Opportunities for the use of the small-size accelerator VGIK-1

The experimental data on modification of the surface of metals, alloys and materials coated using the method of irradiation by a heavy-current electron beam with the energy of 300 keV have been given. The specimen surface structure was studied before and after the irradiation using the method of opt...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Вопросы атомной науки и техники
Дата:2019
Автори: Vinnikiov, D.V., Buravilov, I.V., Yuferov, V.B., Ponomarev, A.N., Tkachev, V.I.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2019
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/195473
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Opportunities for the use of the small-size accelerator VGIK-1 / D.V. Vinnikiov, I.V. Buravilov, V.B. Yuferov, A.N. Ponomarev, V.I. Tkachev // Problems of atomic science and technology. — 2019. — № 6. — С. 115-121. — Бібліогр.: 10 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-195473
record_format dspace
spelling Vinnikiov, D.V.
Buravilov, I.V.
Yuferov, V.B.
Ponomarev, A.N.
Tkachev, V.I.
2023-12-05T11:21:40Z
2023-12-05T11:21:40Z
2019
Opportunities for the use of the small-size accelerator VGIK-1 / D.V. Vinnikiov, I.V. Buravilov, V.B. Yuferov, A.N. Ponomarev, V.I. Tkachev // Problems of atomic science and technology. — 2019. — № 6. — С. 115-121. — Бібліогр.: 10 назв. — англ.
1562-6016
PACS: 52.80.Vp
https://nasplib.isofts.kiev.ua/handle/123456789/195473
The experimental data on modification of the surface of metals, alloys and materials coated using the method of irradiation by a heavy-current electron beam with the energy of 300 keV have been given. The specimen surface structure was studied before and after the irradiation using the method of optic microscopy and the surface layer microhardness measurement. The method of electron microscopy was used to analyze the structure and the sizes of dispersed anode material. The films consisting of the crystals with the size of 6 to 8 nm were obtained. The mass transfer processes that occur in the material of metal targets made of Cu, Ti, Mo, Al were studied. The spatial map was compiled for the X-ray field of the plant. The experiments were carried out to define the action of X-ray radiation on the different types of conditionally pathogenic microflora, in particular such bacteria as Escherichia coli, Staphylococcus aureus, and Bacillus subtilis. The fields of application of the plant were defined.
Представлено експериментальні результати по модифікації поверхні металів, сплавів і матеріалів з нанесеними покриттями методом опромінення потужнострумовим електронним пучком з енергією до 300 кеВ. Вивчена структура поверхні зразків до і після опромінення методом оптичної мікроскопії та вимірювання мікротвердості в поверхневому шарі. Методом електронної мікроскопії проведено аналіз структури і розмірів розпорошуваного матеріалу анода. Отримано плівки, що складаються з кристалів розміром 6…8 нм. Досліджено процеси масопереносу матеріалу металевих мішеней Cu, Ti, Mo, Al. Складено об'ємну карту рентгенівського поля установки. Проведено експерименти з впливу рентгенівського випромінювання на різні типи умовно патогенної мікрофлори: бактерії типу Escherichia coli, Staphylococcus aureus, Bacillus subtilis. Визначено подальші напрямки застосування установки.
Представлены экспериментальные результаты по модифицированию поверхности металлов, сплавов и материалов с нанесенными покрытиями методом облучения сильноточным электронным пучком с энергией до 300 кэВ. Изучены структура поверхности образцов до и после облучения методом оптической микроскопии и измерения микротвердости в поверхностном слое. Методом электронной микроскопии проведен анализ структуры и размеров распыляемого материала анода. Получены пленки, состоящие из кристаллов с размером 6…8 нм. Исследованы процессы массопереноса материала металлических мишеней Cu, Ti, Mo, Al. Составлена объемная карта рентгеновского поля установки. Проведены эксперименты по воздействию рентгеновского излучения на различные типы условно патогенной микрофлоры: бактерии типа Escherichia coli, Staphylococcus aureus, Bacillus subtilis. Определены дальнейшие направления применения установки.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Linear charged-particle accelerators
Opportunities for the use of the small-size accelerator VGIK-1
Можливості використання малогабаритного прискорювача ВГІК-1
Возможности использования малогабаритного ускорителя ВГИК-1
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Opportunities for the use of the small-size accelerator VGIK-1
spellingShingle Opportunities for the use of the small-size accelerator VGIK-1
Vinnikiov, D.V.
Buravilov, I.V.
Yuferov, V.B.
Ponomarev, A.N.
Tkachev, V.I.
Linear charged-particle accelerators
title_short Opportunities for the use of the small-size accelerator VGIK-1
title_full Opportunities for the use of the small-size accelerator VGIK-1
title_fullStr Opportunities for the use of the small-size accelerator VGIK-1
title_full_unstemmed Opportunities for the use of the small-size accelerator VGIK-1
title_sort opportunities for the use of the small-size accelerator vgik-1
author Vinnikiov, D.V.
Buravilov, I.V.
Yuferov, V.B.
Ponomarev, A.N.
Tkachev, V.I.
author_facet Vinnikiov, D.V.
Buravilov, I.V.
Yuferov, V.B.
Ponomarev, A.N.
Tkachev, V.I.
topic Linear charged-particle accelerators
topic_facet Linear charged-particle accelerators
publishDate 2019
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Можливості використання малогабаритного прискорювача ВГІК-1
Возможности использования малогабаритного ускорителя ВГИК-1
description The experimental data on modification of the surface of metals, alloys and materials coated using the method of irradiation by a heavy-current electron beam with the energy of 300 keV have been given. The specimen surface structure was studied before and after the irradiation using the method of optic microscopy and the surface layer microhardness measurement. The method of electron microscopy was used to analyze the structure and the sizes of dispersed anode material. The films consisting of the crystals with the size of 6 to 8 nm were obtained. The mass transfer processes that occur in the material of metal targets made of Cu, Ti, Mo, Al were studied. The spatial map was compiled for the X-ray field of the plant. The experiments were carried out to define the action of X-ray radiation on the different types of conditionally pathogenic microflora, in particular such bacteria as Escherichia coli, Staphylococcus aureus, and Bacillus subtilis. The fields of application of the plant were defined. Представлено експериментальні результати по модифікації поверхні металів, сплавів і матеріалів з нанесеними покриттями методом опромінення потужнострумовим електронним пучком з енергією до 300 кеВ. Вивчена структура поверхні зразків до і після опромінення методом оптичної мікроскопії та вимірювання мікротвердості в поверхневому шарі. Методом електронної мікроскопії проведено аналіз структури і розмірів розпорошуваного матеріалу анода. Отримано плівки, що складаються з кристалів розміром 6…8 нм. Досліджено процеси масопереносу матеріалу металевих мішеней Cu, Ti, Mo, Al. Складено об'ємну карту рентгенівського поля установки. Проведено експерименти з впливу рентгенівського випромінювання на різні типи умовно патогенної мікрофлори: бактерії типу Escherichia coli, Staphylococcus aureus, Bacillus subtilis. Визначено подальші напрямки застосування установки. Представлены экспериментальные результаты по модифицированию поверхности металлов, сплавов и материалов с нанесенными покрытиями методом облучения сильноточным электронным пучком с энергией до 300 кэВ. Изучены структура поверхности образцов до и после облучения методом оптической микроскопии и измерения микротвердости в поверхностном слое. Методом электронной микроскопии проведен анализ структуры и размеров распыляемого материала анода. Получены пленки, состоящие из кристаллов с размером 6…8 нм. Исследованы процессы массопереноса материала металлических мишеней Cu, Ti, Mo, Al. Составлена объемная карта рентгеновского поля установки. Проведены эксперименты по воздействию рентгеновского излучения на различные типы условно патогенной микрофлоры: бактерии типа Escherichia coli, Staphylococcus aureus, Bacillus subtilis. Определены дальнейшие направления применения установки.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/195473
citation_txt Opportunities for the use of the small-size accelerator VGIK-1 / D.V. Vinnikiov, I.V. Buravilov, V.B. Yuferov, A.N. Ponomarev, V.I. Tkachev // Problems of atomic science and technology. — 2019. — № 6. — С. 115-121. — Бібліогр.: 10 назв. — англ.
work_keys_str_mv AT vinnikiovdv opportunitiesfortheuseofthesmallsizeacceleratorvgik1
AT buraviloviv opportunitiesfortheuseofthesmallsizeacceleratorvgik1
AT yuferovvb opportunitiesfortheuseofthesmallsizeacceleratorvgik1
AT ponomarevan opportunitiesfortheuseofthesmallsizeacceleratorvgik1
AT tkachevvi opportunitiesfortheuseofthesmallsizeacceleratorvgik1
AT vinnikiovdv možlivostívikoristannâmalogabaritnogopriskorûvačavgík1
AT buraviloviv možlivostívikoristannâmalogabaritnogopriskorûvačavgík1
AT yuferovvb možlivostívikoristannâmalogabaritnogopriskorûvačavgík1
AT ponomarevan možlivostívikoristannâmalogabaritnogopriskorûvačavgík1
AT tkachevvi možlivostívikoristannâmalogabaritnogopriskorûvačavgík1
AT vinnikiovdv vozmožnostiispolʹzovaniâmalogabaritnogouskoritelâvgik1
AT buraviloviv vozmožnostiispolʹzovaniâmalogabaritnogouskoritelâvgik1
AT yuferovvb vozmožnostiispolʹzovaniâmalogabaritnogouskoritelâvgik1
AT ponomarevan vozmožnostiispolʹzovaniâmalogabaritnogouskoritelâvgik1
AT tkachevvi vozmožnostiispolʹzovaniâmalogabaritnogouskoritelâvgik1
first_indexed 2025-11-26T18:15:39Z
last_indexed 2025-11-26T18:15:39Z
_version_ 1850767136625000448
fulltext ISSN 1562-6016. ВАНТ. 2019. №6(124) 115 LINEAR CHARGED-PARTICLE ACCELERATORS OPPORTUNITIES FOR THE USE OF THE SMALL-SIZE ACCELERATOR VGIK-1 D.V. Vinnikiov, I.V. Buravilov, V.B. Yuferov, A.N. Ponomarev, V.I. Tkachev National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine E-mail: vinniden@gmail.com The experimental data on modification of the surface of metals, alloys and materials coated using the method of irradiation by a heavy-current electron beam with the energy of 300 keV have been given. The specimen surface structure was studied before and after the irradiation using the method of optic microscopy and the surface layer microhardness measurement. The method of electron microscopy was used to analyze the structure and the sizes of dispersed anode material. The films consisting of the crystals with the size of 6 to 8 nm were obtained. The mass transfer processes that occur in the material of metal targets made of Cu, Ti, Mo, Al were studied. The spatial map was compiled for the X-ray field of the plant. The experiments were carried out to define the action of X-ray radia- tion on the different types of conditionally pathogenic microflora, in particular such bacteria as Escherichia coli, Staphylococcus aureus, and Bacillus subtilis. The fields of application of the plant were defined. PACS: 52.80.Vp INTRODUCTION The operation and some fields of application of the small-size accelerator (SSA) VGIK-1 were described earlier in scientific papers [1 - 4]. The general view of SSA VGIK-1 is presented on Fig. 1. Fig. 1. Small-size accelerator VGIK-1. General view The accelerating technique is continuously improved in order to modify already available properties and also to create some new unique properties of the materials [5]. The action of the beams of charged particles allows us to change such operating characteristics as hardness, wear resistance, fatigue strength, the corrosion and ero- sion resistance and their improvement results in an in- creased reliability and service life of the parts and in- struments operating in difficult conditions. The struc- ture-&-phase transformations that provide a change in the properties of hard materials are defined by the type and the parameters of particle beams and the initial characteristics of the target substance. By managing their combinations we can provide a wanted change in their properties [6 - 8]. It should be noted that nano- material-based technologies are widely used and are very promising. The main branches that demand nano- technologies are power engineering, electronics, biology and medicine [9]. The irradiation of targets by particle beams with preset parameters enables the dispersion of the material and the formation of the film of an appro- priate size and composition. The X-ray radiation gener- ated by the action of high-energy particles on the target material can be used for the irradiation of animate ob- jects in order to have influence on their biological activ- ity [10]. The purpose of this research was to define the opportunities of the SSA VGIK-1 for the solution of different research and technological problems. 1. ACCELERATOR PARAMETERS The experimental part of this research was carried out using the SSA VGIK-1. Fig. 2 gives the schematic diagram of the plant. Fig. 2. The schematic diagram of the plant VGIK-1: 1 − vacuum chamber; 2 − emitting electrode; 3 − target electrode; 4 − electron beam; 5 − Max generator; 6 − control unit; 7, 8 − diffusion and high-pressure vac- uum pumps; 9, 10 − upper and lateral flanges made of polymethylmethacrylates The accelerator electrode system consists of the semisphere − the electron emitter, the anode plate whose material was sputtered and deposited on the KCl salt crystal as it shown on Fig. 3. The interelectrode spacing was controlled in the range of 1…3 cm. The electron beam diameter corre- sponds to the cathode diameter and it is also confirmed by the imprint on the anode. Hence, the area of the sur- face modified by the beam is varied in the range of 7…64 cm2 and it depends on the beam energy, the inte- relectrode spacing and the target material. Using the test tools we obtained some plant parameters. mailto:vinniden@gmail.com ISSN 1562-6016. ВАНТ. 2019. №6(124) 116 Fig. 3. A general view of the diode system. K is the graphite cathode, A is the anode target, KCl is the test potassium chloride crystal onto which the film was deposited The structure and the dimensions of deposited mate- rial were analyzed using the transmission electron mi- croscope (TEM). The morphology of irradiated surfaces was defined using the optic microscope Olympus GX 51. The processes initiated by the passing beam were recorded by the high-speed video camera Casio Exilim EX-FH100 with the resolution of 1000 shots/s. The cur- rent was measured using the Rogowski loop with the sensitivity of 1.96 kА/V. The Vickers microhardness was measured by the microhardness meter PMT-3. The load weight was 50 g. The X-ray dose was measured by radiation receivers. The film morphology of sputtered anode material was defined using the microdiffraction method. The Laue method was used to get the diffrac- tion image of the stationary monocrystal. Such materials as Cu, Ti, Mo, Al and stainless steel were used as the target electrode. The target mass was weighted using the scales of a VLP-200 type with the balance error of 0.5 mg for the specimen of up to 50 g and in the weight range of 50 to 200 g this error was 1 mg. The bacterio- logical investigations of the survival of conditionally pathogenic microflora were carried out. The current oscillogram was obtained that allowed us to evaluate the discharge circuit parameters given in the Table 1. Table 1 SSA parameters, VGIK-1 Charge voltage Up to 30 kV Discharge current Up to 20 kА Channel resistance Up to 1.5 Ω Discharge duration Up to 5 µs Circuit induction 9 µH The number of charge stages 9 Capacitor type PC-100/0.4 Interelectrode spacing 5…20 mm Beam energy 250…300 keV Energy per 1 µs 100 J Vacuum 2.5·10-5 Torr The discharge has an oscillating character and the largest portion of energy is released during one period. The analysis of the oscillogram and high-speed vid- eo-filming data that are given on Figs. 4, 5, allows us to state that the material treatment process is defined not only by the action of the beam but also by the action of plasma in the form of arc. The accelerator energy was defined experimentally based on the available parameters of the generator of pulsed voltages, in particular the battery capacitance, induction, charge voltage, the electrode material and geometry and also the interelectrode spacing, vacuum conditions and obtained current oscillograms. Fig. 4. The current oscillogram Fig. 5. The high-speed video filming of the discharge at the completion stage 2. EXPERIMENTAL DATA 2.1. MASS TRANSFER Consideration was given to the processes related to the target material evaporation when exposed to the beam action using the experimental data obtained for the stored energy of 1.5 kJ and the thirty pulses for each specimen. The сomputations done using the experimental data given in the Table 2. Table 2 Mass loss. General data Target material Cu Ti Mo Al Mass M0, g 61.486 35.405 20.705 17.554 Mass M1, g 61.007 35.332 20.697 17.430 Mass loss per 30 pulse, mg 478.7 72.9 7.7 123.6 Mass loss per pulse, mg 15.6 2.43 0.25 4.12 Sublimation energy, kJ/g 4.75 9.86 8.7 6.78 Evaporation heat, kJ/g 4.79 8.83 6.15 10.5 Atom mass, 10-23 g 10 8 15.9 4.48 The number of atoms removed from the target per 1 pulse, 1019 particles 9.69 9.2 0.15 3.05 The minimum ener- gy input for the sublimation of the lost mass, J 48.55 23.95 1.7 35.8 Energy falling to one atom per pulse, eV 3.13 4.89 6.77 2.42 ISSN 1562-6016. ВАНТ. 2019. №6(124) 117 The Table shows that the highest mass loss is ob- served for the materials with the lowest sublimation energy, i.e. copper and aluminum. At the same time, the evaporation heat of copper is 1.3 to 2 times higher than that of other materials in question and it also conditions the more intensive mass transfer. The material evapora- tion is also possible for Ti, Mo, Al targets with its trans- fer to the gaseous phase, because input energies exceed those required for the transfer to the gaseous phase. The molybdenum specimen is evaporated with a considera- bly lower intensity, i.e. 10 times slower than titanium and 62 times slower than copper due to high values of the sublimation energy and atomic weight. Fig. 6 gives a general view of the specimens before and after the treatment at a 40-fold magnification. Fig. 6. The microstructure of the surface irradiated by electron beams with the energy of 300 keV for Cu, Ti, Mo. a, b, c – before the irradiation; d, e, f – after the irradiation It can be seen that the mass loss results in the surface modification of all the specimens. 2.2. SURFACE MODIFICATION During the interaction of the heavy-current electron beams with the solid body surface we observe the set of processes that represent the common phenomenon and are called the ablative interaction. The ablation is char- acterized by many processes that occur simultaneously, in particular heating, melting and evaporation of the entire area or just a portion of the interaction area, the plasma torch formation, the plasma outflow and the neutral gas emission from the interaction area, the so- called discharge and the formation of shock waves in the solid body. The technical use of the ablation process for the modification of the surface structure of metals that pro- vides an increased strength and corrosion resistance requires as a rule no evaporation of a large amount of the material; it is sufficient to bring the surface to melt- ing with the subsequent fast cooling of the target retain- ing thus the melted material structure. The surface evaporation is also reasonable for the removal of low- energy admixtures. The main contribution to the modi- fication of the structure of internal areas is made by the shock wave that is propagated in the solid body from the ablation zone. Fig. 7 gives the specimens made of copper and stainless steel. Figs. 7; 8,b depict the marked zones that differ from each other by the degree of a change in the morphology of surface layers and these are given in detail in Figs. 7; 8,c. Fig. 7. Copper surface morphology after the plasma beam treatment, a − general view of the specimen treat- ed using the plasma beam method; b − specimen with marked characteristic zones; 1, 2, 3, 4 − view of zones with a 50-fold magnification Fig. 7,a gives the specimen subjected to the plasma beam treatment with no marked zones. The 4th zone corresponds to the reference specimen that was not sub- jected to the plasma beam treatment. Fig. 8. Stainless steel surface morphology after the plasma beam treatment, a is a general view of the spec- imen treated using the plasma beam method; b − specimen with marked typical zones; c:1, 2, 3, 4 − view of the zones with a 50-fold magnification ISSN 1562-6016. ВАНТ. 2019. №6(124) 118 A difference in the surface of different materials after their treatment depends on their physical properties (heat conductivity, vapor tension, mechanical properties, etc) and the composition. The zones with intensive heating show the sublimation temperature inhomogeneity. The copper is represented in its pure form. The shape of bright formations is very close to spherical and these formations have no great amount of dark spots and are distributed uniformly across the entire surface. It is peculiar for all the three zones exposed to the treatment, including the first zone where the heating is the most intensive. Such morphology can be indicative of the availability of a great amount of admixtures and it is conditioned first of all by the presence of contaminants on the material surface and approximately identical evaporation rates. For stainless steel the evaporation of contained ad- mixtures is defined by the vapor tension of each ele- ment. Cr whose content varies from 12 to 20% is evapo- rated first. We can see typical ripples in the domain № 1 with prevailing dark areas and it is indicative of the pos- sible evaporation of a number of alloying elements. Stainless steel contains the elements that are associated with iron and its alloys (C, Si, Mn, S, P). Many alloying elements Ni, Mn and Ti, Nb, Co, Mo are present here, therefore the surface is sublimated non-uniformly and each element has the melting temperature and the evap- oration temperature of its own. Its vapor tension is high and it starts to evaporate already at 1100ºС. The availability of different zones is also explained by the nonuniform electron beam energy release in the mate- rial. The microhardness measurement data taken across the thickness of irradiated plate are indicative of the fact that the microhardness level is 1.8 to 2.2 times higher in the zone of the most intensive heating, i.e. zone № 1 in comparison with the average value of the target micro- hardness before the treatment. Hence, we can speak of the available effect produced by the action of the pulsed plasma beam on the surface structure of studied targets. 2.3. THE IRRADIATION OF COATED SPECIMENS USING THE PLASMA-ARC METHOD The studies of the processes that occur during the in- teraction of the beams of charged particles and plasma both with the surfaces of pure materials and those with already applied coatings are of great importance for the development of technologies related to the use of mate- rials with new properties. Consideration was given to the opportunity of a change in the properties (in particu- lar microhardness) of the materials that were coated using the plasma – arc method and the Bulat-6 plant. Fig. 9 gives appropriate specimens before and after the irradiation using the SSA plant VGIK-1. Fig. 9. The surface morphology of the specimens that were coated using the Bulat-6 plant after the irradiation by the SSA plant VGIK-1 Table 3 gives microhardness measurement data for the series of specimens before and after their irradiation. Table 3 Microhardness measurement data Mat. Iarc, A Hititial, HV Hirrad, HV PMT-3 Cu/ NbN 80 100 473 501 50 g 5⋅5 mm2 Cu/ NbN 80 85 358 701 Cu/ Zr 80 90 501 739 Cu/ Nb 80 105 332 435 CuN/ CrN 85 80 236 251 CuN/ CrN 85 80 453 701 ZrN/ CuN 85 80 401 891 TiZrN/ TiSiN 85 80 787 418 It can be seen that approximately two-times increase in the hardness is peculiar for irradiated materials de- pending on the specimen composition. 2.4. FILM DEPOSITION The target material surface modification process is accompanied by its dispersion. Fig. 10 gives the film formed by the sputtered material on the cathode and the target electrode surface after thirty pulses. Fig. 10. The deposition on the cathode (a) and the Ti target surface irradiated with the electron beams of 270 keV (b) The structure and the dimensions of deposited mate- rial were analyzed using the transmission electron mi- croscope (TEM). The measurements were taken for the electron energy of 125 kV in the bright field with the marked region diffraction (SAED). All the images were obtained for film ruptures or for the places transparent for the electrons. It was established that the film is con- tinuous and inhomogeneous; the drop fraction can be seen. Thin layers show that the film is fine-crystalline. We can state that the film is multilayered. The film morphology consists of almost continuous coating that contains the agglomerates with the size of 50 to 100 nm; the entire field of the film contains small crystals with the size of 6 to 8 nm. The agglomerates can consist of the same nanocrystals or the phase that forms a continu- ous film coating. ISSN 1562-6016. ВАНТ. 2019. №6(124) 119 Fig. 11. A typical structure of the material deposited on the KCl crystal surface. Magnification by 104 (a), 4·104 (b), 8·104 (с, d) The nanocrystal evaporation phenomenon was ob- served for the electron beam action. Fig. 11,c shows the same zones at the beginning of filming and Fig. 11,d shows them after the exposure to the electron beam dur- ing several minutes. Hence, all the bright spots on the images with the 80000-fold magnification are the result of the evaporation of nanocrystals under the action of electron beam. Fig. 12. The Lauegram (250000-fold magnification) of copper deposited on the KCl crystal surface The method of microdiffraction was used to obtain the Lauegram (X-ray pattern) shown in Fig. 12, where the narrow X-ray beam of a continuous spectrum was directed at the stationary monocrystal that represents the X-rays diffraction lattice. The diffraction pattern created by the crystal was registered by the photographic film placed behind the crystal. In addition to the central spot formed by the undeflected X-ray beam the Lauegram shows the ring spots whose number and location depend on the type of crystal and its orientation relative to the beam. We detected nine ring spots on the Fig. 12. Hence, we can draw a conclusion that the film has the crystalline structure. The analogous data were obtained for other target materials. The multilayered films that contain the na- nosize crystals of the anode material were thus obtained on the cathode. 2.5. X-RAY RADIATION TOPOGRAPHY To define the X-ray radiation action opportunities of the tested accelerator with regard to the materials and objects its spatial map was made and shown on Fig. 13. Fig. 13. X-ray radiation topography near lateral and upper flanges. Side view Fig. 14. The color map of the X-ray intensity on the surface of lateral and upper flanges The X-ray sensors were placed across the area of each flange and also lengthwise at a distance of up to 50 cm from the flanges. Fig. 14 shows the measurement data that allowed us to establish that the radiation is more intensive near the lateral flange where the total dose after the 10 pulses is equal to 245 mR, and for the upper flange it is equal to 100 mR. The obtained data enabled the establishment of the zones of the most intensive radiation. The regions that are the most convenient for the placement of treated materials beyond the accelerator chamber have been defined. 6 8 10 12 14 16 18 20 0 10 20 30 40 50 60 70 80 90 100 110 120 X- ra y in te ns ity , m R Interelectrode space, mm LATERAL FLANGE UPPER FLANGE 6 8 10 12 14 16 18 20 0 10 20 30 40 50 60 70 80 90 100 110 120 X- ra y in te ns ity , m R Interelectrode space, mm LATERAL FLANGE UPPER FLANGE Fig. 15. Dependence of the X-ray intensity on the interelectrode spacing ISSN 1562-6016. ВАНТ. 2019. №6(124) 120 The dependence of the X-ray intensity on the inte- relectrode spacing was defined as it shown on Fig. 15. The spacing control unit structure does not permit to increase the gap by more than 20 mm. Fig. 16. Conditionally pathogenic microflora irradiation Preliminary experiments were carried out to define the X-ray influence on different types of conditionally pathogenic microflora, in particular the bacteria of Escherichia coli, Staphylococcus aureus, Bacillus sub- tilis types. The general view of experiment is shown on Fig. 16. The methods and the conditions required for the realization of mutational, bactericidal and bacteriostatic effects onto the bioobjects have been defined. CONCLUSIONS The experiments carried out allowed us to define the methods of the development of the SSA VGIK-1. At the moment, we can mark out the following lines: • Changing the material surface microhardness; • Hardening copper-containing material surfaces; • Applying the films consisting of nanocrystals onto the substrates; • Using the plant as an X-ray source with the doses of up to ~100 mR/pulse and with the accumulated dos- es of up to ~ 2000 mR/h at the pulse repetition rate of 3 pulses per minute. It should be noted in conclusion that some energy and technology characteristics of the small-size acceler- ator – VGIK-1 were defined. The plant was used to do research in order to increase the surface microhardness of metals, alloys and the materials with the preliminary applied coatings including those made of nitrides. Сu, Ti, Al, and stainless steel specimens were subjected to the irradiation. The morphology of irradiated specimens made of Cu, Ti, and stainless steel was defined. The X- ray field map was compiled. An optimal interelectrode spacing was defined to get maximum X-ray doses. The investigation was carried out in cooperation with the Institute for the Solid – State Physics. Material Science and Technologies of the National Academy of Sciences of Ukraine (NASU) to treat a series of multi- component specimens with the coatings applied using the plasma-arc method. The morphology of the anode material sputtered on the KCl crystal was defined in cooperation with the Institute of Single Crystals of the NASU. The conditionally pathogenic flora was treated in cooperation with the Institute of Cryobiology and Cryomedicine of NASU. The accelerator with electron beam parameters (the electron energy of up to 270 keV, the pulse duration of up to 5 µs, and the pulse frequency of 20 pulse/h) can be recommended for the purposeful surface modification of the metals, alloys and materials with applied coatings used for different research and technological purposes and also for the investigation of the X-ray effect on dif- ferent microflora for medical purposes. REFERENCES 1. G.А. Mesyatz, D.I. Proskurovskiy, V.P. Rotshtein, N.I. Lebedeva. Low-Energy Pulsed Electron Beam of a High Density for the Surface Heating // DAN USSR. 1983, v. 253, № 6, p. 1383-1386. 2. V.B. Yuferov, Е.I. Skibenko, L.G. Sorokovoy, et al. On the Possibility of the Use of the System of Pulsed Electron Accelerator to Modify the Surface- Volumetric Properties of Different Materials // Problems of Nuclear Science and Engineering. Se- ries “The Physics of Radiation Damages and the Radiation Material Science”. 1997, Issue 1(66), 2(66), p. 197-198. 3. V.F. Zelenskiy, I.М. Neklyudov, V.F. Rybalko, S.V. Shevchenko, et al. Influence of the Irradiation by Pulsed Plasma Streams on the Mechanical Prop- erties of Austenitic Stainless Steel Х16Н15МЗБ and Х18Н10Т: preprint KhFTI 89-64, Kharkov, 1989, 12 p. 4. V.B. Yuferov, L.G. Sorokovoy, Е.I. Skibenko, Yu.V. Holod, E.V. Mufel. Some Applications of High-Voltage High-Power Pulsed Equipment // Problems of Atomic Science and Technology. Series “Vacuum, Pure Materials and Superconductors”. 1999, Issue 2 (10), p. 21-25. 5. А.N. Dovbnya, V.V. Zakutin, A.A. Parhomenko, О.А. Repihov, N.G. Reshetnyak, et al. Electron Beams for Radiation Technologies // Problems of Atomic Science and Technology. Series “Physics of Radiation Effect and Radiation Materials Science”. 2002, № 6, p. 152-153. 6. А.N. Dovbnya, S.D. Lavrinenko, V.V. Zakutin, А.N. Aksenova, N.G. Reshetnyak, N.N. Pilipenko, V.N. Pelyh, G.N. Tolmacheva. The Zirconium and the Zr1%Nb Alloy Surface Modification by the Electron Beam of the Magnetron Gun-Based Accelera- tor // Problems of Atomic Science and Technology. Series “Physics of Radiation Effect and Radiation Materials Science”. 2011, № 2, p. 39-45. 7. А.D. Pogrebnyak, О.P. Kulmentieva. Structure and Phase Transformations in the Surface Layers and the Properties of Metal Materials after the Pulsed Action of Particle Beams // PSE. 2003, Issue 1, № 2, v. 1. 8. A.B. Batrakov, M.I. Bazaleev, S.E. Donets, V.F. Klepikov, Yu.F. Lonin, V.V. Lytvynenko, A.G. Ponomarev, V.V. Uvarov, V.T. Uvarov, V.N. Robuk. The Particularities of the Influence Produced by High-Current Relativistic Electron Beams on Construction Material Targets // Problems of Atomic Science and Technology. “Nuclear Phys- ics Investigations”. 2013, № 6, p. 225-229. 9. А.P. Chernyaev, М.А. Kolyvanova, P.Yu. Borshegovskaya. Radiation Technologies in Medicine. Part 1. Medical Accelerators. Biophysics http://vant.kipt.kharkov.ua/CONTENTS/CONTENTS_2014_2.html http://vant.kipt.kharkov.ua/CONTENTS/CONTENTS_2014_2.html http://vant.kipt.kharkov.ua/CONTENTS/CONTENTS_2014_2.html http://vant.kipt.kharkov.ua/CONTENTS/CONTENTS_2014_2.html ISSN 1562-6016. ВАНТ. 2019. №6(124) 121 and Medical Physics. Seria 3 // Phisics. Astronomy. 2015, № 6, p. 28-36. 10. А.А. Tsutsaeva, I.P. Vysekancev, N.F. Severin, Yu.А. Itkin. Lethal and Mutagenic Action of the Electron Irradiation on the r II Mutant Phage Т4 in the Low-Temperature Range (-196ºС) // Radiobiol- ogy. 1981, v. 21, p. 133-134. Article received 05.11.2019 ВОЗМОЖНОСТИ ИСПОЛЬЗОВАНИЯ МАЛОГАБАРИТНОГО УСКОРИТЕЛЯ ВГИК-1 Д.В. Винников, И.В. Буравилов, В.Б. Юферов, А.Н. Пономарев, В.И. Ткачев Представлены экспериментальные результаты по модифицированию поверхности металлов, сплавов и материалов с нанесенными покрытиями методом облучения сильноточным электронным пучком с энергией до 300 кэВ. Изучены структура поверхности образцов до и после облучения методом оптической микроско- пии и измерения микротвердости в поверхностном слое. Методом электронной микроскопии проведен ана- лиз структуры и размеров распыляемого материала анода. Получены пленки, состоящие из кристаллов с размером 6…8 нм. Исследованы процессы массопереноса материала металлических мишеней Cu, Ti, Mo, Al. Составлена объемная карта рентгеновского поля установки. Проведены эксперименты по воздействию рент- геновского излучения на различные типы условно патогенной микрофлоры: бактерии типа Escherichia coli, Staphylococcus aureus, Bacillus subtilis. Определены дальнейшие направления применения установки. МОЖЛИВОСТІ ВИКОРИСТАННЯ МАЛОГАБАРИТНОГО ПРИСКОРЮВАЧА ВГІК-1 Д.В. Вінніков, І.В. Буравілов, В.Б. Юферов, О.М. Пономарьов, В.І. Ткачов Представлено експериментальні результати по модифікації поверхні металів, сплавів і матеріалів з нане- сеними покриттями методом опромінення потужнострумовим електронним пучком з енергією до 300 кеВ. Вивчена структура поверхні зразків до і після опромінення методом оптичної мікроскопії та вимірювання мікротвердості в поверхневому шарі. Методом електронної мікроскопії проведено аналіз структури і розмі- рів розпорошуваного матеріалу анода. Отримано плівки, що складаються з кристалів розміром 6…8 нм. До- сліджено процеси масопереносу матеріалу металевих мішеней Cu, Ti, Mo, Al. Складено об'ємну карту рент- генівського поля установки. Проведено експерименти з впливу рентгенівського випромінювання на різні типи умовно патогенної мікрофлори: бактерії типу Escherichia coli, Staphylococcus aureus, Bacillus subtilis. Визначено подальші напрямки застосування установки.