Radiation induced softening of crystals

Under irradiation of crystals, atomic vibrations of the lattice that are large enough in amplitude so that the linear approximation and therefore the conventional phonon description of the lattice is not enough. At the same time, these vibrations are localized and can travel long distances in a crys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Вопросы атомной науки и техники
Datum:2021
Hauptverfasser: Dubinko, V.I., Borysenko, V.N., Kushnir, V.A., Khodak, I.V., Mytrochenko, V.V., Gamov, V.O.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2021
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/195462
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Radiation induced softening of crystals / V.I. Dubinko, V.N. Borysenko, V.A. Kushnir, I.V. Khodak, V.V. Mytrochenko, V.O. Gamov // Problems of Atomic Science and Technology. — 2021. — № 6. — С. 22-25. — Бібліогр.: 9 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-195462
record_format dspace
spelling Dubinko, V.I.
Borysenko, V.N.
Kushnir, V.A.
Khodak, I.V.
Mytrochenko, V.V.
Gamov, V.O.
2023-12-05T11:07:04Z
2023-12-05T11:07:04Z
2021
Radiation induced softening of crystals / V.I. Dubinko, V.N. Borysenko, V.A. Kushnir, I.V. Khodak, V.V. Mytrochenko, V.O. Gamov // Problems of Atomic Science and Technology. — 2021. — № 6. — С. 22-25. — Бібліогр.: 9 назв. — англ.
1562-6016
PACS: 61.80.x, 63.20.Pw, 87.15.Aa
DOI: https://doi.org/10.46813/2021-136-022
https://nasplib.isofts.kiev.ua/handle/123456789/195462
Under irradiation of crystals, atomic vibrations of the lattice that are large enough in amplitude so that the linear approximation and therefore the conventional phonon description of the lattice is not enough. At the same time, these vibrations are localized and can travel long distances in a crystal lattice [1,2]. In metals and other crystals, they are called discrete breathers (DBs), which are the secondary products of irradiation damage, the primary one being the creations of defects that involve atom displacements to produce point and extended defects, which results in radiation induced hardening (RIH). A part of the remaining energy transforms in DBs before decaying into phonons. Thus, while a material is being irradiated in operational conditions, as in a reactor, a considerable amount of DBs with energies of the order of one eV is produced, which helps dislocations to unpin from pinning centers, producing Radiation Induced Softening (RIS), which opposes RIH [3,4]. This effect is investigated under (in-situ) impulse and steady-state electron irradiation.
При опроміненні кристалів виникають атомні коливання кристалічної решітки, які є достатньо великими за амплітудою, так що лінійного наближення і, отже, звичайного фононного опису решітки недостатньо. У той же час, ці вібрації локалізовані і можуть проїжджати великі відстані [1,2]. У металах та інших кристалах вони називаються дискретними бризерами (ДБ) і є вторинними продуктами пошкодження опроміненням, основними з яких є точкові та розширені дефекти, що призводять до радіаційно-індукованого зміцнення. Частина енергії, що залишилася, трансформується в ДБ, перш ніж розпадатися на фонони. Таким чином, поки матеріал опромінюється в робочих умовах, як у реакторі, існує значна кількість ДБ з енергіями порядку одного електронвольта, що допомагає дислокаціям відкріпитися від центрів закріплення, приводячи до радіаційно-індукованої пластифікації (РІП) кристалів, що протистоїть радіаційно-індукованому зміцненню [3,4]. Цей ефект досліджується при (in-situ) імпульсному та стаціонарному електронному опроміненні.
При облучении кристаллов возникают атомные колебания кристаллической решетки, которые являются достаточно большими по амплитуде, так что линейного приближения и, следовательно, обычного фононного описания решетки недостаточно. В то же время, эти колебания локализованы и могут распространяться на большие расстояния [1,2]. В металлах и других кристаллах они называются дискретными бризерами (ДБ) и являются вторичными продуктами радиационного облучения, основными из которых являются точечные и протяженные дефекты, приводящие к радиационно-индуцированному упрочнению. Часть энергии трансформируется в ДБ, прежде чем распадаться на фононы. Таким образом, пока материал облучается в рабочих условиях как в реакторе, возникает значительное количество ДБ с энергиями порядка одного электронвольта, что помогает дислокациям открепляться от центров закрепления и приводит к радиационно-индуцированной пластификации (РИП) кристаллов, противостоящей радиационно-индуцированному упрочнению [3,4]. Этот эффект исследуется при (in-situ) импульсном и стационарном электронном облучении.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Interaction of relativistic particles with crystals and matter
Radiation induced softening of crystals
Радіаційно-індукована пластифікація кристалів
Радиационно-индуцированная пластификация кристаллов
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Radiation induced softening of crystals
spellingShingle Radiation induced softening of crystals
Dubinko, V.I.
Borysenko, V.N.
Kushnir, V.A.
Khodak, I.V.
Mytrochenko, V.V.
Gamov, V.O.
Interaction of relativistic particles with crystals and matter
title_short Radiation induced softening of crystals
title_full Radiation induced softening of crystals
title_fullStr Radiation induced softening of crystals
title_full_unstemmed Radiation induced softening of crystals
title_sort radiation induced softening of crystals
author Dubinko, V.I.
Borysenko, V.N.
Kushnir, V.A.
Khodak, I.V.
Mytrochenko, V.V.
Gamov, V.O.
author_facet Dubinko, V.I.
Borysenko, V.N.
Kushnir, V.A.
Khodak, I.V.
Mytrochenko, V.V.
Gamov, V.O.
topic Interaction of relativistic particles with crystals and matter
topic_facet Interaction of relativistic particles with crystals and matter
publishDate 2021
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Радіаційно-індукована пластифікація кристалів
Радиационно-индуцированная пластификация кристаллов
description Under irradiation of crystals, atomic vibrations of the lattice that are large enough in amplitude so that the linear approximation and therefore the conventional phonon description of the lattice is not enough. At the same time, these vibrations are localized and can travel long distances in a crystal lattice [1,2]. In metals and other crystals, they are called discrete breathers (DBs), which are the secondary products of irradiation damage, the primary one being the creations of defects that involve atom displacements to produce point and extended defects, which results in radiation induced hardening (RIH). A part of the remaining energy transforms in DBs before decaying into phonons. Thus, while a material is being irradiated in operational conditions, as in a reactor, a considerable amount of DBs with energies of the order of one eV is produced, which helps dislocations to unpin from pinning centers, producing Radiation Induced Softening (RIS), which opposes RIH [3,4]. This effect is investigated under (in-situ) impulse and steady-state electron irradiation. При опроміненні кристалів виникають атомні коливання кристалічної решітки, які є достатньо великими за амплітудою, так що лінійного наближення і, отже, звичайного фононного опису решітки недостатньо. У той же час, ці вібрації локалізовані і можуть проїжджати великі відстані [1,2]. У металах та інших кристалах вони називаються дискретними бризерами (ДБ) і є вторинними продуктами пошкодження опроміненням, основними з яких є точкові та розширені дефекти, що призводять до радіаційно-індукованого зміцнення. Частина енергії, що залишилася, трансформується в ДБ, перш ніж розпадатися на фонони. Таким чином, поки матеріал опромінюється в робочих умовах, як у реакторі, існує значна кількість ДБ з енергіями порядку одного електронвольта, що допомагає дислокаціям відкріпитися від центрів закріплення, приводячи до радіаційно-індукованої пластифікації (РІП) кристалів, що протистоїть радіаційно-індукованому зміцненню [3,4]. Цей ефект досліджується при (in-situ) імпульсному та стаціонарному електронному опроміненні. При облучении кристаллов возникают атомные колебания кристаллической решетки, которые являются достаточно большими по амплитуде, так что линейного приближения и, следовательно, обычного фононного описания решетки недостаточно. В то же время, эти колебания локализованы и могут распространяться на большие расстояния [1,2]. В металлах и других кристаллах они называются дискретными бризерами (ДБ) и являются вторичными продуктами радиационного облучения, основными из которых являются точечные и протяженные дефекты, приводящие к радиационно-индуцированному упрочнению. Часть энергии трансформируется в ДБ, прежде чем распадаться на фононы. Таким образом, пока материал облучается в рабочих условиях как в реакторе, возникает значительное количество ДБ с энергиями порядка одного электронвольта, что помогает дислокациям открепляться от центров закрепления и приводит к радиационно-индуцированной пластификации (РИП) кристаллов, противостоящей радиационно-индуцированному упрочнению [3,4]. Этот эффект исследуется при (in-situ) импульсном и стационарном электронном облучении.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/195462
citation_txt Radiation induced softening of crystals / V.I. Dubinko, V.N. Borysenko, V.A. Kushnir, I.V. Khodak, V.V. Mytrochenko, V.O. Gamov // Problems of Atomic Science and Technology. — 2021. — № 6. — С. 22-25. — Бібліогр.: 9 назв. — англ.
work_keys_str_mv AT dubinkovi radiationinducedsofteningofcrystals
AT borysenkovn radiationinducedsofteningofcrystals
AT kushnirva radiationinducedsofteningofcrystals
AT khodakiv radiationinducedsofteningofcrystals
AT mytrochenkovv radiationinducedsofteningofcrystals
AT gamovvo radiationinducedsofteningofcrystals
AT dubinkovi radíacíinoíndukovanaplastifíkacíâkristalív
AT borysenkovn radíacíinoíndukovanaplastifíkacíâkristalív
AT kushnirva radíacíinoíndukovanaplastifíkacíâkristalív
AT khodakiv radíacíinoíndukovanaplastifíkacíâkristalív
AT mytrochenkovv radíacíinoíndukovanaplastifíkacíâkristalív
AT gamovvo radíacíinoíndukovanaplastifíkacíâkristalív
AT dubinkovi radiacionnoinducirovannaâplastifikaciâkristallov
AT borysenkovn radiacionnoinducirovannaâplastifikaciâkristallov
AT kushnirva radiacionnoinducirovannaâplastifikaciâkristallov
AT khodakiv radiacionnoinducirovannaâplastifikaciâkristallov
AT mytrochenkovv radiacionnoinducirovannaâplastifikaciâkristallov
AT gamovvo radiacionnoinducirovannaâplastifikaciâkristallov
first_indexed 2025-11-25T23:31:25Z
last_indexed 2025-11-25T23:31:25Z
_version_ 1850582156187795456
fulltext ISSN 1562-6016. ВАНТ. 2021. № 6(136) 22 https://doi.org/10.46813/2021-136-022 RADIATION INDUCED SOFTENING OF CRYSTALS V.I. Dubinko, V.N. Borysenko, V.A. Kushnir, I.V. Khodak, V.V. Mytrochenko, V.O. Gamov National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine Under irradiation of crystals, atomic vibrations of the lattice that are large enough in amplitude so that the linear approximation and therefore the conventional phonon description of the lattice is not enough. At the same time, the- se vibrations are localized and can travel long distances in a crystal lattice [1, 2]. In metals and other crystals, they are called discrete breathers (DBs), which are the secondary products of irradiation damage, the primary one being the creations of defects that involve atom displacements to produce point and extended defects, which results in ra- diation induced hardening (RIH). A part of the remaining energy transforms in DBs before decaying into phonons. Thus, while a material is being irradiated in operational conditions, as in a reactor, a considerable amount of DBs with energies of the order of one eV is produced, which helps dislocations to unpin from pinning centers, producing Radiation Induced Softening (RIS), which opposes RIH [3, 4]. This effect is investigated under (in-situ) impulse and steady-state electron irradiation. PACS: 61.80.x, 63.20.Pw, 87.15.Aa INTRODUCTION One of the main factors limiting the service lifespan of the nuclear reactors is the radiation-induced embrittlement caused by the radiation-induced harden- ing of Fe based steels used as structural materials for pressure vessels etc. Defects formed by irradiation in the bulk act as additional pinning centers, resulting in the well-known effect of radiation-induced hardening (RIH). On the other hand, there is experimental evi- dence of radiation-induced softening (RIS) under elec- tron, gamma or neutron irradiation at low and medium temperatures. The RIS has been discovered in the early 1960s [5] and investigated extensively thereafter (see e.g. [6]). Single crystals of Zn, Sn, In and Pb have been irradiated at liquid nitrogen temperature (78 K) with electron flux density ranging from 10 17 to 10 18 m -2 s -1 and energies below and above the threshold displace- ment energies, the latter being 0.7 MeV (Zn), 0.8 MeV (Sn, In) and 1.2 MeV (Pb). At such low temperatures plastic strain occurs via dislocation glide, the rate of which is limited by thermally activated unpinning of dislocations from local obstacles. Subsequently, new experimental evidence was obtained on the radiation- induced increase of plasticity of polycrystalline Cu (99.5%), Al (99.5%) and Al-3Mg under in situ electron irradiation at the room temperature [3, 4]. The electron energy of 0.5 MeV used in these experiments was high- er than the threshold displacement energy in Al (0.15 MeV) and about that for Cu. In all cases, irradiation resulted in the decrease of yield stress and increase of the elongation to fracture, i.e. a metal under irradiation instantly became less hard and more ductile as com- pared to the state prior and after irradiation. These re- sults demonstrated that mechanical properties of materi- als under reactor conditions could be different from those tested 'out of pile' in the surveillance program. The present experiments were designed so that to al- low comparison between over-threshold irradiation of Al and polycrystalline Fe (and commercial steel 20), which is a base metal of the reactor structural materials in order to make the results more closely related to the real in-reactor environment. For this purpose the beam energy for the Fe irradiation was increased from 0.5 to 0.8 MeV, which is sufficient to produce displacement damage at a rate of 10 -9 dpa/s (where dpa denotes ‘dis- placements per atom’) which is comparable to the dose rates in nuclear reactor environment. The main result obtained here is that the yield stress of Fe is decreased by irradiation, as well as the ultimate resistance to fracture, the latter being in a marked con- trast to Al and Cu cases, which points out at the radia- tion-induced localization of plastic strain in Fe. So the Fe-based metal under irradiation became less hard and more brittle at the same time. These results mean that dynamics of dislocations has been changed due to their interaction with radiation-induced excitations of the lattice, the nature of which needs to be determined. The underlying mechanisms of RIS are still a subject of de- bate [7]. One of the possible mechanisms is based on special kind of lattice vibrations, namely, discrete breathers (DBs), also known as intrinsic localized modes, can be generated either by thermal fluctuations or by external triggering such as irradiation. The ampli- tude of atomic oscillations in the DBs greatly exceeds that of harmonic oscillations (phonons). Due to the crys- tal anharmonicity, the frequency of atomic oscillations increases or decreases with raising the amplitude so that the DB frequency lies outside the phonon frequency band, which explains the weak coupling of DBs with phonons and, consequently, their stability against decay even at elevated temperatures. DBs have been success- fully observed experimentally in various physical sys- tems [8] and materials ranging from metals to diatomic insulators [9]. This field of research is comparatively new, lying at the conjunction of nonlinear physics with material science. The main hypothesis of the present paper is that DBs present a viable catalyzing mechanism for the dislocation unpinning from obstacles under irra- diation that triggers DB generation. The paper is organized as follows. In the next sec- tion, experimental setup is described. In section 3, re- sults of discrete electron irradiation of bcc Fe (99.5%) are presented in comparison with analogous results for fcc Al reported in refs. [3, 4]. In section 4, results of continuous electron irradiation of bcc Fe (99.5%) are presented in comparison with analogous results for steel 20. ISSN 1562-6016. ВАНТ. 2021. № 6(136) 23 1. EXPERIMENTAL SETUP The present technical approach combines electron ir- radiation (compact electron linear accelerator, E < 1 MeV) with in-situ mechanical testing at the instal- lation, which measures a yield stress drops during irra- diation pulses and the stress-strain deformation curve under continuous irradiation. Experimental procedure and installation is described in details in ref. [4]. Elec- tron beam of the energy ranging from 0.5 to 0.8 MeV and the beam density ranging from 2.4 to 3.6×10 13 cm -2 s -1 was directed at a metal specimen subjected to tensile load. The time diagram of the electron beam pulses (the fine pulse structure) is shown in Fig. 1. Micro-pulses of duration, τm = 4×10 -11 s, were shot periodically with an interval of 3×10 -10 s during the bunch time, τbunch= (2…4)×10 -6 s. The bunch frequency, 1/Т0, was 25 Hz. An overall irradiation time ranged from 10 to 3000 s in different irradiation regimes. Fig. 1. Time dependence of the electron beam pulses [4] Specimens had a form of a parallelepiped with broader ends for fixing and the following dimensions of the irradiated part: 0.52(±0.01)×4×30 mm 3 . They were cut of technically pure iron (0.048%С) annealed in vacuum in two regimes: (1) Т = 900С for 1 hour result- ing to a mean grain size of 7 microns; (2) Т = 1150С for 2.5 hours resulting to a mean grain size of 150 mi- crons. At the experimental temperature (slightly above RT), Fe matrix has a bcc structure with impurities pre- cipitated in the form of various obstacles for dislocation glide, which increases the initial yield stress of material (prior to irradiation) to ~ 200 MPa as compared to ~ 50…100 MPa for technologically pure Fe. The micro- structure of the 'steel 20' is much more complex, but principally, it consists of ferritic bcc iron grains (with some Carbon in solution) and a certain fraction of per- lite grains, which doubles its strength as compared to the strength of technically pure iron. The specimens were subjected to uniaxial tensile load in the deformation installation, which was regis- tered in the coordinates – load, P, vs. time, t, with delay ranging from 1 to 0.3 s and sensitivity of 0.1%. The load is related to the external stress, , as  = P(1+ε)/S, where S is the specimen cross-section and  is the de- formation calculated by  = vdt/l, where vd is the veloci- ty of the deformation rod, l is the specimen length. The load measurement accuracy was about (0.1…1) N. The velocity of the deformation rod was 0.5 µms -1 , which corresponded to the deformation rate of   2×10 -4 s -1 , i.e. typically used in the standard tensile tests. The sur- face temperature of the specimens during testing was measured independently with infrared pyrometer and thermocouples attached to the specimen outside the ir- radiated area. Effect of the irradiation on plastic deformation of Fe and Al was studied at room temperature applying the discrete and continuous regimes of irradiation. In the first case, specimens were irradiated under external load within the short time intervals tirr followed by the inter- vals without irradiation. In the second case, the speci- mens were irradiated under external load continuously up to the fracture point. 2. DISCRETE IRRADIATION OF Al AND Fe AT ROOM TEMPERATURE In the following tests, the specimens were exposed to discrete irradiation pulses with tirr ~ 60 s, during which the yield stress drops sharply by the value, δσφ, and then it increases at a lower rate than that without irradiation, as can be seen in Fig. 2. Fig. 2. Yield stress drops during deformation (a) of Fe specimens (Tann=1150С) under electron beam with Е = 0.8 МeV, φ = 3.6×10 13 сm -2 s -1 and (b) Al specimens under electron beam with Е = 0.5 МeV, φ = 5×10 13 сm -2 s -1 [4] Let us define a deformation strengthening rate as θ = dσ/dε. When the electron beam is switched on (φ ≠ 0), the yield stress drops sharply by the value, δσφ, and sub- sequently a prolonged deformation stage occurs, at which the deformation strengthening rate θφ, is always lower than that without irradiation θ0, and it can be even negative for some time. When the electron beam is switched off (φ = 0), the yield stress jumps up sharply by the value, δσφ, (equal to the initial stress drop) and subsequently grows with time at a rate θ0. As a result, ISSN 1562-6016. ВАНТ. 2021. № 6(136) 24 the net external stress decreases by the value Δσφ, which indicates that the metal microstructure changes during irradiation, the material becomes more soft under irradi- ation pulse as compared to the unirradiated state, and the effect persist for some time after the pulse. The initial stress drop/jump at the moment of the beam switching on/off, δσφ, is shown in Fig. 3 for Fe specimens annealed at Tann=900ºС, which are harder initially than those annealed at 1150ºС. It can be seen that δσφ increases linearly with increasing deformation and the beam density. Fig. 3. (a) The initial stress drop/jump at the moment of the beam switching on/off as a function of defor- mation for Fe specimens (Tann=900ºС) under electron beam with Е = 0.8 МeV, φ = 2.4×10 13 сm -2 s -1 (line 1); 3.6×10 13 сm -2 s -1 (line 2); Fe specimens annealed at 1150ºС at φ = 3.6×10 13 сm -2 s -1 (line 3, color online). Yield stress evolution of Fe specimens (Tann=1150ºС) during one irradiation cycle is shown in (b) while the corresponding time evolution of specimen temperature is shown in (c) The value δσφ characterizes an instant (and reversi- ble) response of the metal to irradiation, which can not be explained by the radiation or strain induced trans- formation of microstructure that takes much longer times than the times of the stress drops/jumps by δσφ. We may conclude here that during irradiation pulses material becomes softer by two mechanisms. One is reversible (δσφ > 0) and the other one is irreversible (θφ < θ0), which results in material softening both during and shortly after the irradiation pulse. 3. CONTINUOUS IRRADIATION REGIME During continuous irradiation under increasing strain, the specimen temperature increases gradually as shown in Fig. 4. The deformation curves measured without and under irradiation show that irradiation re- sults in a decrease of the yield stress as well as of the ultimate elongation before fracture of all specimens under investigation. It means that the plasticity limit (strain to fracture) is decreased under irradiation by ~20%, in a remarkable contrast to Al and Cu samples for which it was increased by ~25…30% [3, 4]. The result demonstrated in Fig. 4,a was reproduced in four specimens, every time showing significant reduction of the strain to fracture. Clearly, the capacity of the materi- al to sustain plastic deformation is strongly affected by the irradiation. Fig. 4. (a) Deformation curves without (open symbols) and under (filled symbols) irradiation for Fe specimens (red – Tann= 900ºС; blue – Tann= 1150ºС). Electron energy Е = 0.8 МeV, φ = 2.4×10 13 сm -2 s -1 . (b) The same for steel 20 at Е = 0.5 МeV, φ = 2.4×10 13 сm -2 s -1 ISSN 1562-6016. ВАНТ. 2021. № 6(136) 25 CONCLUSIONS The present experiments were designed to allow comparison between sub-threshold and over-threshold electron irradiation of bcc and fcc metals, which did not show any significant difference. The radiation-induced softening (RIS) effect was demonstrated for technically pure Fe as well as for pre- viously studied Al and Cu. It is represented by (i) re- versible decrease of the yield stress by ~ 1% at the mo- ment of switching on electron beam and (ii) by irre- versible decrease of the yield stress by ~ 10% under continuous irradiation up to the material fracture. The RIS effect on the elongation to fracture of Fe ap- pears to be opposite to that for Al and Cu, where electron irradiation increases elongation to fracture by ~25…30%. In contrast to that, the elongation to fracture of Fe speci- mens was decreased by irradiation by ~20%, which is significant reduction as compared to the result obtained by the standard test. This discrepancy may have im- portant implications regarding the programs forecasting the service lifetime of Fe-based structural steels. We may conclude that the radiation-induced for- mation of DBs may change mechanical properties of materials under reactor conditions as compared to the surveillance specimens in out-reactor tests after equiva- lent irradiation dose. The RIS phenomenon needs fur- ther investigations due to its importance for the ade- quate qualification of the mechanical performance of the materials under reactor operating conditions. REFERENCES 1. D. Terentyev, A. Dubinko, V. Dubinko, S. Dmitriev, E. Zhurkin. Interaction of discrete breathers with primary lattice defects in bcc Fe // Modelling Simul. Mater. Sci. 2015, Eng. 23, 085007-13. 2. R.T. Murzaev, A.A. Kistanov, V.I. Dubinko, D.A. Terentyev, S.V. Dmitriev, Moving discrete breathers in bcc metals V, Fe and W // Computa- tional Materials Science. 2015, v. 98, p. 88-92. 3. V.I. Dubinko, A.N. Dovbnya, V.A. Kushnir, V.V. Mytrochenko, I.V. Khodak, V.P. Lebedev, V.S. Krylovskiy, S.V. Lebedev, V.F. Klepikov. Sof- tening of metals in the course of electron irradiation // Proceedings of the ХІХ International Conference on Physics of Radiation Phenomena and Radiation Materials Science. Alushta, September 6-11, 2010. 4. V.I. Dubinko, A.N. Dovbnya, V.A. Kushnir, I.V. Khodak, V.P. Lebedev, V.S. Krylovskiy, S.V. Lebedev, V.F. Klepikov, P.N. Ostapchuk. Plas- ticization of face-centered metals under electron ir- radiation // Physics of the Solid State. 2012, v. 54, issue 12, p. 2442-2449. 5. O.A. Troitskii and V.I. Likhtman. On the combined effect of beta-radiation and a surface-active medium on the mechanical properties of zinc single crystals // Sov. Phys. Dokl. 1962, v. 4, v. 147, p. 874-877. 6. O.A. Troitsky, V.I. Spitsyn. Study of electronic in- teraction for plastic deformation of metal // Metallofizika. 1974, v. 51, p. 18-46. 7. A.V. Dubinko, S.V. Dmitriev. Influence of discrete breathers on the plasticity and strength of crystals // Letters on materials. 2013, v. 3, № 3, p. 239-247. 8. S. Flach, A.V. Gorbach. Discrete breathers // Phys. Rep. 2008, 467, p. 1-116. 9. M.E. Manley. Impact of intrinsic localized modes of atomic motion on materials properties // Acta Materialia. 2010, v. 58, p. 2926-2935. Article received 04.10.2021 РАДИАЦИОННО-ИНДУЦИРОВАННАЯ ПЛАСТИФИКАЦИЯ КРИСТАЛЛОВ В.И. Дубинко, В.Н. Борисенко, В.А. Кушнир, И.В. Ходак, В.В. Митроченко, В.О. Гамов При облучении кристаллов возникают атомные колебания кристаллической решетки, которые являются достаточно большими по амплитуде, так что линейного приближения и, следовательно, обычного фононного описания решетки недостаточно. В то же время, эти колебания локализованы и могут распространяться на большие расстояния [1, 2]. В металлах и других кристаллах они называются дискретными бризерами (ДБ) и являются вторичными продуктами радиационного облучения, основными из которых являются точечные и протяженные дефекты, приводящие к радиационно-индуцированному упрочнению. Часть энергии транс- формируется в ДБ, прежде чем распадаться на фононы. Таким образом, пока материал облучается в рабочих условиях как в реакторе, возникает значительное количество ДБ с энергиями порядка одного электронволь- та, что помогает дислокациям открепляться от центров закрепления и приводит к радиационно- индуцированной пластификации (РИП) кристаллов, противостоящей радиационно-индуцированному уп- рочнению [3, 4]. Этот эффект исследуется при (in-situ) импульсном и стационарном электронном облучении. РАДІАЦІЙНО-ІНДУКОВАНА ПЛАСТИФІКАЦІЯ КРИСТАЛІВ В.І. Дубінко, В.М. Борисенко, В.А. Кушнір, I.В. Ходак, В.В. Мітроченко, В.О. Гамов При опроміненні кристалів виникають атомні коливання кристалічної решітки, які є достатньо великими за амплітудою, так що лінійного наближення і, отже, звичайного фононного опису решітки недостатньо. У той же час, ці вібрації локалізовані і можуть проїжджати великі відстані [1, 2]. У металах та інших кристалах вони називаються дискретними бризерами (ДБ) і є вторинними продуктами пошкодження опроміненням, основними з яких є точкові та розширені дефекти, що призводять до радіаційно-індукованого зміцнення. Частина енергії, що залишилася, трансформується в ДБ, перш ніж розпадатися на фонони. Таким чином, поки матеріал опромінюється в робочих умовах, як у реакторі, існує значна кількість ДБ з енергіями поряд- ку одного електронвольта, що допомагає дислокаціям відкріпитися від центрів закріплення, приводячи до радіаційно-індукованої пластифікації (РІП) кристалів, що протистоїть радіаційно-індукованому зміцненню [3, 4]. Цей ефект досліджується при (in-situ) імпульсному та стаціонарному електронному опроміненні. http://link.springer.com/journal/11451 https://www.sciencedirect.com/science/article/pii/S1359645410000352 https://www.sciencedirect.com/science/article/pii/S1359645410000352