Radiation damage in tungsten target of the "KIPT Neutron Source"
In this work, mathematical modeling of a complex of processes occurring in a tungsten target under irradiation with high-energy electrons with an energy of 100 MeV: an electromagnetic shower, the production of photo-neutrons, and particle transport along the target, damage from neutrons of the subcr...
Збережено в:
| Дата: | 2021 |
|---|---|
| Автори: | , , , , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2021
|
| Назва видання: | Вопросы атомной науки и техники |
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/195458 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Radiation damage in tungsten target of the "KIPT Neutron Source" / V.V. Gann, A.V. Gann, B.V. Borts, I.M. Karnaukhov, P.I. Gladkikh, A.A. Parkhomenko // Problems of Atomic Science and Technology. — 2021. — № 6. — С. 17-21. — Бібліогр.: 12 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-195458 |
|---|---|
| record_format |
dspace |
| spelling |
nasplib_isofts_kiev_ua-123456789-1954582025-02-09T18:14:44Z Radiation damage in tungsten target of the "KIPT Neutron Source" Радіаційна пошкоджуємость вольфрамової мішені джерела нейтронів Радиационная повреждаемость вольфрамовой мишени нейтронного источника Gann, V.V. Gann, A.V. Borts, B.V. Karnaukhov, I.M. Gladkikh, P.I. Parkhomenko, A.A. Interaction of relativistic particles with crystals and matter In this work, mathematical modeling of a complex of processes occurring in a tungsten target under irradiation with high-energy electrons with an energy of 100 MeV: an electromagnetic shower, the production of photo-neutrons, and particle transport along the target, damage from neutrons of the subcritical assembly. It was found that the greatest contribution to the rate of damage formation in a tungsten target give the elastic scattering of high-energy electrons on nuclei. Проведено математичне моделювання комплексу процесів, що проходять у вольфрамовій мішені при опроміненні високоенергетичними електронами з енергією 100 МеВ: електромагнітного ливню, утворення фотонейтронів, транспорту частинок уздовж мішені, пошкодження від нейтронів підкритичної збірки. Встановлено, що найбільший внесок у швидкість створення пошкоджень у вольфрамовій мішені вносить пружна взаємодія високоенергетичних електронів з ядрами. Проведено математическое моделирование комплекса процессов, проходящих в вольфрамовой мишени при облучении высокоэнергетическими электронами с энергией 100 МэВ: электромагнитного ливня, рождения фотонейтронов, транспорта частиц вдоль мишени, повреждений от нейтронов подкритической сборки. Установлено, что наибольший вклад в скорость образования повреждений в вольфрамовой мишени вносит упругое взаимодействие высокоэнергетических электронов с ядрами. 2021 Article Radiation damage in tungsten target of the "KIPT Neutron Source" / V.V. Gann, A.V. Gann, B.V. Borts, I.M. Karnaukhov, P.I. Gladkikh, A.A. Parkhomenko // Problems of Atomic Science and Technology. — 2021. — № 6. — С. 17-21. — Бібліогр.: 12 назв. — англ. 1562-6016 PACS: 29.17+w.Dh, 29.25.Dz DOI: https://doi.org/10.46813/2021-136-017 https://nasplib.isofts.kiev.ua/handle/123456789/195458 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
English |
| topic |
Interaction of relativistic particles with crystals and matter Interaction of relativistic particles with crystals and matter |
| spellingShingle |
Interaction of relativistic particles with crystals and matter Interaction of relativistic particles with crystals and matter Gann, V.V. Gann, A.V. Borts, B.V. Karnaukhov, I.M. Gladkikh, P.I. Parkhomenko, A.A. Radiation damage in tungsten target of the "KIPT Neutron Source" Вопросы атомной науки и техники |
| description |
In this work, mathematical modeling of a complex of processes occurring in a tungsten target under irradiation with high-energy electrons with an energy of 100 MeV: an electromagnetic shower, the production of photo-neutrons, and particle transport along the target, damage from neutrons of the subcritical assembly. It was found that the greatest contribution to the rate of damage formation in a tungsten target give the elastic scattering of high-energy electrons on nuclei. |
| format |
Article |
| author |
Gann, V.V. Gann, A.V. Borts, B.V. Karnaukhov, I.M. Gladkikh, P.I. Parkhomenko, A.A. |
| author_facet |
Gann, V.V. Gann, A.V. Borts, B.V. Karnaukhov, I.M. Gladkikh, P.I. Parkhomenko, A.A. |
| author_sort |
Gann, V.V. |
| title |
Radiation damage in tungsten target of the "KIPT Neutron Source" |
| title_short |
Radiation damage in tungsten target of the "KIPT Neutron Source" |
| title_full |
Radiation damage in tungsten target of the "KIPT Neutron Source" |
| title_fullStr |
Radiation damage in tungsten target of the "KIPT Neutron Source" |
| title_full_unstemmed |
Radiation damage in tungsten target of the "KIPT Neutron Source" |
| title_sort |
radiation damage in tungsten target of the "kipt neutron source" |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| publishDate |
2021 |
| topic_facet |
Interaction of relativistic particles with crystals and matter |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/195458 |
| citation_txt |
Radiation damage in tungsten target of the "KIPT Neutron Source" / V.V. Gann, A.V. Gann, B.V. Borts, I.M. Karnaukhov, P.I. Gladkikh, A.A. Parkhomenko // Problems of Atomic Science and Technology. — 2021. — № 6. — С. 17-21. — Бібліогр.: 12 назв. — англ. |
| series |
Вопросы атомной науки и техники |
| work_keys_str_mv |
AT gannvv radiationdamageintungstentargetofthekiptneutronsource AT gannav radiationdamageintungstentargetofthekiptneutronsource AT bortsbv radiationdamageintungstentargetofthekiptneutronsource AT karnaukhovim radiationdamageintungstentargetofthekiptneutronsource AT gladkikhpi radiationdamageintungstentargetofthekiptneutronsource AT parkhomenkoaa radiationdamageintungstentargetofthekiptneutronsource AT gannvv radíacíjnapoškodžuêmostʹvolʹframovoímíšenídžerelanejtronív AT gannav radíacíjnapoškodžuêmostʹvolʹframovoímíšenídžerelanejtronív AT bortsbv radíacíjnapoškodžuêmostʹvolʹframovoímíšenídžerelanejtronív AT karnaukhovim radíacíjnapoškodžuêmostʹvolʹframovoímíšenídžerelanejtronív AT gladkikhpi radíacíjnapoškodžuêmostʹvolʹframovoímíšenídžerelanejtronív AT parkhomenkoaa radíacíjnapoškodžuêmostʹvolʹframovoímíšenídžerelanejtronív AT gannvv radiacionnaâpovreždaemostʹvolʹframovojmišeninejtronnogoistočnika AT gannav radiacionnaâpovreždaemostʹvolʹframovojmišeninejtronnogoistočnika AT bortsbv radiacionnaâpovreždaemostʹvolʹframovojmišeninejtronnogoistočnika AT karnaukhovim radiacionnaâpovreždaemostʹvolʹframovojmišeninejtronnogoistočnika AT gladkikhpi radiacionnaâpovreždaemostʹvolʹframovojmišeninejtronnogoistočnika AT parkhomenkoaa radiacionnaâpovreždaemostʹvolʹframovojmišeninejtronnogoistočnika |
| first_indexed |
2025-11-29T12:27:52Z |
| last_indexed |
2025-11-29T12:27:52Z |
| _version_ |
1850127711483199488 |
| fulltext |
ISSN 1562-6016. ВАНТ. 2021. № 6(136) 17
INTERACTION OF RELATIVISTIC PARTICLES
WITH CRYSTALS AND MATTER
https://doi.org/10.46813/2021-136-017
RADIATION DAMAGE IN TUNGSTEN TARGET
OF THE “KIPT NEUTRON SOURCE”
V.V. Gann, A.V. Gann, B.V. Borts, I.M. Karnaukhov, P.I. Gladkikh, A.A. Parkhomenko
National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine
E-mail: gann @kipt.kharkov.ua
In this work, mathematical modeling of a complex of processes occurring in a tungsten target under irradiation
with high-energy electrons with an energy of 100 MeV: an electromagnetic shower, the production of photo-
neutrons, and particle transport along the target, damage from neutrons of the subcritical assembly. It was found that
the greatest contribution to the rate of damage formation in a tungsten target give the elastic scattering of high-
energy electrons on nuclei.
PACS: 29.17+w.Dh, 29.25.Dz
INTRODUCTION
At the National Scientific Center "Kharkov Institute
of Physics and Technology" (NSC KIPT, Kharkov,
Ukraine) together with the Argonne National Laborato-
ry (ANL, USA) has successfully carried out the physical
start-up of a neutron source (NS) based on a subcritical
assembly controlled by a linear electron accelerator (as
a driver).
Two options are considered as the target material: -
tungsten and uranium-molybdenum alloy. Previously,
the authors have already analyzed the radiation damage-
ability of a uranium target under irradiation with high-
energy electrons with an energy of 100 MeV [1], and
therefore, this work is devoted to a tungsten target.
Today, tungsten is the main material for solid-state
targets, both in operation and under construction, mega-
watt accelerator-controlled nuclear systems (ADS) [2 -
4]. Despite a number of disadvantages, the reason for its
use is rather high neutron yield and thermal conductivity.
The tungsten target NS NSC KIPT has already
worked under a beam of high-energy electrons with an
energy of 100 MeV in the process of tuning the accelera-
tor and the physical start-up of the installation for more
than a year in total. Therefore, evaluation the radiation
resistance of a tungsten target is very important problem.
The lifetime of the NS depends on the limit of radia-
tion dose for the target material (in displacements per
atom). To determine the radiation dose in a thick target
under the action of high-energy electrons, it is necessary
to evaluate the contribution of elastic and inelastic pro-
cesses to defect formation: scattering and nuclear reac-
tions involving high-energy electrons, neutrons, and
gamma quanta.
The aim of this work was computer modeling using
the MCNPX code of complex processes occurring in a
tungsten target under irradiation by high-energy elec-
trons: an electromagnetic shower, photo-neutron pro-
duction, particle transport along the target, and damage
in the target by neutrons from the subcritical assembly.
1. TUNGSTEN TARGET MODEL
The target consists of seven 6666 mm tungsten
plates of various thicknesses (see Table) with a tantalum
coating 0.26…0.27 mm thick. The gap between the
plates is 1.75 mm filled with water. The target is sepa-
rated from the vacuum chamber of the electronic con-
ductor by an aluminum entrance window of 2 mm thick.
Behind the target is a helium-filled chamber (marked in
yellow in Fig. 1.
Thickness of plates W (in cm)
1 2 3 4 5 6 7
0.25 0.25 0.247 0.353 0.358 0.555 0.95
Fig. 1. Geometry of the tungsten target model
A plane-parallel electron beam with a square cross
section of 6464 mm with an energy of 100 MeV and a
power of 100 kW is incident on the target. An electro-
magnetic shower develops in the target, bremsstrahlung
gamma quanta enter into reactions with atomic nuclei
and photo-neutrons appear, which enter the subcritical
assembly, where they multiply.
2. RESULTS OF COMPUTER MODELING
USING THE MCNPX CODE
The process of electron interaction with the target
material was simulated using the MCNPX code [5]. The
profile of energy release in the target is shown in Fig. 2.
Energy is mainly released in metal plates, and only a
small fraction of energy is released in water.
The distribution of the electron flux along the length
of the target is shown in Fig. 3 (per one incident elec-
tron). The development of an electromagnetic shower
leads to a twofold increase in the electron flux density,
ISSN 1562-6016. ВАНТ. 2021. № 6(136) 18
and then deceleration of the electron beam occurs due to
the processes of ionization and emission of brems-
strahlung gamma quanta.
Fig. 2. The distribution of the volumetric power
along the length of the target
Fig. 3. Distribution of the electron flux
along the length of the target
Fig. 4 shows the distribution of the flux density of
gamma quanta along the length of the target (per one
incident electron).
Fig. 4. Distribution of the flux of gamma quanta
along the length of the target
Such photon distribution profile is formed as a result
of the processes of bremsstrahlung gamma quanta emis-
sion during the scattering of electrons by nuclei, the
production of electron-positron pairs by photons near
the nuclei, and processes of positron annihilation with
emission of photons. The damping of the flux is due to
absorption of photons by nuclei and atomic systems.
The maximum of photon flux in the target is at a depth
of 1.3 cm (the depth is measured from the target en-
trance window).
0 10 20 30 40 50 60 70 80
0.0
0.1
0.2
0.3
0.4
0.5
W-000 (, n)
n
b
E
, MeV
Fig. 5. Cross section of photoneutron production
in tungsten [7]
Due to interaction of gamma quanta with the nuclei,
neutrons are emitted from nuclei as a result of the (γ, n)
reaction, the cross section of which for tungsten is
shown in Fig. 5. The cross section has a pronounced
maximum due to the giant dipole resonance in the elec-
tromagnetic interaction of a gamma quantum with a
nucleus [6]. The distribution of the neutron flux result-
ing from photonuclear reactions along the target is
shown in Fig. 6 (calculation using the MCNPX code).
Fig. 6. Distribution of the neutron flux
along the length of the target
Using the simulation results obtained above, it is
possible to calculate the rate of radiation damage accu-
mulation in the target.
3. RADIATION DEFECTS PRODUCTION
RATE IN A TUNGSTEN TARGET
In a tungsten target under electron irradiation with
an energy of 100 MeV radiation defects appear. The
main sources of the formation of such defects are recoil
nuclei arising from electrons and neutrons scattering on
nuclei, as well as from photonuclear reactions.
3.1. Calculated by the method described in [7], the
cross section for the formation of radiation defects in
tungsten irradiated by electrons with energy Ee is shown
in Fig. 7.
ISSN 1562-6016. ВАНТ. 2021. № 6(136) 19
0 20 40 60 80 100
0
20
40
60
80
100
120
D
b
a
rn
Ee, MeV
B
Fig. 7. Dependence of the defect formation cross section
in W, irradiated by electrons, on energy
The cross section of defect formation in tungsten
under neutron irradiation is shown in Fig. 8 [8].
1E-10 1E-8 1E-6 1E-4 0.01 1 100
1E-4
1E-3
0.01
0.1
1
10
100
1000
D
b
a
rn
E
n
, MeV
W
Fig. 8. Dependence of the cross section
of defect formation in tungsten on the neutron energy
10 100
1E-5
1E-4
1E-3
0.01 z=0.357
z=0.407
z=0.457
z=0.507
z=0.557
z=0.8715
z=0.9965
z=1.35175
z=1.47525
z=1.84825
z=2.02475
z=2.516Ф
e
1
/M
e
V
E
e
, MeV
Fig. 9. Electron spectra at different depths
along the length of the target
The rate of accumulation of radiation defects upon
irradiation with a flux of electrons with a spectrum
( )e eE
is determined by the expression:
( ) ( ) .e De e e e eD E E dE
(1)
The electron spectrum ( )e eE
calculated using the
MCNPX program at various depths in a tungsten target
is shown in Fig. 9 (per one falling electron). At an ac-
celerator current of 1 ma, we have an electron flux
j = 6.1510
15
e/s. Using formula (1), we obtain the de-
pendence of the rate of accumulation of defects on the
depth
eD (z) (Fig. 10).
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
.
D
e
,
d
p
a
/y
e
a
r
z, cm
Fig. 10. The rate of defect formation
by 100 MeV electrons along the depth W
3.2. The rate of accumulation of radiation defects
under irradiation with neutrons with the spectrum
( )n nE is calculated similarly:
( ) ( ) .n Dn n n n nD E E dE (2)
0.1 1
1E-5
1E-4
1E-3
z =
0.457
0.872
1.352
1.848
2.516
3.200
4.176
Ф
n
1
/c
m
2
/M
e
V
E
n
, MeV
Fig. 11. Photo-neutron spectra at different depths along
the length of the tungsten target
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
0.00
0.01
0.02
0.03
.
D
n
,
d
p
a
/y
e
a
r
z, cm
Fig. 12. The rate of defect formation
by photo-neutrons in depth in W
ISSN 1562-6016. ВАНТ. 2021. № 6(136) 20
The spectrum of photo-neutrons calculated using the
MCNPX code at different depths in a tungsten target is
shown in Fig. 11. The dependence of the rate of accu-
mulation of defects on the depth z is shown in Fig. 12; it
reaches a maximum value of ~ 0.03 dpa/year at a depth
of 1.6 cm.
3.3. Let us consider the contribution to radiation
damage of recoil nuclei arising in a tungsten target dur-
ing photonuclear reactions. The maximum cross section
for the production of photo-neutrons (see Fig. 5) falls on
an energy of 16 MeV. When a photon is absorbed by a
nucleus and a neutron is emitted, a recoil nucleus ap-
pears. The average energy of photo-neutrons is 1 MeV
[4]. Taking into account that the energy of the recoil
nucleus T is related to the energy of the emitted neutron
En by the law of conservation of momentum:
T = En m/M we obtain the value of the average energy of
the recoil nuclei T ~ 5400 eV. The threshold displace-
ment energy for tungsten atoms is Ed =70 eV, and ac-
cording to the formula [9] of the NRT standard
0.8 / (2 )D dN T E we get that one recoil nucleus creates
~ 31 displaced atoms. The probability of the appearance
of a recoil nucleus is determined by the formula:
( ) ( ) ,nW E E dE (3)
where ( )E
is the spectral flux density of photons,
which at E = 16 MeV is 0.002/cm
2
/MeV (Fig. 13).
22 4 6 8 1010 20 30 40 50 6070
1E-5
1E-4
1E-3
0.01
0.1 z =
0.357
0.407
0.457
0.507
0.557
0.876
0.997
1.352
1.475
1.848
2.025
2.516
Ф
1
/c
m
2
/M
e
V
E
, MeV
Fig. 13. Spectra of gamma quanta at different depths
along the length of the tungsten target
Substituting the photo-neutron production cross-
section (see Fig. 5) and the spectral flux density of pho-
tons (see Fig. 13) into expression (3), we obtain the prob-
ability of the release the photo-neutrons (and the recoil
nucleus).
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
0.00
0.01
0.02
0.03
0.04
0.05
.
D
,
d
p
a
/y
e
a
r
z
Fig. 14. The rate of defect formation due to the reaction
(γ, n) along the depth of the target
Hence, we receive the radiation damage rate along
the depth of the target due to the reaction (γ, n):
31D jW , which reaches a maximum value of
0.05 dpa/year at a depth of 1.2 cm (Fig. 14).
3.4. Let us consider the contribution to defect for-
mation from neutrons coming from the subcritical as-
sembly (SCA) and irradiating the neutron-producing
target. Let us estimate the spectrum of neutrons released
from the SCA into the tungsten target at keff = 0.96. In
[5], the spectrum of neutrons from SCA with keff =
0.975 on the surface of a uranium target irradiated with
200 MeV electrons at a current of 0.5 mA was obtained
(Fig. 15). A tungsten target irradiated with 100 MeV
electrons at a current of 1 ma will give twice as few
neutrons as a uranium target at the same electron beam
power, and for a SCA with keff = 0.96, the value of
1/(1-keff) will be 1.6 times less than for an SCA with
keff = 0.975. Thus, in the case of a tungsten target the
data in Fig. 15 should be reduced by a factor of 3.2.
Fig. 15. The spectrum of neutrons from SCA
with keff = 0.975 on the surface of a uranium target
irradiated by electrons with an energy of 200 MeV
Using formula (2) we obtain the radiation damage
dose rate from SCA neutrons:
Ï ÊÑD ~ 0.15 dpa/year.
Fig. 16. Total rate of defect formation in tungsten
and partial contributions
3.5. In Fig. 16 the total rate of defect formation in
tungsten and the partial contributions of various mecha-
nisms of radiation damage are shown: e is the contribu-
tion of elastic scattering of electrons, gn the scattering
of photo-neutrons on nuclei, g formation of recoil
ISSN 1562-6016. ВАНТ. 2021. № 6(136) 21
nuclei in (γ, n) reactions, fn scattering of neutrons
from the SCA on target nuclei.
According to Fig. 16, the maximum rate of dose
83.0max D dpa/year is reached in the second plate of
the tungsten target (at a depth of ~ 1 cm). This value is
two orders of magnitude less than the rate of dose rise
expected in a uranium target with the same irradiation
parameters [1].
In works [10 - 12] it was shown that the resource of
tungsten targets of the Chinese neutron source CSNS
(protons 1.6 GeV, 120 kW) and the European neutron
source ESS (protons 2 GeV, 5 MW) is 4-5 years of con-
tinuous operation, which corresponds to approximately
the same radiation doses of the order of 10 dpa. Hence,
it follows that the formation of radiation defects limits
the service life of the tungsten target of the NSC KIPT
subcritical assembly to ten years.
CONCLUSIONS
The rate of formation of displacements in the tung-
sten target of the neutron source at the NSC KIPT under
the action of irradiation with high-energy electrons with
an energy of 100 MeV has been calculated. The contri-
butions of the processes of scattering of high-energy
electrons, neutrons and gamma-quanta, the production
of photo-neutrons, damage from neutrons of the subcrit-
ical assembly are considered. It was found that the
greatest contribution to the rate of damage formation in
a tungsten target is made by the elastic interaction of
high-energy electrons with nuclei.
The maximum dose rate is 83.0max D dpa/year and
is achieved in the second plate of the tungsten target (at
a depth of ~ 1 cm).
REFERENCES
1. V.V. Gann, A.V. Gann, B.V. Borts, I.M.
Karnaukhov, A.A. Parkhomenko. Radiation damage
in uranium target of the accelerator driven system
“KIPT neutron source” // Problems of Atomic Sci-
ence and Technology. 2021, № 2, p. 24-28.
2. A.T. Nelson, J.A. O’Toole, R.A. Valicenti, S.A. Maloy.
Fabrication of a tantalum-clad tungsten target for
LANSCE // Journal of Nuclear Materials. 2012,
v. 431, p. 172-184.
3. D. Wilcox, P. Loveridge, T. Davenne, at al. Stress
level and failure modes of Ta clad W targets of ISIS
// Journal of Nuclear Materials. 2018, v. 506, p. 76-
82.
4. J. Habainy, Y. Lee, Y. Dai, and S. Iyengar. Tungsten
as Spallation Material at the European Spallation
Source // Proc. 14th Int. Workshop Spallation Mate-
rials Technology. JPS Conf. Proc. 2020, 28, 031004,
doi.org/10.7566/JPSCP.28.031004.
5. Y. Gohar, I. Bolshinsky, H. Belch, F. Dunn, R. Kel-
logg, T. Sofu, A. Talamo, Z. Zhong. Design and
analyses of the KIPT source facility concept // Na-
tional Science “Kharkiv Institute of Physics and
Technology Center”. Kharkiv, Ukraine, July 8-9,
2008.
6. V.G. Nedorezov, Yu.N. Ranjuk. Fotodelenie jader
za gigantskim rezonansom. Kiev: “Naukova
dumka”, 1989, 191 p.
7. V.V. Gann, O.V. Yudin. Defektoobrazovanie v
vysokotemperaturnykh sverkhprovodnikakh pri
elektronnom obluchenii // Problems of Atomic Sci-
ence and Technology. Series “FRP i RM”. 1989,
v. 1(48), p. 63-66 (in Russian).
8. https://www.oecd-
nea.org/janisweb/book/gammas/W 186/
9. M.J. Norgett, M.T. Robinson, I.M. Torrens. A pro-
posed method of calculating displacement dose rates”
// Nucl. Engr. and Design. 1975, v. 33(1), p. 50.
10. W. Yin, Q.Z. Yu, Y.L. Lu, S.L. Wang, J.E. Tong,
T.J. Liang. The expected radiation damage of CSNS
target // Journal of Nuclear Materials. 2012, v. 431,
p. 39-43.
11. F. Sordo et al. Radiation damage analysis for the
ESS target, Technical Report ESS-0037287, Euro-
pean Spallation Source ERIC, 2016.
12. J. Habainy, Y. Lee, K.B. Surdelli, A. Prosvetov,
P. Simon, S. Iyengar, Y. Dai, M. Tomut. Study of
heavy ions beam induced damage in tungsten for high
power target applications // Nuclear Instr. and Meth-
ods in Physics Research B. 2019, v. 439, p. 7-16.
Article received 07.10.2021
РАДИАЦИОННАЯ ПОВРЕЖДАЕМОСТЬ ВОЛЬФРАМОВОЙ МИШЕНИ НЕЙТРОННОГО
ИСТОЧНИКА
В.В. Ганн, А.В. Ганн, Б.В. Борц, И.М. Карнаухов, П.И. Гладких, А.А. Пархоменко
Проведено математическое моделирование комплекса процессов, проходящих в вольфрамовой мишени
при облучении высокоэнергетическими электронами с энергией 100 МэВ: электромагнитного ливня, рожде-
ния фотонейтронов, транспорта частиц вдоль мишени, повреждений от нейтронов подкритической сборки.
Установлено, что наибольший вклад в скорость образования повреждений в вольфрамовой мишени вносит
упругое взаимодействие высокоэнергетических электронов с ядрами.
РАДІАЦІЙНА ПОШКОДЖУЄМОСТЬ ВОЛЬФРАМОВОЇ МІШЕНІ ДЖЕРЕЛА НЕЙТРОНІВ
В.В. Ганн, А.В. Ганн, Б.В. Борц, І.М. Карнаухов, П.І. Гладких, О.О. Пархоменко
Проведено математичне моделювання комплексу процесів, що проходять у вольфрамовій мішені при
опроміненні високоенергетичними електронами з енергією 100 МеВ: електромагнітного ливню, утворення
фотонейтронів, транспорту частинок уздовж мішені, пошкодження від нейтронів підкритичної збірки. Вста-
новлено, що найбільший внесок у швидкість створення пошкоджень у вольфрамовій мішені вносить пружна
взаємодія високоенергетичних електронів з ядрами.
https://www.oecd-nea.org/janisweb/book/gammas/W%20186/
https://www.oecd-nea.org/janisweb/book/gammas/W%20186/
|