Radiation damage in tungsten target of the "KIPT Neutron Source"

In this work, mathematical modeling of a complex of processes occurring in a tungsten target under irradiation with high-energy electrons with an energy of 100 MeV: an electromagnetic shower, the production of photo-neutrons, and particle transport along the target, damage from neutrons of the subcr...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2021
Автори: Gann, V.V., Gann, A.V., Borts, B.V., Karnaukhov, I.M., Gladkikh, P.I., Parkhomenko, A.A.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2021
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/195458
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Radiation damage in tungsten target of the "KIPT Neutron Source" / V.V. Gann, A.V. Gann, B.V. Borts, I.M. Karnaukhov, P.I. Gladkikh, A.A. Parkhomenko // Problems of Atomic Science and Technology. — 2021. — № 6. — С. 17-21. — Бібліогр.: 12 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-195458
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-1954582025-02-09T18:14:44Z Radiation damage in tungsten target of the "KIPT Neutron Source" Радіаційна пошкоджуємость вольфрамової мішені джерела нейтронів Радиационная повреждаемость вольфрамовой мишени нейтронного источника Gann, V.V. Gann, A.V. Borts, B.V. Karnaukhov, I.M. Gladkikh, P.I. Parkhomenko, A.A. Interaction of relativistic particles with crystals and matter In this work, mathematical modeling of a complex of processes occurring in a tungsten target under irradiation with high-energy electrons with an energy of 100 MeV: an electromagnetic shower, the production of photo-neutrons, and particle transport along the target, damage from neutrons of the subcritical assembly. It was found that the greatest contribution to the rate of damage formation in a tungsten target give the elastic scattering of high-energy electrons on nuclei. Проведено математичне моделювання комплексу процесів, що проходять у вольфрамовій мішені при опроміненні високоенергетичними електронами з енергією 100 МеВ: електромагнітного ливню, утворення фотонейтронів, транспорту частинок уздовж мішені, пошкодження від нейтронів підкритичної збірки. Встановлено, що найбільший внесок у швидкість створення пошкоджень у вольфрамовій мішені вносить пружна взаємодія високоенергетичних електронів з ядрами. Проведено математическое моделирование комплекса процессов, проходящих в вольфрамовой мишени при облучении высокоэнергетическими электронами с энергией 100 МэВ: электромагнитного ливня, рождения фотонейтронов, транспорта частиц вдоль мишени, повреждений от нейтронов подкритической сборки. Установлено, что наибольший вклад в скорость образования повреждений в вольфрамовой мишени вносит упругое взаимодействие высокоэнергетических электронов с ядрами. 2021 Article Radiation damage in tungsten target of the "KIPT Neutron Source" / V.V. Gann, A.V. Gann, B.V. Borts, I.M. Karnaukhov, P.I. Gladkikh, A.A. Parkhomenko // Problems of Atomic Science and Technology. — 2021. — № 6. — С. 17-21. — Бібліогр.: 12 назв. — англ. 1562-6016 PACS: 29.17+w.Dh, 29.25.Dz DOI: https://doi.org/10.46813/2021-136-017 https://nasplib.isofts.kiev.ua/handle/123456789/195458 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Interaction of relativistic particles with crystals and matter
Interaction of relativistic particles with crystals and matter
spellingShingle Interaction of relativistic particles with crystals and matter
Interaction of relativistic particles with crystals and matter
Gann, V.V.
Gann, A.V.
Borts, B.V.
Karnaukhov, I.M.
Gladkikh, P.I.
Parkhomenko, A.A.
Radiation damage in tungsten target of the "KIPT Neutron Source"
Вопросы атомной науки и техники
description In this work, mathematical modeling of a complex of processes occurring in a tungsten target under irradiation with high-energy electrons with an energy of 100 MeV: an electromagnetic shower, the production of photo-neutrons, and particle transport along the target, damage from neutrons of the subcritical assembly. It was found that the greatest contribution to the rate of damage formation in a tungsten target give the elastic scattering of high-energy electrons on nuclei.
format Article
author Gann, V.V.
Gann, A.V.
Borts, B.V.
Karnaukhov, I.M.
Gladkikh, P.I.
Parkhomenko, A.A.
author_facet Gann, V.V.
Gann, A.V.
Borts, B.V.
Karnaukhov, I.M.
Gladkikh, P.I.
Parkhomenko, A.A.
author_sort Gann, V.V.
title Radiation damage in tungsten target of the "KIPT Neutron Source"
title_short Radiation damage in tungsten target of the "KIPT Neutron Source"
title_full Radiation damage in tungsten target of the "KIPT Neutron Source"
title_fullStr Radiation damage in tungsten target of the "KIPT Neutron Source"
title_full_unstemmed Radiation damage in tungsten target of the "KIPT Neutron Source"
title_sort radiation damage in tungsten target of the "kipt neutron source"
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2021
topic_facet Interaction of relativistic particles with crystals and matter
url https://nasplib.isofts.kiev.ua/handle/123456789/195458
citation_txt Radiation damage in tungsten target of the "KIPT Neutron Source" / V.V. Gann, A.V. Gann, B.V. Borts, I.M. Karnaukhov, P.I. Gladkikh, A.A. Parkhomenko // Problems of Atomic Science and Technology. — 2021. — № 6. — С. 17-21. — Бібліогр.: 12 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT gannvv radiationdamageintungstentargetofthekiptneutronsource
AT gannav radiationdamageintungstentargetofthekiptneutronsource
AT bortsbv radiationdamageintungstentargetofthekiptneutronsource
AT karnaukhovim radiationdamageintungstentargetofthekiptneutronsource
AT gladkikhpi radiationdamageintungstentargetofthekiptneutronsource
AT parkhomenkoaa radiationdamageintungstentargetofthekiptneutronsource
AT gannvv radíacíjnapoškodžuêmostʹvolʹframovoímíšenídžerelanejtronív
AT gannav radíacíjnapoškodžuêmostʹvolʹframovoímíšenídžerelanejtronív
AT bortsbv radíacíjnapoškodžuêmostʹvolʹframovoímíšenídžerelanejtronív
AT karnaukhovim radíacíjnapoškodžuêmostʹvolʹframovoímíšenídžerelanejtronív
AT gladkikhpi radíacíjnapoškodžuêmostʹvolʹframovoímíšenídžerelanejtronív
AT parkhomenkoaa radíacíjnapoškodžuêmostʹvolʹframovoímíšenídžerelanejtronív
AT gannvv radiacionnaâpovreždaemostʹvolʹframovojmišeninejtronnogoistočnika
AT gannav radiacionnaâpovreždaemostʹvolʹframovojmišeninejtronnogoistočnika
AT bortsbv radiacionnaâpovreždaemostʹvolʹframovojmišeninejtronnogoistočnika
AT karnaukhovim radiacionnaâpovreždaemostʹvolʹframovojmišeninejtronnogoistočnika
AT gladkikhpi radiacionnaâpovreždaemostʹvolʹframovojmišeninejtronnogoistočnika
AT parkhomenkoaa radiacionnaâpovreždaemostʹvolʹframovojmišeninejtronnogoistočnika
first_indexed 2025-11-29T12:27:52Z
last_indexed 2025-11-29T12:27:52Z
_version_ 1850127711483199488
fulltext ISSN 1562-6016. ВАНТ. 2021. № 6(136) 17 INTERACTION OF RELATIVISTIC PARTICLES WITH CRYSTALS AND MATTER https://doi.org/10.46813/2021-136-017 RADIATION DAMAGE IN TUNGSTEN TARGET OF THE “KIPT NEUTRON SOURCE” V.V. Gann, A.V. Gann, B.V. Borts, I.M. Karnaukhov, P.I. Gladkikh, A.A. Parkhomenko National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine E-mail: gann @kipt.kharkov.ua In this work, mathematical modeling of a complex of processes occurring in a tungsten target under irradiation with high-energy electrons with an energy of 100 MeV: an electromagnetic shower, the production of photo- neutrons, and particle transport along the target, damage from neutrons of the subcritical assembly. It was found that the greatest contribution to the rate of damage formation in a tungsten target give the elastic scattering of high- energy electrons on nuclei. PACS: 29.17+w.Dh, 29.25.Dz INTRODUCTION At the National Scientific Center "Kharkov Institute of Physics and Technology" (NSC KIPT, Kharkov, Ukraine) together with the Argonne National Laborato- ry (ANL, USA) has successfully carried out the physical start-up of a neutron source (NS) based on a subcritical assembly controlled by a linear electron accelerator (as a driver). Two options are considered as the target material: - tungsten and uranium-molybdenum alloy. Previously, the authors have already analyzed the radiation damage- ability of a uranium target under irradiation with high- energy electrons with an energy of 100 MeV [1], and therefore, this work is devoted to a tungsten target. Today, tungsten is the main material for solid-state targets, both in operation and under construction, mega- watt accelerator-controlled nuclear systems (ADS) [2 - 4]. Despite a number of disadvantages, the reason for its use is rather high neutron yield and thermal conductivity. The tungsten target NS NSC KIPT has already worked under a beam of high-energy electrons with an energy of 100 MeV in the process of tuning the accelera- tor and the physical start-up of the installation for more than a year in total. Therefore, evaluation the radiation resistance of a tungsten target is very important problem. The lifetime of the NS depends on the limit of radia- tion dose for the target material (in displacements per atom). To determine the radiation dose in a thick target under the action of high-energy electrons, it is necessary to evaluate the contribution of elastic and inelastic pro- cesses to defect formation: scattering and nuclear reac- tions involving high-energy electrons, neutrons, and gamma quanta. The aim of this work was computer modeling using the MCNPX code of complex processes occurring in a tungsten target under irradiation by high-energy elec- trons: an electromagnetic shower, photo-neutron pro- duction, particle transport along the target, and damage in the target by neutrons from the subcritical assembly. 1. TUNGSTEN TARGET MODEL The target consists of seven 6666 mm tungsten plates of various thicknesses (see Table) with a tantalum coating 0.26…0.27 mm thick. The gap between the plates is 1.75 mm filled with water. The target is sepa- rated from the vacuum chamber of the electronic con- ductor by an aluminum entrance window of 2 mm thick. Behind the target is a helium-filled chamber (marked in yellow in Fig. 1. Thickness of plates W (in cm) 1 2 3 4 5 6 7 0.25 0.25 0.247 0.353 0.358 0.555 0.95 Fig. 1. Geometry of the tungsten target model A plane-parallel electron beam with a square cross section of 6464 mm with an energy of 100 MeV and a power of 100 kW is incident on the target. An electro- magnetic shower develops in the target, bremsstrahlung gamma quanta enter into reactions with atomic nuclei and photo-neutrons appear, which enter the subcritical assembly, where they multiply. 2. RESULTS OF COMPUTER MODELING USING THE MCNPX CODE The process of electron interaction with the target material was simulated using the MCNPX code [5]. The profile of energy release in the target is shown in Fig. 2. Energy is mainly released in metal plates, and only a small fraction of energy is released in water. The distribution of the electron flux along the length of the target is shown in Fig. 3 (per one incident elec- tron). The development of an electromagnetic shower leads to a twofold increase in the electron flux density, ISSN 1562-6016. ВАНТ. 2021. № 6(136) 18 and then deceleration of the electron beam occurs due to the processes of ionization and emission of brems- strahlung gamma quanta. Fig. 2. The distribution of the volumetric power along the length of the target Fig. 3. Distribution of the electron flux along the length of the target Fig. 4 shows the distribution of the flux density of gamma quanta along the length of the target (per one incident electron). Fig. 4. Distribution of the flux of gamma quanta along the length of the target Such photon distribution profile is formed as a result of the processes of bremsstrahlung gamma quanta emis- sion during the scattering of electrons by nuclei, the production of electron-positron pairs by photons near the nuclei, and processes of positron annihilation with emission of photons. The damping of the flux is due to absorption of photons by nuclei and atomic systems. The maximum of photon flux in the target is at a depth of 1.3 cm (the depth is measured from the target en- trance window). 0 10 20 30 40 50 60 70 80 0.0 0.1 0.2 0.3 0.4 0.5 W-000 (, n)   n  b E  , MeV Fig. 5. Cross section of photoneutron production in tungsten [7] Due to interaction of gamma quanta with the nuclei, neutrons are emitted from nuclei as a result of the (γ, n) reaction, the cross section of which for tungsten is shown in Fig. 5. The cross section has a pronounced maximum due to the giant dipole resonance in the elec- tromagnetic interaction of a gamma quantum with a nucleus [6]. The distribution of the neutron flux result- ing from photonuclear reactions along the target is shown in Fig. 6 (calculation using the MCNPX code). Fig. 6. Distribution of the neutron flux along the length of the target Using the simulation results obtained above, it is possible to calculate the rate of radiation damage accu- mulation in the target. 3. RADIATION DEFECTS PRODUCTION RATE IN A TUNGSTEN TARGET In a tungsten target under electron irradiation with an energy of 100 MeV radiation defects appear. The main sources of the formation of such defects are recoil nuclei arising from electrons and neutrons scattering on nuclei, as well as from photonuclear reactions. 3.1. Calculated by the method described in [7], the cross section for the formation of radiation defects in tungsten irradiated by electrons with energy Ee is shown in Fig. 7. ISSN 1562-6016. ВАНТ. 2021. № 6(136) 19 0 20 40 60 80 100 0 20 40 60 80 100 120  D  b a rn Ee, MeV B Fig. 7. Dependence of the defect formation cross section in W, irradiated by electrons, on energy The cross section of defect formation in tungsten under neutron irradiation is shown in Fig. 8 [8]. 1E-10 1E-8 1E-6 1E-4 0.01 1 100 1E-4 1E-3 0.01 0.1 1 10 100 1000  D  b a rn E n , MeV W Fig. 8. Dependence of the cross section of defect formation in tungsten on the neutron energy 10 100 1E-5 1E-4 1E-3 0.01 z=0.357 z=0.407 z=0.457 z=0.507 z=0.557 z=0.8715 z=0.9965 z=1.35175 z=1.47525 z=1.84825 z=2.02475 z=2.516Ф e  1 /M e V E e , MeV Fig. 9. Electron spectra at different depths along the length of the target The rate of accumulation of radiation defects upon irradiation with a flux of electrons with a spectrum ( )e eE is determined by the expression: ( ) ( ) .e De e e e eD E E dE  (1) The electron spectrum ( )e eE calculated using the MCNPX program at various depths in a tungsten target is shown in Fig. 9 (per one falling electron). At an ac- celerator current of 1 ma, we have an electron flux j = 6.1510 15 e/s. Using formula (1), we obtain the de- pendence of the rate of accumulation of defects on the depth eD (z) (Fig. 10). 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 . D e , d p a /y e a r z, cm Fig. 10. The rate of defect formation by 100 MeV electrons along the depth W 3.2. The rate of accumulation of radiation defects under irradiation with neutrons with the spectrum ( )n nE is calculated similarly: ( ) ( ) .n Dn n n n nD E E dE  (2) 0.1 1 1E-5 1E-4 1E-3 z = 0.457 0.872 1.352 1.848 2.516 3.200 4.176 Ф n  1 /c m 2 /M e V E n , MeV Fig. 11. Photo-neutron spectra at different depths along the length of the tungsten target 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 0.00 0.01 0.02 0.03 . D n , d p a /y e a r z, cm Fig. 12. The rate of defect formation by photo-neutrons in depth in W ISSN 1562-6016. ВАНТ. 2021. № 6(136) 20 The spectrum of photo-neutrons calculated using the MCNPX code at different depths in a tungsten target is shown in Fig. 11. The dependence of the rate of accu- mulation of defects on the depth z is shown in Fig. 12; it reaches a maximum value of ~ 0.03 dpa/year at a depth of 1.6 cm. 3.3. Let us consider the contribution to radiation damage of recoil nuclei arising in a tungsten target dur- ing photonuclear reactions. The maximum cross section for the production of photo-neutrons (see Fig. 5) falls on an energy of 16 MeV. When a photon is absorbed by a nucleus and a neutron is emitted, a recoil nucleus ap- pears. The average energy of photo-neutrons is 1 MeV [4]. Taking into account that the energy of the recoil nucleus T is related to the energy of the emitted neutron En by the law of conservation of momentum: T = En m/M we obtain the value of the average energy of the recoil nuclei T ~ 5400 eV. The threshold displace- ment energy for tungsten atoms is Ed =70 eV, and ac- cording to the formula [9] of the NRT standard 0.8 / (2 )D dN T E we get that one recoil nucleus creates ~ 31 displaced atoms. The probability of the appearance of a recoil nucleus is determined by the formula: ( ) ( ) ,nW E E dE      (3) where ( )E  is the spectral flux density of photons, which at E = 16 MeV is 0.002/cm 2 /MeV (Fig. 13). 22 4 6 8 1010 20 30 40 50 6070 1E-5 1E-4 1E-3 0.01 0.1 z = 0.357 0.407 0.457 0.507 0.557 0.876 0.997 1.352 1.475 1.848 2.025 2.516 Ф   1 /c m 2 /M e V E  , MeV Fig. 13. Spectra of gamma quanta at different depths along the length of the tungsten target Substituting the photo-neutron production cross- section (see Fig. 5) and the spectral flux density of pho- tons (see Fig. 13) into expression (3), we obtain the prob- ability of the release the photo-neutrons (and the recoil nucleus). 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 0.00 0.01 0.02 0.03 0.04 0.05 . D , d p a /y e a r z Fig. 14. The rate of defect formation due to the reaction (γ, n) along the depth of the target Hence, we receive the radiation damage rate along the depth of the target due to the reaction (γ, n): 31D jW  , which reaches a maximum value of 0.05 dpa/year at a depth of 1.2 cm (Fig. 14). 3.4. Let us consider the contribution to defect for- mation from neutrons coming from the subcritical as- sembly (SCA) and irradiating the neutron-producing target. Let us estimate the spectrum of neutrons released from the SCA into the tungsten target at keff = 0.96. In [5], the spectrum of neutrons from SCA with keff = 0.975 on the surface of a uranium target irradiated with 200 MeV electrons at a current of 0.5 mA was obtained (Fig. 15). A tungsten target irradiated with 100 MeV electrons at a current of 1 ma will give twice as few neutrons as a uranium target at the same electron beam power, and for a SCA with keff = 0.96, the value of 1/(1-keff) will be 1.6 times less than for an SCA with keff = 0.975. Thus, in the case of a tungsten target the data in Fig. 15 should be reduced by a factor of 3.2. Fig. 15. The spectrum of neutrons from SCA with keff = 0.975 on the surface of a uranium target irradiated by electrons with an energy of 200 MeV Using formula (2) we obtain the radiation damage dose rate from SCA neutrons: Ï ÊÑD ~ 0.15 dpa/year. Fig. 16. Total rate of defect formation in tungsten and partial contributions 3.5. In Fig. 16 the total rate of defect formation in tungsten and the partial contributions of various mecha- nisms of radiation damage are shown: e is the contribu- tion of elastic scattering of electrons, gn  the scattering of photo-neutrons on nuclei, g  formation of recoil ISSN 1562-6016. ВАНТ. 2021. № 6(136) 21 nuclei in (γ, n) reactions, fn  scattering of neutrons from the SCA on target nuclei. According to Fig. 16, the maximum rate of dose 83.0max D dpa/year is reached in the second plate of the tungsten target (at a depth of ~ 1 cm). This value is two orders of magnitude less than the rate of dose rise expected in a uranium target with the same irradiation parameters [1]. In works [10 - 12] it was shown that the resource of tungsten targets of the Chinese neutron source CSNS (protons 1.6 GeV, 120 kW) and the European neutron source ESS (protons 2 GeV, 5 MW) is 4-5 years of con- tinuous operation, which corresponds to approximately the same radiation doses of the order of 10 dpa. Hence, it follows that the formation of radiation defects limits the service life of the tungsten target of the NSC KIPT subcritical assembly to ten years. CONCLUSIONS The rate of formation of displacements in the tung- sten target of the neutron source at the NSC KIPT under the action of irradiation with high-energy electrons with an energy of 100 MeV has been calculated. The contri- butions of the processes of scattering of high-energy electrons, neutrons and gamma-quanta, the production of photo-neutrons, damage from neutrons of the subcrit- ical assembly are considered. It was found that the greatest contribution to the rate of damage formation in a tungsten target is made by the elastic interaction of high-energy electrons with nuclei. The maximum dose rate is 83.0max D dpa/year and is achieved in the second plate of the tungsten target (at a depth of ~ 1 cm). REFERENCES 1. V.V. Gann, A.V. Gann, B.V. Borts, I.M. Karnaukhov, A.A. Parkhomenko. Radiation damage in uranium target of the accelerator driven system “KIPT neutron source” // Problems of Atomic Sci- ence and Technology. 2021, № 2, p. 24-28. 2. A.T. Nelson, J.A. O’Toole, R.A. Valicenti, S.A. Maloy. Fabrication of a tantalum-clad tungsten target for LANSCE // Journal of Nuclear Materials. 2012, v. 431, p. 172-184. 3. D. Wilcox, P. Loveridge, T. Davenne, at al. Stress level and failure modes of Ta clad W targets of ISIS // Journal of Nuclear Materials. 2018, v. 506, p. 76- 82. 4. J. Habainy, Y. Lee, Y. Dai, and S. Iyengar. Tungsten as Spallation Material at the European Spallation Source // Proc. 14th Int. Workshop Spallation Mate- rials Technology. JPS Conf. Proc. 2020, 28, 031004, doi.org/10.7566/JPSCP.28.031004. 5. Y. Gohar, I. Bolshinsky, H. Belch, F. Dunn, R. Kel- logg, T. Sofu, A. Talamo, Z. Zhong. Design and analyses of the KIPT source facility concept // Na- tional Science “Kharkiv Institute of Physics and Technology Center”. Kharkiv, Ukraine, July 8-9, 2008. 6. V.G. Nedorezov, Yu.N. Ranjuk. Fotodelenie jader za gigantskim rezonansom. Kiev: “Naukova dumka”, 1989, 191 p. 7. V.V. Gann, O.V. Yudin. Defektoobrazovanie v vysokotemperaturnykh sverkhprovodnikakh pri elektronnom obluchenii // Problems of Atomic Sci- ence and Technology. Series “FRP i RM”. 1989, v. 1(48), p. 63-66 (in Russian). 8. https://www.oecd- nea.org/janisweb/book/gammas/W 186/ 9. M.J. Norgett, M.T. Robinson, I.M. Torrens. A pro- posed method of calculating displacement dose rates” // Nucl. Engr. and Design. 1975, v. 33(1), p. 50. 10. W. Yin, Q.Z. Yu, Y.L. Lu, S.L. Wang, J.E. Tong, T.J. Liang. The expected radiation damage of CSNS target // Journal of Nuclear Materials. 2012, v. 431, p. 39-43. 11. F. Sordo et al. Radiation damage analysis for the ESS target, Technical Report ESS-0037287, Euro- pean Spallation Source ERIC, 2016. 12. J. Habainy, Y. Lee, K.B. Surdelli, A. Prosvetov, P. Simon, S. Iyengar, Y. Dai, M. Tomut. Study of heavy ions beam induced damage in tungsten for high power target applications // Nuclear Instr. and Meth- ods in Physics Research B. 2019, v. 439, p. 7-16. Article received 07.10.2021 РАДИАЦИОННАЯ ПОВРЕЖДАЕМОСТЬ ВОЛЬФРАМОВОЙ МИШЕНИ НЕЙТРОННОГО ИСТОЧНИКА В.В. Ганн, А.В. Ганн, Б.В. Борц, И.М. Карнаухов, П.И. Гладких, А.А. Пархоменко Проведено математическое моделирование комплекса процессов, проходящих в вольфрамовой мишени при облучении высокоэнергетическими электронами с энергией 100 МэВ: электромагнитного ливня, рожде- ния фотонейтронов, транспорта частиц вдоль мишени, повреждений от нейтронов подкритической сборки. Установлено, что наибольший вклад в скорость образования повреждений в вольфрамовой мишени вносит упругое взаимодействие высокоэнергетических электронов с ядрами. РАДІАЦІЙНА ПОШКОДЖУЄМОСТЬ ВОЛЬФРАМОВОЇ МІШЕНІ ДЖЕРЕЛА НЕЙТРОНІВ В.В. Ганн, А.В. Ганн, Б.В. Борц, І.М. Карнаухов, П.І. Гладких, О.О. Пархоменко Проведено математичне моделювання комплексу процесів, що проходять у вольфрамовій мішені при опроміненні високоенергетичними електронами з енергією 100 МеВ: електромагнітного ливню, утворення фотонейтронів, транспорту частинок уздовж мішені, пошкодження від нейтронів підкритичної збірки. Вста- новлено, що найбільший внесок у швидкість створення пошкоджень у вольфрамовій мішені вносить пружна взаємодія високоенергетичних електронів з ядрами. https://www.oecd-nea.org/janisweb/book/gammas/W%20186/ https://www.oecd-nea.org/janisweb/book/gammas/W%20186/