Operation control system of sterilization installation on the basis of the accelerator UELV-10-10-S-70
The design of the system for monitoring and recording the operating parameters of the radiation installation at the IPCE RAS on the basis of the accelerator UELV-10-10-S-70 is presented. Solutions are proposed for collecting data from the equipment of the sterilization installation and the accelerat...
Gespeichert in:
| Veröffentlicht in: | Вопросы атомной науки и техники |
|---|---|
| Datum: | 2019 |
| Hauptverfasser: | , , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2019
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/195470 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Operation control system of sterilization installation on the basis of the accelerator UELV-10-10-S-70 / P.A. Bystrov, Yu.S. Pavlov, А.А. Kazyakin, A.А. Kozlov // Problems of atomic science and technology. — 2019. — № 6. — С. 185-189. — Бібліогр.: 12 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-195470 |
|---|---|
| record_format |
dspace |
| spelling |
Bystrov, P.A. Pavlov, Yu.S. Kazyakin, А.А. Kozlov, A.А. 2023-12-05T11:18:11Z 2023-12-05T11:18:11Z 2019 Operation control system of sterilization installation on the basis of the accelerator UELV-10-10-S-70 / P.A. Bystrov, Yu.S. Pavlov, А.А. Kazyakin, A.А. Kozlov // Problems of atomic science and technology. — 2019. — № 6. — С. 185-189. — Бібліогр.: 12 назв. — англ. 1562-6016 PACS: 29.27.Fh https://nasplib.isofts.kiev.ua/handle/123456789/195470 The design of the system for monitoring and recording the operating parameters of the radiation installation at the IPCE RAS on the basis of the accelerator UELV-10-10-S-70 is presented. Solutions are proposed for collecting data from the equipment of the sterilization installation and the accelerator, their primary analysis, transfer to the computer for further processing and fixation in the journal. Presented software of the control device. The created device allows you to timely identify and prevent the occurrence of emergency situations. Представлено конструкцію системи контролю та реєстрації параметрів роботи радіаційної технологічної установки ІФХЕ РАН на базі прискорювача УЕВЛ-10-10-С-70. Запропоновано рішення для збору даних з устаткування стерилізаційної установки і прискорювача, їхнього первинного аналізу, передачі на ЕОМ з метою їхньої подальшої обробки і фіксації в журналі. Представлено програмне забезпечення пристрою контролю. Створений пристрій дозволяє вчасно виявити, а також попередити виникнення позаштатних ситуацій. Представлена конструкция системы контроля и регистрации параметров работы радиационной технологической установки ИФХЭ РАН на базе ускорителя УЭЛВ-10-10-С-70. Предложены решения для сбора данных с оборудования стерилизационной установки и ускорителя, их первичного анализа, передачи на ЭВМ с целью их дальнейшей обработки и фиксации в журнале. Представлено программное обеспечение устройства контроля. Созданное устройство позволяет своевременно выявить, а также предупредить возникновение нештатных ситуаций. en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Вопросы атомной науки и техники Application of accelerators in radiation technologies Operation control system of sterilization installation on the basis of the accelerator UELV-10-10-S-70 Пристрій контролю роботи стерилізаційної установки на базі прискорювача УЕЛВ-10-10-C-70 Устройство контроля работы стерилизационной установки на базе ускорителя УЭЛВ-10-10-C-70 Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Operation control system of sterilization installation on the basis of the accelerator UELV-10-10-S-70 |
| spellingShingle |
Operation control system of sterilization installation on the basis of the accelerator UELV-10-10-S-70 Bystrov, P.A. Pavlov, Yu.S. Kazyakin, А.А. Kozlov, A.А. Application of accelerators in radiation technologies |
| title_short |
Operation control system of sterilization installation on the basis of the accelerator UELV-10-10-S-70 |
| title_full |
Operation control system of sterilization installation on the basis of the accelerator UELV-10-10-S-70 |
| title_fullStr |
Operation control system of sterilization installation on the basis of the accelerator UELV-10-10-S-70 |
| title_full_unstemmed |
Operation control system of sterilization installation on the basis of the accelerator UELV-10-10-S-70 |
| title_sort |
operation control system of sterilization installation on the basis of the accelerator uelv-10-10-s-70 |
| author |
Bystrov, P.A. Pavlov, Yu.S. Kazyakin, А.А. Kozlov, A.А. |
| author_facet |
Bystrov, P.A. Pavlov, Yu.S. Kazyakin, А.А. Kozlov, A.А. |
| topic |
Application of accelerators in radiation technologies |
| topic_facet |
Application of accelerators in radiation technologies |
| publishDate |
2019 |
| language |
English |
| container_title |
Вопросы атомной науки и техники |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Пристрій контролю роботи стерилізаційної установки на базі прискорювача УЕЛВ-10-10-C-70 Устройство контроля работы стерилизационной установки на базе ускорителя УЭЛВ-10-10-C-70 |
| description |
The design of the system for monitoring and recording the operating parameters of the radiation installation at the IPCE RAS on the basis of the accelerator UELV-10-10-S-70 is presented. Solutions are proposed for collecting data from the equipment of the sterilization installation and the accelerator, their primary analysis, transfer to the computer for further processing and fixation in the journal. Presented software of the control device. The created device allows you to timely identify and prevent the occurrence of emergency situations.
Представлено конструкцію системи контролю та реєстрації параметрів роботи радіаційної технологічної установки ІФХЕ РАН на базі прискорювача УЕВЛ-10-10-С-70. Запропоновано рішення для збору даних з устаткування стерилізаційної установки і прискорювача, їхнього первинного аналізу, передачі на ЕОМ з метою їхньої подальшої обробки і фіксації в журналі. Представлено програмне забезпечення пристрою контролю. Створений пристрій дозволяє вчасно виявити, а також попередити виникнення позаштатних ситуацій.
Представлена конструкция системы контроля и регистрации параметров работы радиационной технологической установки ИФХЭ РАН на базе ускорителя УЭЛВ-10-10-С-70. Предложены решения для сбора данных с оборудования стерилизационной установки и ускорителя, их первичного анализа, передачи на ЭВМ с целью их дальнейшей обработки и фиксации в журнале. Представлено программное обеспечение устройства контроля. Созданное устройство позволяет своевременно выявить, а также предупредить возникновение нештатных ситуаций.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/195470 |
| citation_txt |
Operation control system of sterilization installation on the basis of the accelerator UELV-10-10-S-70 / P.A. Bystrov, Yu.S. Pavlov, А.А. Kazyakin, A.А. Kozlov // Problems of atomic science and technology. — 2019. — № 6. — С. 185-189. — Бібліогр.: 12 назв. — англ. |
| work_keys_str_mv |
AT bystrovpa operationcontrolsystemofsterilizationinstallationonthebasisoftheacceleratoruelv1010s70 AT pavlovyus operationcontrolsystemofsterilizationinstallationonthebasisoftheacceleratoruelv1010s70 AT kazyakinaa operationcontrolsystemofsterilizationinstallationonthebasisoftheacceleratoruelv1010s70 AT kozlovaa operationcontrolsystemofsterilizationinstallationonthebasisoftheacceleratoruelv1010s70 AT bystrovpa pristríikontrolûrobotisterilízacíinoíustanovkinabazípriskorûvačauelv1010c70 AT pavlovyus pristríikontrolûrobotisterilízacíinoíustanovkinabazípriskorûvačauelv1010c70 AT kazyakinaa pristríikontrolûrobotisterilízacíinoíustanovkinabazípriskorûvačauelv1010c70 AT kozlovaa pristríikontrolûrobotisterilízacíinoíustanovkinabazípriskorûvačauelv1010c70 AT bystrovpa ustroistvokontrolârabotysterilizacionnoiustanovkinabazeuskoritelâuélv1010c70 AT pavlovyus ustroistvokontrolârabotysterilizacionnoiustanovkinabazeuskoritelâuélv1010c70 AT kazyakinaa ustroistvokontrolârabotysterilizacionnoiustanovkinabazeuskoritelâuélv1010c70 AT kozlovaa ustroistvokontrolârabotysterilizacionnoiustanovkinabazeuskoritelâuélv1010c70 |
| first_indexed |
2025-11-26T03:57:43Z |
| last_indexed |
2025-11-26T03:57:43Z |
| _version_ |
1850610727235092480 |
| fulltext |
ISSN 1562-6016. ВАНТ. 2019. №6(124) 185
OPERATION CONTROL SYSTEM
OF STERILIZATION INSTALLATION ON THE BASIS
OF THE ACCELERATOR UELV-10-10-S-70
P.A. Bystrov, Yu.S. Pavlov, А.А. Kazyakin, A.А. Kozlov
Frumkin Institute of Physical Chemistry and Electrochemistry Russian Academy
of Sciences, Moscow, Russia
E-mail: bpeter@mail.ru
The design of the system for monitoring and recording the operating parameters of the radiation installation at
the IPCE RAS on the basis of the accelerator UELV-10-10-S-70 is presented. Solutions are proposed for collecting
data from the equipment of the sterilization installation and the accelerator, their primary analysis, transfer to the
computer for further processing and fixation in the journal. Presented software of the control device. The created
device allows you to timely identify and prevent the occurrence of emergency situations.
PACS: 29.27.Fh
INTRODUCTION
The irradiation of different health products on radia-
tion-technological installations based on electron accel-
erators is a demanding task. Life and health may depend
on the quality of the work performed, so the problem of
continuous monitoring of the irradiation process is ur-
gent. To this end, modern accelerators are necessarily
based on a computer that controls the operation of the
accelerator and the rest of the installation systems, as
well as monitors the irradiation process every second
with the help of various systems and sensors.
At earlier sterilization plants, which include the in-
stallation of the CСU PMI IPCE RAS based on the
UELV-10-10-S-70, the process is controlled manually
by operators through continuous monitoring of the in-
strument readings, which reduces the efficiency of the
unit and can cause problems caused by the human fac-
tor. Therefore, the development of a system that allows
real-time monitoring of the installation on a variety of
parameters can significantly increase the efficiency and
safety of the irradiation process.
Such a system requires the ability to collect, transmit
to a computer and analyze the results of many sensors
and devices, record these data, inform about errors and
stop the irradiation process in case of abnormal situa-
tions. The solution to this problem is to combine differ-
ent devices and sensors in one system, the formation of
each of the sensors informative digital signals for their
accumulation and further transmission to a computer for
processing.
This system was developed for use at the plant in the
CСU PMI IPCE RAS. During installation, the system
collects data, displays it on the user's screen, and writes
it to a file as a report. In the case of the output parame-
ters of the production process beyond the norm, the sig-
nal goes to the operator panel for its intervention, and in
the case of emergencies, an emergency shutdown of the
system proceeds.
An important task was to maintain the ability to
scale the system without significant processing, which
allows you to add or remove control devices in the sys-
tem. Data transmission to computers has traditionally
remained a bottleneck even in modern laboratories,
where control of equipment is carried out with the help
of advanced specialized systems. For these purposes, a
simple technical solution of the system consisting of
sensors and actuators, universal controller and computer
was proposed. For the system the software of the device
consisting of two separate parts – software of the con-
troller and software of the controlling computer on the
console of operators of the accelerator is developed.
1. RADIATION INSTALLATION BASED
ON THE ACCELERATOR UELV-10-10-S-70
Center of irradiation in CСU PMI IPCE RAS is
based on radiation-technological installation with elec-
tron accelerator UELV-10-10-S-70, which is placed in a
radiation-safe bunker and is designed for irradiation by
an electron beam with an electron energy of up to
10 MeV, a beam power of up to 10 kW.
Fig. 1. Radiation installation
in the CСU PMI IPCE RAS
Radiation-technology installation consists of a linear
waveguide electron accelerator equipped with a scan-
ning system of the beam, and the circular conveyor that
moves objects in front of the output window of the ac-
celerator, at a distance of one meter from the output
window. The conveyor with boxes located on it and the
output horn of the accelerator scanning system are
shown in Fig. 1. The unit is used for various research,
technological and commercial purposes [1 - 5].
The developed control system, presented in Fig. 2,
collects data from the main units of the installation that
affect the result of irradiation. These are data on the
movement of the conveyor (the actual and specified
speed of rotation of the circular wheel), the waveform of
mailto:bpeter@mail.ru
ISSN 1562-6016. ВАНТ. 2019. №6(124) 186
the current of the deflecting magnet of the scanning
system, the state of the power supply network, the aver-
age and pulse current and electron energy of the beam.
The system consists of sensors and pre-conversion
boards for outputting analog and digital signals to the
controller, the controller itself and the computer. The
sensors are installed on the motor controller of the con-
veyor, on the load-carrying ring of the conveyor, on the
scanning system generator, on the power supply feeders
of the three-phase network. To control the beam current,
an additional sensor is installed − the Faraday cup,
which, during operation, is located under the conveyor
and measures the beam current at its almost maximum
deviation [6, 7].
Fig. 2. The control device's blocks
on the accelerator console
2. ELEMENTS OF THE DEVICE
FOR CONTROL AND DATA COLLECTION
2.1. UNIVERSAL CONTROLLER
Solving the problem of simple and efficient data
transmission from instruments and sensors on a com-
puter in that device is carried out using an Arduinocom-
patible AVR controller, shown in Fig. 3. Despite low
performance parameters, these controllers have several
advantages: simplicity, low cost, versatility, relative's
reliability, open architecture, a huge number of all kinds
of applications available in open access in the Internet.
The controller can receive both digital information from
various devices and analog signals using several ADC
channels.
The controller can be easily programmed to collect
data from a variety of individual instruments and sensors,
to preprocess this data and then to transfer it to a comput-
er via the serial port. After receiving the data, the final
processing of the data is carried out on the computer with
a further transfer of some analysis results back to the con-
troller to execute the necessary commands.
The designed system collects data on the movement
of the conveyor to the controller in digital form. The
waveform of the voltage at the generator output of the
scanning system, the voltage from the controller of the
conveyor motor-reducer, the voltage of the supply
mains phases, as well as the average beam current data
are sent to the controller in the form of analog signals.
Each of the sensors in the system is equipped with a
pre-conversion card to ensure the safe transmission of
analog or digital signals to the controller.
Fig. 3. Universal system controller
Data transmission from sensors to the controller is
non-discontinuous, information is transferred from the
controller to the computer 10…30 times per second.
Processing and recording data of the installation opera-
tion in the report is carried out every two seconds. The
controller, if necessary, can operate in an oscillo-
scopemode, allowing to view the source signal from
each of the sensors. Waveforms of all data for a certain
period of time are stored in a report in case of emergen-
cy situations or by the operator’s command.
2.2. ANALYSIS OF MAGNET CURRENT
The control of the good condition of the scanning
system is most important, since the level of the average
dose of radiation and its homogeneity depend on it. The
failure of the scanning system can lead to foil perfora-
tion, loss of vacuum and failure of the accelerator cath-
ode, which leads to serious problems for the entire in-
stallation.
The scanning system of accelerator consists of a de-
flecting magnet, a vacuumed output horn with a beam
output foil, and a scanning magnet current generator.
The generator is a triple-pole source of triangular or saw
tooth shape current with a frequency of 0.5…2 Hz. Dur-
ing operation, a triangular form current of frequency
current of 0.5 Hz is generated as standard.
The system continuously monitors the voltage of the
scanning system magnet current generator. The con-
stancy of the amplitude and frequency of the current
during the entire irradiation process is monitored. In
case of failure detection, the system gives the command
to switch off the accelerator.
Fig. 4. Waveform of the scanning system current
The sensor of the scanning system contains a voltage
converter of a three-pole generator to form a display sig-
nal of the relative magnitude of the magnet voltage within
0…5 V. The signal from the block is fed to the control-
ler's ADC, in the form of a waveform (shown in Fig. 4),
then transferred to a computer and analyzed by software.
ISSN 1562-6016. ВАНТ. 2019. №6(124) 187
2.3. CONTROL OF THE INSTALLATION
CIRCULAR CONVEYOR
The installation uses a circular conveyor-horizontal
wheel. This conveyor, loaded with boxes is shown in
Fig. 1. It rotates across the output window of the accel-
erator beam. The velocity of rotation of the wheel de-
termines the absorbed dose of the irradiated objects and
is the most important parameter for monitoring. Data on
the angular position of the wheel is necessary providing
the periodic irradiation of objects.
To obtain a given uniform dose, constant monitoring
of the position and velocity of rotation of the wheel is
required. Stopping the wheel during operation leads to
unacceptable overexposure of sterilized objects and is
an emergency situation.
Fig. 5. Conveyer velocity sensor
The system provides simultaneous control of the
wheel motor power supply and its actual velocity using
a sensor, based on an encoder, presented in Fig. 5. Dur-
ing the period of annual operation, the sensor showed
high radiation resistance. The weakness of the sensor is
the contact bounce, the electronic filter board is provid-
ed to eliminate it.
The control signal from the control unit of the motor
goes to the conversion unit, and then to the ADC of the
controller. Deviations in the operation of the conveyor
are recorded as the difference between the set signal at
the controller of the conveyor motor and the measured
velocity of the wheel.
2.4. BEAM PARAMETERS CONTROL
The control of the accelerator beam parameters is
the most complex part of the control system, and this
part is under development now. Ideally, the beam pa-
rameters sensor should provide the energy spectrum
during the entire process of accelerator operation. This
requires the development of measurement methods
based on the use of equipment that does not affect the
process of irradiation at the accelerator [6, 8, 9].
A simple way to determine the beam parameters is
to measure the average current of the whole beam using
an induction sensor and the current of a part of the beam
deflected at a given angle using the Faraday cup, shown
in Fig. 6. This method allows estimating the energy and
current of the beam from the empirically found rela-
tions.
Fig. 6. Faraday cup
The Faraday cup is installed in the zone, located un-
der the accelerator conveyor and measures the current of
a part of the beam, deflected on an angle close to the
maximum [7]. It uses a part of the beam that does not
participate in irradiation, but is necessary to ensure dose
uniformity at the edges of the irradiated objects. The
ratio of the current from the induction sensor to the cur-
rent of Faraday cup allows a rough estimate of the aver-
age energy and beam current.
The disadvantage of the system is the simultaneous
reduction of the average current from the sensor and
from the Faraday cylinder with an increase in the elec-
tron energy for this type of accelerator, which reduces
the measurement accuracy [6]. Measurement accuracy
can be increased by accumulating and mathematical
post-processing of the collected data, which improves
the accuracy of measurements, but it is preferable to
refine the measurement method [9].
For processing the pulse signals during their transfer
to the controller, a block for integrating the pulses of the
beam current has been developed.
In the development of sensors and methods for pro-
cessing signals from them, simulation is used with the
help of the computer code “BEAM SCANNING” [10 -
12], which was developed to calculate the irradiation
processes in radiation technology installations.
2.5. POWER NETWORK VOLTAGE CONTROL
Recently, the installation failures related to voltage
fluctuations in the power supply network have become
frequent. Several useful devices have been developed
for tracking voltage instabilities. To detect serious,
long-term drops or overvoltage of a three-phase power
grid, a network voltage measuring unit was developed,
which is based on unstabilized low voltage power sup-
ply unit, shown in Fig. 7. The power supply unit gener-
ates a signal with a voltage of about 2…3 V, which al-
lows to determine the AC amplitude. This signal
through the protection system enters the inputs of the
controller ADCs, which allows to monitor the voltage
drops or excesses in the network at the level of 10%.
The data from the ADCs are analyzed by the con-
troller, in case of signal amplitude being lowered or
exceeded, an error message is displayed, the installation
equipment is disconnected from the network.
ISSN 1562-6016. ВАНТ. 2019. №6(124) 188
Fig. 7. Three-phase network voltage control unit
3. THE CONTROL SYSTEM SOFTWARE
Created system collects data on the movement of the
conveyor, the current parameters of the deflecting mag-
net of the scanning system, the voltage of the power
supply network to the controller and then transfers data
to the control computer. The software of the system
consists of two parts: the software of the controller and
the software of the controlling computer.
The controller's software receives and digitizes the
analog signals from the sensors and transmits this data
to the control computer through the serial port in the
form of a matrix of numbers, including the value of the
time delay between data transmissions. To save the
computational resources of the controller, it implements
the minimum functionality in relation to the analysis
and recalculation of the data, the controller only collects
data and transmits to the computer.
In addition, the controller manages the error signal-
ing and performs equipment shutdown if the corre-
sponding signals come from the control computer.
The computer software provides communicating
with the controller via the serial port, decrypting, pro-
cessing and displaying data streams coming from the
controller.
The display of the received data is carried out in the
form of the waveforms of each of the channels in ac-
cordance with the data transmitted by the controller.
Waveforms are analyzed in real time. Every two sec-
onds, the total result is recorded in a file and displayed
on the graphic display of the installation. The software
is designed for the operating system “Windows XP”.
CONCLUSIONS
A device has been developed for controlling and re-
cording the characteristics of the operation of a radiation
installation. A simple method has been proposed for
collecting and transmitting data to a computer. The de-
veloped version of the system collects data on the
movement of the conveyor, the current parameters of
the scanning system deflecting magnet, and the voltage
in the network.
In the development process is a system of control
and accounting for the main characteristics of the accel-
erator beam: current, average energy, spectrum.
The software of device controller and control com-
puter was developed, that allows data to be collected
from multiple devices. Further work on the device im-
plies an increase in the amount of information collected
about the operation of the installation, the development
of new sensors, and the increase in reliability and con-
venience of the system.
REFERENCES
1. P.A. Bystrov, A.V. Gordeev, A.Yu. Kolokolova, et
al. Prospects of Electron Beam Irradiation to Ensure
Microbiological Safety of Food Products // Physics
of Atomic Nuclei. 2018, v. 81, № 10, p. 1526-1530.
2. A.Yu. Gracheova, M.A. Zavyalov, N.V. Ilyukhina,
et al. Enhancement of Efficiency of Storage and
Processing of Food Raw Materials Using Radiation
Technologies // Physics of Atomic Nuclei. 2016,
v. 79, № 14, p. 1682-1687.
3. Y.S. Pavlov, A.M. Surma, P.B. Lagov, et al. Accelera-
tor-based electron beam technologies for modification
of bipolar semiconductor devices // Journal of Physics:
Conference Series. 2016, v. 747, № 1, p. 012085.
4. Y.S. Pavlov, A.A. Revina, O.V. Souvorova, et al.
Electron beam agrobionanotechnologies for agricul-
ture and food industry enabled by electron accelera-
tors // Journal of Physics: Conference Series. 2018,
v. 941, № 1, p. 012098.
5. V.T. Tarasyuk, A.A. Semkina, V.I. Soloviova, et al.
Impact of electron-beam irradiation on multilayer
polymer materials: Immediate and long-term (1
year) effects // Physics of Particles and Nuclei Let-
ters. 2018, v. 15, № 7, p. 947-949.
6. P.A. Bystrov, Yu.S. Pavlov, A.A. Kozlov, et al. Ra-
diation installation and accelerator UELV-10-10-S-
70 beam parameters control, management and regis-
tration system // Proceedings of RuPAC2018, Prot-
vino, Russia. JACoW Geneva, Switzerland, 2018,
p. 472-474.
7. P.A. Bystrov, Yu.S. Pavlov, O.V. Souvorova,
I.Yu. Yakupov. Formation of irradiation beams on
accelerator UELV-10-10-S-70 for research of the
radiation resistance of polymers // Radiation Physics
and Chemistry. 2019, v. 161, p. 83-86.
8. Yu.S. Pavlov, P.B. Lagov. Magnetic Buncher Accel-
erator for Radiation Hardness Research and Pulse De-
tector Characterization // 2015 15th European Con-
ference on Radiation and Its Effects on Components
and Systems (RADECS). IEEE 2015, p. 336-338.
9. P.A. Bystrov. Applying the computer code beam
scanning for obtaining the electron beam energy
spectrum and monitoring the beam scanning system
with a Faraday cup and edge current sensors // Prob-
lems of Atomic Science and Technology. 2014, № 3,
p. 193-196.
10. P.A. Bystrov, N.E. Rozanov. The model of the irra-
diation of a three-dimensional object by the electron
beam in the sterilization installation with the local
radiation shielding // Problems of Atomic Science
and Technology. 2014, № 3, p. 128-133.
11. P.A. Bystrov, N.E. Rozanov. The methodology and
the computer code BEAM SCANNING for calculat-
ing the processes in the scanning system of electron
beam with a broad energy spectrum // Problems of
Atomic Science and Technology. 2012, № 4, p. 87-91.
12. P.A. Bystrov, Yu.S. Pavlov, A.V. Prokopenko, et al.
Computer program "BEAM SCANNING" for calcu-
lation of irradiation processes in radiation-
technological installations // Procedia Computer
Science. 2018, v. 145, p. 123-133.
Article received 04.10.2019
ISSN 1562-6016. ВАНТ. 2019. №6(124) 189
УСТРОЙСТВО КОНТРОЛЯ РАБОТЫ СТЕРИЛИЗАЦИОННОЙ УСТАНОВКИ
НА БАЗЕ УСКОРИТЕЛЯ УЭЛВ-10-10-C-70
П.А. Быстров, Ю.С. Павлов, А.А. Казякин, А.А. Козлов
Представлена конструкция системы контроля и регистрации параметров работы радиационной техноло-
гической установки ИФХЭ РАН на базе ускорителя УЭЛВ-10-10-С-70. Предложены решения для сбора дан-
ных с оборудования стерилизационной установки и ускорителя, их первичного анализа, передачи на ЭВМ с
целью их дальнейшей обработки и фиксации в журнале. Представлено программное обеспечение устройства
контроля. Созданное устройство позволяет своевременно выявить, а также предупредить возникновение
нештатных ситуаций.
ПРИСТРІЙ КОНТРОЛЮ РОБОТИ СТЕРИЛІЗАЦІЙНОЇ УСТАНОВКИ
НА БАЗІ ПРИСКОРЮВАЧА УЕЛВ-10-10-C-70
П.А. Бистров, Ю.С. Павлов, А.А. Казякін, А.А. Козлов
Представлено конструкцію системи контролю та реєстрації параметрів роботи радіаційної технологічної
установки ІФХЕ РАН на базі прискорювача УЕВЛ-10-10-С-70. Запропоновано рішення для збору даних з
устаткування стерилізаційної установки і прискорювача, їхнього первинного аналізу, передачі на ЕОМ з
метою їхньої подальшої обробки і фіксації в журналі. Представлено програмне забезпечення пристрою кон-
тролю. Створений пристрій дозволяє вчасно виявити, а також попередити виникнення позаштатних ситуа-
цій.
INTRODUCTION
1. RADIATION INSTALLATION BASED ON THE ACCELERATOR UELV-10-10-S-70
2. ELEMENTS OF THE DEVICE FOR CONTROL AND DATA COLLECTION
2.1. UNIVERSAL CONTROLLER
2.2. ANALYSIS OF MAGNET CURRENT
2.3. CONTROL OF THE INSTALLATION CIRCULAR CONVEYOR
2.4. BEAM PARAMETERS CONTROL
2.5. Power network voltage control
3. the control system software
conclusions
REFERENCES
УСТРОЙСТВО КОНТРОЛЯ РАБОТЫ СТЕРИЛИЗАЦИОННОЙ УСТАНОВКИ НА БАЗЕ УСКОРИТЕЛЯ УЭЛВ-10-10-C-70
|