra show the suitability of FT-IR study of mineral surfaces and the changes in the spectra brought about by the surface phenomena. Вивчено вплив гамма-променів на наноструктуровану бентонітову глину з родовища Альпоід. Вплив високих доз (до 256 кГр) гамма-випромінювання на структуру в монтморилоніті досліджено за допомогою інфрачервоної спектроскопії. Після опромінення при дозі 57 кГр істотних змін не спостерігалося. Була відзначена невелика зміна вмісту води, але вона не має систематичного характеру. Результати показують, що структура монтморилоніту може накопичувати високі дози радіації з пошкодженням. Очікується, що модифікації, які, швидше за все, будуть викликані випромінюванням, перебуватимуть всередині силікатних шарів. Морфологія нанокомпозитів була вивчена за допомогою скануючої електронної мікроскопії. У цій роботі вплив іонізуючого випромінювання на Na-бентонітову глину досліджено методом FT-IR. Ці спектри показують придатність ІЧ-Фур'є-аналізу поверхонь мінералів і зміни спектрів, які викликані поверхневими явищами. Изучено воздействие гамма-лучей на наноструктурированную бентонитовую глину из месторождения Альпоид. Влияние высоких доз (до 256 кГр) гамма-излучения на структуру в монтмориллоните исследовано с помощью инфракрасной спектроскопии. После облучения при дозе 57 кГр существенных изменений не наблюдалось. Было отмечено небольшое изменение содержания воды, но оно не носит систематического характера. Результаты показывают, что структура монтмориллонита может накапливать высокие дозы радиации с повреждением. Ожидается, что модификации, которые, скорее всего, будут вызваны излучением, будут находиться внутри силикатных слоев. Морфология нанокомпозитов была изучена с помощью сканирующей электронной микроскопии. В данной работе влияние ионизирующего излучения на Na-бентонитовую глину исследовано методом FT-IR. Эти спектры показывают пригодность ИК-Фурье-анализа поверхностей минералов и изменения спектров, вызванные поверхностными явлениями. en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Вопросы атомной науки и техники Physics of radiation damages and effects in solids Effects of gamma-irradiation on nanostructured Na-bentonite silicate layers at room temperature Вплив гамма-опромінення на силікатні шари наноструктурованого Na-бентоніту при кімнатній температурі Влияние гамма-облучения на силикатные слои наноструктурированного Na-бентонита при комнатной температуре Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Effects of gamma-irradiation on nanostructured Na-bentonite silicate layers at room temperature |
| spellingShingle |
Effects of gamma-irradiation on nanostructured Na-bentonite silicate layers at room temperature Ismayilova, M.K. Physics of radiation damages and effects in solids |
| title_short |
Effects of gamma-irradiation on nanostructured Na-bentonite silicate layers at room temperature |
| title_full |
Effects of gamma-irradiation on nanostructured Na-bentonite silicate layers at room temperature |
| title_fullStr |
Effects of gamma-irradiation on nanostructured Na-bentonite silicate layers at room temperature |
| title_full_unstemmed |
Effects of gamma-irradiation on nanostructured Na-bentonite silicate layers at room temperature |
| title_sort |
effects of gamma-irradiation on nanostructured na-bentonite silicate layers at room temperature |
| author |
Ismayilova, M.K. |
| author_facet |
Ismayilova, M.K. |
| topic |
Physics of radiation damages and effects in solids |
| topic_facet |
Physics of radiation damages and effects in solids |
| publishDate |
2021 |
| language |
English |
| container_title |
Вопросы атомной науки и техники |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Вплив гамма-опромінення на силікатні шари наноструктурованого Na-бентоніту при кімнатній температурі Влияние гамма-облучения на силикатные слои наноструктурированного Na-бентонита при комнатной температуре |
| description |
The aim of this paper to study the effects of γ-rays on nanostructured Na-bentonite clay from Alpoid deposit. The effect of high doses (up to 256 kGy) of γ-radiation on the short-range structural organization in montmorillonite was studied using infrared spectroscopy. Significant change attributable to irradiation was observed at dose of 57 kGy. No significant changes were observed after 57 kGy of γ-radiation. A small variation in the water content was noted but it is not systematic. The results show that the montmorillonite structure can accumulate high doses of radiation with damage. The modifications most likely to be generated by the radiation were expected to be within the silicate layers. The morphology of the nanocomposites was studied with scanning electron microscopy. In this paper, the effects of ionizing radiation on the Na-bentonite clay investigated by FT-IR method. These spectra show the suitability of FT-IR study of mineral surfaces and the changes in the spectra brought about by the surface phenomena.
Вивчено вплив гамма-променів на наноструктуровану бентонітову глину з родовища Альпоід. Вплив високих доз (до 256 кГр) гамма-випромінювання на структуру в монтморилоніті досліджено за допомогою інфрачервоної спектроскопії. Після опромінення при дозі 57 кГр істотних змін не спостерігалося. Була відзначена невелика зміна вмісту води, але вона не має систематичного характеру. Результати показують, що структура монтморилоніту може накопичувати високі дози радіації з пошкодженням. Очікується, що модифікації, які, швидше за все, будуть викликані випромінюванням, перебуватимуть всередині силікатних шарів. Морфологія нанокомпозитів була вивчена за допомогою скануючої електронної мікроскопії. У цій роботі вплив іонізуючого випромінювання на Na-бентонітову глину досліджено методом FT-IR. Ці спектри показують придатність ІЧ-Фур'є-аналізу поверхонь мінералів і зміни спектрів, які викликані поверхневими явищами.
Изучено воздействие гамма-лучей на наноструктурированную бентонитовую глину из месторождения Альпоид. Влияние высоких доз (до 256 кГр) гамма-излучения на структуру в монтмориллоните исследовано с помощью инфракрасной спектроскопии. После облучения при дозе 57 кГр существенных изменений не наблюдалось. Было отмечено небольшое изменение содержания воды, но оно не носит систематического характера. Результаты показывают, что структура монтмориллонита может накапливать высокие дозы радиации с повреждением. Ожидается, что модификации, которые, скорее всего, будут вызваны излучением, будут находиться внутри силикатных слоев. Морфология нанокомпозитов была изучена с помощью сканирующей электронной микроскопии. В данной работе влияние ионизирующего излучения на Na-бентонитовую глину исследовано методом FT-IR. Эти спектры показывают пригодность ИК-Фурье-анализа поверхностей минералов и изменения спектров, вызванные поверхностными явлениями.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/195437 |
| citation_txt |
Effects of gamma-irradiation on nanostructured Na-bentonite silicate layers at room temperature / M.K. Ismayilova // Problems of Atomic Science and Technology. — 2021. — № 5. — С. 51-56. — Бібліогр.: 23 назв. — англ. |
| work_keys_str_mv |
AT ismayilovamk effectsofgammairradiationonnanostructurednabentonitesilicatelayersatroomtemperature AT ismayilovamk vplivgammaopromínennânasilíkatníšarinanostrukturovanogonabentonítuprikímnatníitemperaturí AT ismayilovamk vliâniegammaoblučeniânasilikatnyesloinanostrukturirovannogonabentonitaprikomnatnoitemperature |
| first_indexed |
2025-11-25T08:09:47Z |
| last_indexed |
2025-11-25T08:09:47Z |
| _version_ |
1850507637973581824 |
| fulltext |
ISSN 1562-6016. PASТ. 2021. №5(135), p. 51-56.
https://doi.org/10.46813/2021-135-051
UDC 541.183:547:211:539.104
EFFECTS OF GAMMA-IRRADIATION ON NANOSTRUCTURED
Na-BENTONITE SILICATE LAYERS AT ROOM TEMPERATURE
M.K. Ismayilova
Azerbaijan National Academy of Sciences, Laboratory of Energy Consuming Radiation
Processes, Institute of Radiation Problems, Baku, Azerbaijan
E-mail: ismayilovamehpara@gmail.com
The aim of this paper to study the effects of γ-rays on nanostructured Na-bentonite clay from Alpoid deposit.
The effect of high doses (up to 256 kGy) of γ-radiation on the short-range structural organization in montmorillonite
was studied using infrared spectroscopy. Significant change attributable to irradiation was observed at dose of
57 kGy. No significant changes were observed after 57 kGy of γ-radiation. A small variation in the water content
was noted but it is not systematic. The results show that the montmorillonite structure can accumulate high doses of
radiation with damage. The modifications most likely to be generated by the radiation were expected to be within
the silicate layers. The morphology of the nanocomposites was studied with scanning electron microscopy. In this
paper, the effects of ionizing radiation on the Na-bentonite clay investigated by FT-IR method. These spectra show
the suitability of FT-IR study of mineral surfaces and the changes in the spectra brought about by the surface
phenomena.
INTRODUCTION
The two most common modification methods of clay
minerals are thermal modification and acid activation.
This study aims at examining a novel insight to
characterize bentonites to find out the mineralogical and
physicochemical properties of irradiated Na-bentonite
clay samples. Bentonite is rich in montmorillonite,
which is a nanostructured and nanoporous member of
smectite group. Mineralogical and physicochemical
properties of bentonites play a key role in choosing
appropriate bentonites for different applications. Based
on their chemical composition and particle morphology,
clays are organized into several classes such as smectite,
chlorite, kaolinite, illite and halloysite [1]. Due to their
wide availability, relatively low cost and relatively low
environmental impact, nanoclays have been studied and
developed for various applications [2]. With the rapid
growth of nanotechnology, clay minerals are
increasingly used as natural nanomaterials [3].
Nanoclays are nanoparticles of layered mineral silicates
with layered structural units that can form complex clay
crystallites by stacking these layers [4]. An individual
layer unit is composed of octahedral and/or tetrahedral
sheets [5]. Octahedral sheets consist of aluminum or
magnesium in a six-fold coordination with oxygen from
a tetrahedral sheet and with hydroxyl. Tetrahedral sheets
consist of silicon–oxygen tetrahedra linked to
neighboring tetrahedra, sharing three corners while the
fourth corner of each tetrahedron sheet is connected to
an adjacent octahedral sheet via a covalent bond [6].
Based on their mineralogical composition, there are
approximately 30 different types of nanoclays, which
depending on their properties are used in different
applications [7]. The most common plate-like
montmorillonite (MMT) nanoclay (smectite) consists of
approximately one nm thick aluminosilicate layers
surface-substituted with metal cations and stacked in
approximately 10 µm sized multilayer stacks [8–11].
Clays are hydrous aluminosilicates broadly defined as
those minerals that make up the colloid fraction of soils,
sediments, rocks, and water [12] and may be composed
of mixtures of fine-grained clay minerals and clay-sized
crystals of other minerals such as quartz, carbonate, and
metal oxides. Clays play an important role in the
environment by acting as a natural scavenger of
pollutants by taking up cations and anions either
through ion exchange or adsorption or both. Thus, clays
invariably contain exchangeable cations and anions held
to the surface. Van Olphen [13] has cited several types
of active sites in clays, namely, (i) Bronsted acid or
proton donor sites, created by interactions of adsorbed
or interlayer water molecules, (ii) Lewis acid or electron
acceptor sites occurring due to dehydroxylation,
(iii) oxidizing sites, due to the presence of some cations
in octahedral positions or due to adsorbed oxygen on
surfaces, (iv) reducing sites produced due to the
presence of some cations, and (v) surface hydroxyl
groups, mostly found in the edges, bound to Si, Al, or
other octahedral cations. Clays have been good
adsorbents because of the existence of several types of
active sites on the surface, which include Bronsted and
Lewis acid sites and ion exchange sites. The edge
hydroxyl groups have been particularly active for
various types of interactions. Clays and modified clays
have been found particularly useful for adsorption of
heavy metals. Clays have received attention as excellent
adsorbents of As, Cd, Cr, Co, Cu, Fe, Pb, Mn, Ni, and
Zn in their ionic forms from aqueous medium. The
adsorption capacities differ from metal to metal and also
depend on the type of clay used [14]. For this research,
raw bentonite was used from the Alpoid deposit in
Azerbaijan. It is one of highest quality natural sodium
bentonite deposits in the world. The deposit consists of
montmorillonite and hydromica-montmorillonite clay.
The Alpoid deposit contains more than 85% of
montmorillonite –
(Na,0.5Ca)0.7(Al, Mg, Fe)4(Si, Al)8O20(OH)4·xH2O,
where Na and Mg – cations prevail in CEC. Exchanged
cations content makes 92…98 meq/100 g [15–17]. The
mailto:ismayilovamehpara@gmail.com
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/acid-activation
https://www.hindawi.com/journals/amse/2011/872531/#B10
https://www.hindawi.com/journals/amse/2011/872531/#B11
Cambrian clay minerals, being high-alkaline minerals
caused activation of the water radiolysis process.
Interlayer links destruction will take place at low
enough radiation doses [18]. Alpoid clays are also high-
alkaline minerals [15–17]. Gamma radiation may alter
the surface characteristics of bentonite [19]. In
heterogenous reactions were used modified activated –
hydrated aluminasilicates as catalyst. In addition,
irradtion of Na-bentonite clay from Alpoid deposit by
γ-rays is not studied before.
EXPERIMENTAL PART
Clay samples was taken from the Alpoid deposit.
Alpoid bentonite deposit which excels considerably in
quality such bentonite deposits as in Greece, Turkey,
India and China and is equal to the benchmark
Wyoming bentonite. Alpoid deposit is located in a
northwest part of the Gazakh region. It is one of the
high-quality natural sodium bentonite deposits in the
world and is represented by one flat-lying seam with no
poor rocks inside. It relates to sedimentary type formed
as a result of continental – lacustrine conditions. The
deposit is represented by montmorillonite and
hydromica-montmorillonite clay.
The morphology of the nanostructured was studied
with scanning electron microscopy (SEM from ZEISS,
Leo 1530 VP) and EDX (ZEISS, Gemini 1000). EDX
spectra were measured of a closed powder area of about
1x1 mm. The raw bentonite clay sample used in these
experiments has nanostructured composition with
particle size in the range of 55 ≤ d [nm] ≤ 175 nm [20].
Clay samples were packed in a closed Pyrex glass
container. The bentonite clay samples were irradiated
with gamma radiation from the
60
Co isotope under static
conditions, within vacuum sealed quartz tubes at room
temperature. The dose rate was 10.5 rad/s. The
irradiated and unirradiated samples were characterized
by FT-IR spectroscopy. Spectrophotometric
measurements were performed in a VARIAN 640-IR
spectrophotometer in the 4000…400 cm
-1
region.
Reaction conditions: Given amount of catalyst-
bentonite sample (2 g) was added in glass ampules and
sealed, then subjected to various doses of radiation
energy (from 1 to 256 kGy). They were irradiated for
various periods of time. Radiation carried out for
1…300 h at room temperature.
1. RESULTS AND DISCUSSION
Chemical composition of bentonite clays mined
from the Alpoid deposit has the following
characteristics (Table 1) [15, 16].
Table 1
Chemical composition of bentonite clays mined from
the Alpoid deposit
Chemical
compound
Percentage,
%
Chemical
compound
Percentage,
%
SiO2 58.60 MgO 2.30
Al2O3 13.40 P2O5 0.11
Fe2O3 4.70 SO3 0.25
FeO 0.18 K2O 0.39
TiO2 0.39 Na2O 2.30
CaO 2.05 PPP 15.33
Total – – 100
The SEM images of clay samples are shown in
Fig. 1. SEM micrographs show an inhomogeneous
consistency: larger particles > 2 μm (agglomerates) and
fine species (obviously of compact morphology). It
seems that different mineral species are coexisting in the
clay powder (see Fig. 1,a). SEM images demonstrated
that the Na-bentonite powder consist of unequally sized
particles, probably formed by agglomeration.
Magnification discloses a large number of small species
distributed on the surface of the larger particles. On the
other hand, there are also layer structured agglomerates
recognizable (sse Fig. 1,b).
Also, chemical composition of Na-bentonite clay
analyzed using XRD (Fig. 2,a) and EDX analysis (see
Fig. 2,b). Chemical composition of bentonite clays
mined from this deposit has the following
characteristics (see Fig. 2,a,b).
a b
Fig. 1. SEM image of Na-bentonite clay: a – overall distributed fine particles;
b – layer structured agglomerates
a b
Fig. 2. Chemical composition of bentonite clays: a – XRD diagram of Na-bentonite clay;
b – EDX spectra of Na-bentonite clay
The XRD plot shows that montmorillonite has the
highest content in the clay samples (see Fig. 2,a). EDX
spectra confirm the presence of sulfides in Alpoide clay.
FT-IR spectra of unirradiated Na-bentonite clay is
shown in Fig. 3 and all the important bands and their
assignments are listed in Table 2.
Fig. 3. FT-IR spectra of unirradiated Na-bentonite clay
Table 2
Position of absorption bands in the IR spectrum of unirradiated Na-bentonite clay
Wave number, cm
-1
Atomic group
3750
3628
3413
3437
3461
2078
2341
2361
1635
1030
1039
460
465
424
880
793
841
912
-OH (structural)
-OH (structural)
H2O (absorption)
H2O (absorption)
H2O (absorption)
H2O
H2O
H2O
H2O
Si-O
Si-O-Si
Si-O-Si
Si-O-Si
Fe (III)-O in oct. Positions
Si–OH
Si-O
Si-O
Al-OH
Presented below are the noticeable IR spectra of clay samples (irradiated in the range 1…57 kGy).
a
b
c
d
Fig. 4. FT-IR spectra of Na-bentonite clay, irradiated at different gamma radiation doses:
a – 3; b – at 6; c – 28; d – 57 kGy
Fig. 4 shows structural alteration in irradiated
samples at different doses. After 3 kGy irradiation a
new peak appeared at 965 and 523 cm
-1
which presented
Si-OH and Si-O-Al bands (see Fig. 4,a) A weak loss of
“crystallinity” of bentonite could be observed. From 3
up 57 kGy occurs modification of bentonite clay
samples (see Fig. 4,a–c). But at dose of 57 kGy take
places destruction under ionizing radiation. As can be
seen from Fig. 4,d, after 57 kGy irradiation except for
the destruction of a solid phase of clays, there is
radiolysis of pore water.
Fig. 4,a–c shows the modification of bentonite
surfaces with γ-rays. IR spectrum (see Fig. 4,b) is that
of the bentonite surfaces modified through hydrogen
bonding with γ-rays at a dose of 6 kGy (see spectrum
Fig. 4,c) is that at a dose of 28 kGy (see spectrum
Fig. 4,d) at a dose of 57 kGy intercalation of the
bentonite through hydrogen bonding of the inner surface
hydroxyls with γ-rays causes a dramatic decrease in
intensity of bands at 3693 and 3650 cm
-1
attributed to
the inner surface hydroxyl groups is observed.
Activiation under the conditions at dose of 57 kGy and
room temperature, caused the bentonite to show an
increase in defect structures. Many studies have been
reported, trying to pin down the relations between acid
strength and short-and long –range structural factors,
such as Si-O-Al angles or Si-O, Al-O distances,
flexibility of the frame-work and electrostatic potencial
generated inside the cavities [21, 22].
At present there are few researches done concerning
the influence of radioactive irradiation on rock and
soils, including clay deposits. Radiation stability of
minerals usually reduces through quartz to
aluminosilicates: quartz- microcline-kaolin-hydromica-
montmorillonites. According to the statements of the
theory of radiation damages in a solid body, crystalline
structure of minerals in changed owing to interaction
among radiating particles and mineral constituent
elements, which are disturbed from equilibrium
condition at the points of the lattice and may cause the
displacement of other elements. Such processes lead to
crystalline structure disordering, vacancies making and
forming defects on the micro-level, finally all these
phenomena cause the change of mineral properties
owing to their amorphization special investigations have
shown that amorphization of quartz, which is one of the
minerals existing in clay (see Fig. 2,a), after being
irradiated is accompanied by an increase in its volume
to more than 17%. First of all, the irradiation influences
on structural bonds existing between minerals and its
aggregates.
It is necessary to pay a special attention to
radioactive stability of clay minerals, which interlayer
bonds usually results from unlike charged surfaces, or
cations, which are between the same charged layers.
Similar bonds are easily broken down when exposed to
radioactive irradiation simultaneously with the
structural bonds existing between mineral particles.
Change in valent bond vibrations of Si-O and Al-O
inside a layer up to its fracture is observed on long-term
radioactive exposure. Besides there is dehydration of
crystallization water, and structural water in the form of
OH
-
groups from the crystal lattice. The removal of
crystallization impact of chemical, physical-chemical
and physical and mechanical properties of clays, the
removal of structural water leads to a complete fracture
of clay minerals. Na-bentonite clay from Alpoid
(pH = 10) may be compared with Cambrian blue clays.
Because being part of clay minerals of Lower Cambrian
blue clays are represented by high-alkaline minerals,
interlayer links destruction will take place at low
enough radiation doses. The main structural defects in
clay minerals are developed on radiation exposure,
which is 10
5
…10
6
Gy. Thus, the process of destruction
of silico-alumina nucleus of clay minerals is becoming
more active in a particular sequence of cation out let of
crystal lattice: Fe
3+
> Ca
2+
> Mg
2+
> Na
+
> K
+
> Si
4+
.
Except for the destruction of a solid phase of clays,
there is radiolysis of pore water, which results in the
formation of free radicals and the molecular
components causing the change of acid-alkaline and
oxidation-reduction conditions in a clay strata. In blue
clays organics and sulphids may be oxidized activity
while forming the process of radiolysis of pore water at
adsorbed doses up 10
5
…10
7
Gy EDX spectra confirm
existing sulphids in Alpoid clay (see Fig. 2,b). When a
comparison is made with other clays in Na-bentonite
case the destruction occurred at adsorbed doses
57…256 kGy region.
The surface modification of clay minerals especially
by gamma-rays, which occurs due to defects, could
improve markedly their surface, physical and chemical
properties so the modified bentonite clay could be
applied as catalysts, adsorbents and so on.
The modification of bentonite clay from Alpoid
deposit by gamma-rays creates future possible
perspectives. In works [20, 23] were shown that
irradiated Na-bentonite clay plays key role for
aromatization and isomerization reactions of
hydrocarbons.
CONCLUSIONS
The studies performed by reflection – absorption IR
spectroscopy show the modification of Na-bentonite
clay by γ-rays. The modified clays could be used as
catalyst for aromatization and isomerization processes.
This method is low-cost and environmental – friendly.
The results show that the destruction of Na-bentonite
clay minerals was occurred at 57 kGy.
REFERENCES
1. M.S. Nazir, M.H.M. Kassim, L. Mohapatra,
M.A. Gilani, M.R. Raza, K. Majeed. Nanoclay
Reinforced Polymer Composites. Springer: Singapore,
2016, p. 35-55.
2. K. Müller, E. Bugnicourt, M. Latorre, M. Jorda,
Y. Echegoyen Sanz, J.M. Lagaron, O. Miesbauer,
A. Bianchin, S. Hankin, U. Bölz. Review on the
processing and properties of polymer nanocomposites
and nanocoatings and their applications in the
packaging, automotive and solar energy fields //
Nanomaterials. 2017, N 7, p. 74.
3. G. Rytwo. Clay minerals as an ancient
nanotechnology: Historical uses of clay organic
interactions, and future possible perspectives // Macla.
2008, N 9, p. 15-17.
4. S.M. Lee, D. Tiwari. Organo and inorgano-
organo-modified clays in the remediation of aqueous
solutions: An overview // Appl. Clay Sci. 2012, N 59,
p. 84-102.
5. M.K. Uddin. A review on the adsorption of heavy
metals by clay minerals, with special focus on the past
decade // Chem. Eng. J. 2017, N 308, p. 438-462.
6. M. Jawaid, A.K. Qaiss, R.Bouhfid Nanoclay
Reinforced Polymer Composites: Nanocomposites and
Bionanocomposites. Springer: Singapore, 2016.
7. I. Savic, S. Stojiljkovic, I. Savic, D. Gajic. Clays
and Clay Minerals: Geological Origin, Mechanical
Properties and Industrial Applications / Wesley L.R.,
Ed. Nova Science Publishers: New York, NY, USA,
2014, p. 379-402.
8. E.P. Giannelis. Polymer layered silicate nano-
composites // Adv. Mater. 1996, N 8, р. 29-35.
9. G. Feng, A. Saman, H.Yinghui, J. Yunpeng. A
review of the synthesis and applications of polymer–
nanoclay composites // Appl. Sci. 2018, v. 8, N 9,
p. 1696.
10. A. Negron, S. Ramos, A.L. Bblumenfeld,
G. Pacheco, J.J. Fripiat. On the structural stability of
montmorillonite submitted to heavy g-irradiation //
Clays and Clay Minerals. 2002, v. 50, N 1, р. 35-37.
11. B. Clozel, Th. Allard, J.-P. Muller. Nature and
stability of radiation-induced defects in natural
kaolinites; new results and a reappraisal of published
works // Clays and Clay Minerals. 1994, v. 42, p. 657-
666.
12. T.J. Pinnavaia. Intercalated clay catalysts
// Science. 1983, v. 220, N 4595, p. 365-371.
13. H. van Olphen. An Introduction to Clay Colloid
Chemistry. Wiley Interscience, New York, NY, USA,
2nd edition, 1977.
14. K.G. Bhattacharyya, S. Sen Gupta. Adsorption
of a few heavy metals on natural and modified kaolinite
and montmorillonite: a review //Advances in Colloid
and Interface Science. 2008, v. 140, N 2, p. 114-131.
15. http://www.azbms.tk
16. http://www.azrpi.com/
17. P.E. Belousov. Comparative Characteristic of
high-quality bentonite deposits of Russia and some
foreign countries // RUDN Journal of Engineering
Researches. 2013, N 2, p. 55-61.
18. J. Merkel, B. Planer-Friedrich, C. Wolkers-
dorfer. Uranium in the aquatic environment. Germany,
Springer-Verlag Berlin, Heidelberg, 2002, p. 134-136.
19. M. Plötze, R. Hermanns Stengele, G. Kahr.
Alteration of clay minerals-gamma-irradiation effects
on physicochemical properties // Applied Clay Science.
2003, v. 23, N 1, р. 195-202.
20. M.K. Ismayilova. Influence of energy transfer in
the adsorbed state of the clay at the petroleum radiolysis
under gamma radiation at room temperature // Radiation
effects and defects in solids. 2020, v. 175, N 5-6, p. 472-
481.
21. K.P. Schroder, J. Sauer, M. leslie, C.R.A. Cat-
low, J.M. Thomas. Bridging hydrodyl groups in zeolitic
cata-lysts: a computer simulation of their structure,
vibratio-nal properties and acidity in protonated
faujasites (HYzeolites) // Chem. Phys. Lett. 1992,
v. 188, N 3-4, р. 320.
22. P. Ugliengo, A.M. Ferrari, A. Zehina, E. Gar-
rone. Structure and Vibrational Features of Complexes
between Unsaturated Hydrocarbons and Acidic Sites in
Silica and Zeolites: An ab Initio Study // J. Phys. Chem.
1996, v. 100, N 9, р. 3632-3645
23. M.K. Ismayilova, R.J. Qasimov, M.A. Bay-
ramov, S.Z. Melikova. The effects of low-dose radiation
on structural isomerization of gunashli oil’s
hydrocarbons in presence of bentonite // Jornal of
radiation researches. 2020, v. 7, N 1, p. 57-63.
Article received 30.08.2021
ВЛИЯНИЕ ГАММА-ОБЛУЧЕНИЯ НА СИЛИКАТНЫЕ СЛОИ
НАНОСТРУКТУРИРОВАННОГО Na-БЕНТОНИТА ПРИ КОМНАТНОЙ ТЕМПЕРАТУРЕ
М.К. Исмаилова
Изучено воздействие гамма-лучей на наноструктурированную бентонитовую глину из месторождения
Альпоид. Влияние высоких доз (до 256 кГр) гамма-излучения на структуру в монтмориллоните исследовано
с помощью инфракрасной спектроскопии. После облучения при дозе 57 кГр существенных изменений не
наблюдалось. Было отмечено небольшое изменение содержания воды, но оно не носит систематического
характера. Результаты показывают, что структура монтмориллонита может накапливать высокие дозы
радиации с повреждением. Ожидается, что модификации, которые, скорее всего, будут вызваны излучением,
будут находиться внутри силикатных слоев. Морфология нанокомпозитов была изучена с помощью
сканирующей электронной микроскопии. В данной работе влияние ионизирующего излучения на Na-
бентонитовую глину исследовано методом FT-IR. Эти спектры показывают пригодность ИК-Фурье-анализа
поверхностей минералов и изменения спектров, вызванные поверхностными явлениями.
ВПЛИВ ГАММА-ОПРОМІНЕННЯ НА СИЛІКАТНІ ШАРИ НАНОСТРУКТУРОВАНОГО
Nа-БЕНТОНІТУ ПРИ КІМНАТНІЙ ТЕМПЕРАТУРІ
М.К. Ісмаїлова
Вивчено вплив гамма-променів на наноструктуровану бентонітову глину з родовища Альпоід. Вплив
високих доз (до 256 кГр) гамма-випромінювання на структуру в монтморилоніті досліджено за допомогою
інфрачервоної спектроскопії. Після опромінення при дозі 57 кГр істотних змін не спостерігалося. Була
відзначена невелика зміна вмісту води, але вона не має систематичного характеру. Результати показують,
що структура монтморилоніту може накопичувати високі дози радіації з пошкодженням. Очікується, що
модифікації, які, швидше за все, будуть викликані випромінюванням, перебуватимуть всередині силікатних
шарів. Морфологія нанокомпозитів була вивчена за допомогою скануючої електронної мікроскопії. У цій
роботі вплив іонізуючого випромінювання на Na-бентонітову глину досліджено методом FT-IR. Ці спектри
показують придатність ІЧ-Фур'є-аналізу поверхонь мінералів і зміни спектрів, які викликані поверхневими
явищами.
https://pubs.geoscienceworld.org/ccm/article/42/6/657/47625/Nature-and-stability-of-radiation-induced-defects
https://pubs.geoscienceworld.org/ccm/article/42/6/657/47625/Nature-and-stability-of-radiation-induced-defects
https://pubs.geoscienceworld.org/ccm/article/42/6/657/47625/Nature-and-stability-of-radiation-induced-defects
https://pubs.geoscienceworld.org/ccm/article/42/6/657/47625/Nature-and-stability-of-radiation-induced-defects
http://www.azbms.tk/
https://www.researchgate.net/profile/Michael_Ploetze
https://www.researchgate.net/scientific-contributions/2021293864_R_Hermanns_Stengele
https://www.researchgate.net/scientific-contributions/81910185_G_Kahr
https://www.researchgate.net/journal/0169-1317_Applied_Clay_Science
https://www.researchgate.net/profile/S-Melikova/publication/344014528_The_effects_of_low-dose_radiation_on_structural_isomerization_of_Gunashli_oil's_hydrocarbons_in_presence_of_bentonite_pp_57-62_THE_EFFECTS_OF_LOW-DOSE_RADIATION_ON_STRUCTURAL_ISOMERIZATION_OF_GUNASHLI/links/5f4df45592851c6cfd1b8c08/The-effects-of-low-dose-radiation-on-structural-isomerization-of-Gunashli-oils-hydrocarbons-in-presence-of-bentonite-pp-57-62-THE-EFFECTS-OF-LOW-DOSE-RADIATION-ON-STRUCTURAL-ISOMERIZATION-OF-GUNASHLI.pdf
https://www.researchgate.net/profile/S-Melikova/publication/344014528_The_effects_of_low-dose_radiation_on_structural_isomerization_of_Gunashli_oil's_hydrocarbons_in_presence_of_bentonite_pp_57-62_THE_EFFECTS_OF_LOW-DOSE_RADIATION_ON_STRUCTURAL_ISOMERIZATION_OF_GUNASHLI/links/5f4df45592851c6cfd1b8c08/The-effects-of-low-dose-radiation-on-structural-isomerization-of-Gunashli-oils-hydrocarbons-in-presence-of-bentonite-pp-57-62-THE-EFFECTS-OF-LOW-DOSE-RADIATION-ON-STRUCTURAL-ISOMERIZATION-OF-GUNASHLI.pdf
https://www.researchgate.net/profile/S-Melikova/publication/344014528_The_effects_of_low-dose_radiation_on_structural_isomerization_of_Gunashli_oil's_hydrocarbons_in_presence_of_bentonite_pp_57-62_THE_EFFECTS_OF_LOW-DOSE_RADIATION_ON_STRUCTURAL_ISOMERIZATION_OF_GUNASHLI/links/5f4df45592851c6cfd1b8c08/The-effects-of-low-dose-radiation-on-structural-isomerization-of-Gunashli-oils-hydrocarbons-in-presence-of-bentonite-pp-57-62-THE-EFFECTS-OF-LOW-DOSE-RADIATION-ON-STRUCTURAL-ISOMERIZATION-OF-GUNASHLI.pdf
|