Opportunities for the use of the small-size accelerator VGIK-1
The experimental data on modification of the surface of metals, alloys and materials coated using the method of irradiation by a heavy-current electron beam with the energy of 300 keV have been given. The specimen surface structure was studied before and after the irradiation using the method of opt...
Збережено в:
| Опубліковано в: : | Вопросы атомной науки и техники |
|---|---|
| Дата: | 2019 |
| Автори: | , , , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2019
|
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/195473 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Opportunities for the use of the small-size accelerator VGIK-1 / D.V. Vinnikiov, I.V. Buravilov, V.B. Yuferov, A.N. Ponomarev, V.I. Tkachev // Problems of atomic science and technology. — 2019. — № 6. — С. 115-121. — Бібліогр.: 10 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-195473 |
|---|---|
| record_format |
dspace |
| spelling |
Vinnikiov, D.V. Buravilov, I.V. Yuferov, V.B. Ponomarev, A.N. Tkachev, V.I. 2023-12-05T11:21:40Z 2023-12-05T11:21:40Z 2019 Opportunities for the use of the small-size accelerator VGIK-1 / D.V. Vinnikiov, I.V. Buravilov, V.B. Yuferov, A.N. Ponomarev, V.I. Tkachev // Problems of atomic science and technology. — 2019. — № 6. — С. 115-121. — Бібліогр.: 10 назв. — англ. 1562-6016 PACS: 52.80.Vp https://nasplib.isofts.kiev.ua/handle/123456789/195473 The experimental data on modification of the surface of metals, alloys and materials coated using the method of irradiation by a heavy-current electron beam with the energy of 300 keV have been given. The specimen surface structure was studied before and after the irradiation using the method of optic microscopy and the surface layer microhardness measurement. The method of electron microscopy was used to analyze the structure and the sizes of dispersed anode material. The films consisting of the crystals with the size of 6 to 8 nm were obtained. The mass transfer processes that occur in the material of metal targets made of Cu, Ti, Mo, Al were studied. The spatial map was compiled for the X-ray field of the plant. The experiments were carried out to define the action of X-ray radiation on the different types of conditionally pathogenic microflora, in particular such bacteria as Escherichia coli, Staphylococcus aureus, and Bacillus subtilis. The fields of application of the plant were defined. Представлено експериментальні результати по модифікації поверхні металів, сплавів і матеріалів з нанесеними покриттями методом опромінення потужнострумовим електронним пучком з енергією до 300 кеВ. Вивчена структура поверхні зразків до і після опромінення методом оптичної мікроскопії та вимірювання мікротвердості в поверхневому шарі. Методом електронної мікроскопії проведено аналіз структури і розмірів розпорошуваного матеріалу анода. Отримано плівки, що складаються з кристалів розміром 6…8 нм. Досліджено процеси масопереносу матеріалу металевих мішеней Cu, Ti, Mo, Al. Складено об'ємну карту рентгенівського поля установки. Проведено експерименти з впливу рентгенівського випромінювання на різні типи умовно патогенної мікрофлори: бактерії типу Escherichia coli, Staphylococcus aureus, Bacillus subtilis. Визначено подальші напрямки застосування установки. Представлены экспериментальные результаты по модифицированию поверхности металлов, сплавов и материалов с нанесенными покрытиями методом облучения сильноточным электронным пучком с энергией до 300 кэВ. Изучены структура поверхности образцов до и после облучения методом оптической микроскопии и измерения микротвердости в поверхностном слое. Методом электронной микроскопии проведен анализ структуры и размеров распыляемого материала анода. Получены пленки, состоящие из кристаллов с размером 6…8 нм. Исследованы процессы массопереноса материала металлических мишеней Cu, Ti, Mo, Al. Составлена объемная карта рентгеновского поля установки. Проведены эксперименты по воздействию рентгеновского излучения на различные типы условно патогенной микрофлоры: бактерии типа Escherichia coli, Staphylococcus aureus, Bacillus subtilis. Определены дальнейшие направления применения установки. en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Вопросы атомной науки и техники Linear charged-particle accelerators Opportunities for the use of the small-size accelerator VGIK-1 Можливості використання малогабаритного прискорювача ВГІК-1 Возможности использования малогабаритного ускорителя ВГИК-1 Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Opportunities for the use of the small-size accelerator VGIK-1 |
| spellingShingle |
Opportunities for the use of the small-size accelerator VGIK-1 Vinnikiov, D.V. Buravilov, I.V. Yuferov, V.B. Ponomarev, A.N. Tkachev, V.I. Linear charged-particle accelerators |
| title_short |
Opportunities for the use of the small-size accelerator VGIK-1 |
| title_full |
Opportunities for the use of the small-size accelerator VGIK-1 |
| title_fullStr |
Opportunities for the use of the small-size accelerator VGIK-1 |
| title_full_unstemmed |
Opportunities for the use of the small-size accelerator VGIK-1 |
| title_sort |
opportunities for the use of the small-size accelerator vgik-1 |
| author |
Vinnikiov, D.V. Buravilov, I.V. Yuferov, V.B. Ponomarev, A.N. Tkachev, V.I. |
| author_facet |
Vinnikiov, D.V. Buravilov, I.V. Yuferov, V.B. Ponomarev, A.N. Tkachev, V.I. |
| topic |
Linear charged-particle accelerators |
| topic_facet |
Linear charged-particle accelerators |
| publishDate |
2019 |
| language |
English |
| container_title |
Вопросы атомной науки и техники |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Можливості використання малогабаритного прискорювача ВГІК-1 Возможности использования малогабаритного ускорителя ВГИК-1 |
| description |
The experimental data on modification of the surface of metals, alloys and materials coated using the method of irradiation by a heavy-current electron beam with the energy of 300 keV have been given. The specimen surface structure was studied before and after the irradiation using the method of optic microscopy and the surface layer microhardness measurement. The method of electron microscopy was used to analyze the structure and the sizes of dispersed anode material. The films consisting of the crystals with the size of 6 to 8 nm were obtained. The mass transfer processes that occur in the material of metal targets made of Cu, Ti, Mo, Al were studied. The spatial map was compiled for the X-ray field of the plant. The experiments were carried out to define the action of X-ray radiation on the different types of conditionally pathogenic microflora, in particular such bacteria as Escherichia coli, Staphylococcus aureus, and Bacillus subtilis. The fields of application of the plant were defined.
Представлено експериментальні результати по модифікації поверхні металів, сплавів і матеріалів з нанесеними покриттями методом опромінення потужнострумовим електронним пучком з енергією до 300 кеВ. Вивчена структура поверхні зразків до і після опромінення методом оптичної мікроскопії та вимірювання мікротвердості в поверхневому шарі. Методом електронної мікроскопії проведено аналіз структури і розмірів розпорошуваного матеріалу анода. Отримано плівки, що складаються з кристалів розміром 6…8 нм. Досліджено процеси масопереносу матеріалу металевих мішеней Cu, Ti, Mo, Al. Складено об'ємну карту рентгенівського поля установки. Проведено експерименти з впливу рентгенівського випромінювання на різні типи умовно патогенної мікрофлори: бактерії типу Escherichia coli, Staphylococcus aureus, Bacillus subtilis. Визначено подальші напрямки застосування установки.
Представлены экспериментальные результаты по модифицированию поверхности металлов, сплавов и материалов с нанесенными покрытиями методом облучения сильноточным электронным пучком с энергией до 300 кэВ. Изучены структура поверхности образцов до и после облучения методом оптической микроскопии и измерения микротвердости в поверхностном слое. Методом электронной микроскопии проведен анализ структуры и размеров распыляемого материала анода. Получены пленки, состоящие из кристаллов с размером 6…8 нм. Исследованы процессы массопереноса материала металлических мишеней Cu, Ti, Mo, Al. Составлена объемная карта рентгеновского поля установки. Проведены эксперименты по воздействию рентгеновского излучения на различные типы условно патогенной микрофлоры: бактерии типа Escherichia coli, Staphylococcus aureus, Bacillus subtilis. Определены дальнейшие направления применения установки.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/195473 |
| citation_txt |
Opportunities for the use of the small-size accelerator VGIK-1 / D.V. Vinnikiov, I.V. Buravilov, V.B. Yuferov, A.N. Ponomarev, V.I. Tkachev // Problems of atomic science and technology. — 2019. — № 6. — С. 115-121. — Бібліогр.: 10 назв. — англ. |
| work_keys_str_mv |
AT vinnikiovdv opportunitiesfortheuseofthesmallsizeacceleratorvgik1 AT buraviloviv opportunitiesfortheuseofthesmallsizeacceleratorvgik1 AT yuferovvb opportunitiesfortheuseofthesmallsizeacceleratorvgik1 AT ponomarevan opportunitiesfortheuseofthesmallsizeacceleratorvgik1 AT tkachevvi opportunitiesfortheuseofthesmallsizeacceleratorvgik1 AT vinnikiovdv možlivostívikoristannâmalogabaritnogopriskorûvačavgík1 AT buraviloviv možlivostívikoristannâmalogabaritnogopriskorûvačavgík1 AT yuferovvb možlivostívikoristannâmalogabaritnogopriskorûvačavgík1 AT ponomarevan možlivostívikoristannâmalogabaritnogopriskorûvačavgík1 AT tkachevvi možlivostívikoristannâmalogabaritnogopriskorûvačavgík1 AT vinnikiovdv vozmožnostiispolʹzovaniâmalogabaritnogouskoritelâvgik1 AT buraviloviv vozmožnostiispolʹzovaniâmalogabaritnogouskoritelâvgik1 AT yuferovvb vozmožnostiispolʹzovaniâmalogabaritnogouskoritelâvgik1 AT ponomarevan vozmožnostiispolʹzovaniâmalogabaritnogouskoritelâvgik1 AT tkachevvi vozmožnostiispolʹzovaniâmalogabaritnogouskoritelâvgik1 |
| first_indexed |
2025-11-26T18:15:39Z |
| last_indexed |
2025-11-26T18:15:39Z |
| _version_ |
1850767136625000448 |
| fulltext |
ISSN 1562-6016. ВАНТ. 2019. №6(124) 115
LINEAR CHARGED-PARTICLE ACCELERATORS
OPPORTUNITIES FOR THE USE OF THE SMALL-SIZE
ACCELERATOR VGIK-1
D.V. Vinnikiov, I.V. Buravilov, V.B. Yuferov, A.N. Ponomarev, V.I. Tkachev
National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine
E-mail: vinniden@gmail.com
The experimental data on modification of the surface of metals, alloys and materials coated using the method of
irradiation by a heavy-current electron beam with the energy of 300 keV have been given. The specimen surface
structure was studied before and after the irradiation using the method of optic microscopy and the surface layer
microhardness measurement. The method of electron microscopy was used to analyze the structure and the sizes of
dispersed anode material. The films consisting of the crystals with the size of 6 to 8 nm were obtained. The mass
transfer processes that occur in the material of metal targets made of Cu, Ti, Mo, Al were studied. The spatial map
was compiled for the X-ray field of the plant. The experiments were carried out to define the action of X-ray radia-
tion on the different types of conditionally pathogenic microflora, in particular such bacteria as Escherichia coli,
Staphylococcus aureus, and Bacillus subtilis. The fields of application of the plant were defined.
PACS: 52.80.Vp
INTRODUCTION
The operation and some fields of application of the
small-size accelerator (SSA) VGIK-1 were described
earlier in scientific papers [1 - 4]. The general view of
SSA VGIK-1 is presented on Fig. 1.
Fig. 1. Small-size accelerator VGIK-1. General view
The accelerating technique is continuously improved
in order to modify already available properties and also
to create some new unique properties of the materials
[5]. The action of the beams of charged particles allows
us to change such operating characteristics as hardness,
wear resistance, fatigue strength, the corrosion and ero-
sion resistance and their improvement results in an in-
creased reliability and service life of the parts and in-
struments operating in difficult conditions. The struc-
ture-&-phase transformations that provide a change in
the properties of hard materials are defined by the type
and the parameters of particle beams and the initial
characteristics of the target substance. By managing
their combinations we can provide a wanted change in
their properties [6 - 8]. It should be noted that nano-
material-based technologies are widely used and are
very promising. The main branches that demand nano-
technologies are power engineering, electronics, biology
and medicine [9]. The irradiation of targets by particle
beams with preset parameters enables the dispersion of
the material and the formation of the film of an appro-
priate size and composition. The X-ray radiation gener-
ated by the action of high-energy particles on the target
material can be used for the irradiation of animate ob-
jects in order to have influence on their biological activ-
ity [10]. The purpose of this research was to define the
opportunities of the SSA VGIK-1 for the solution of
different research and technological problems.
1. ACCELERATOR PARAMETERS
The experimental part of this research was carried
out using the SSA VGIK-1. Fig. 2 gives the schematic
diagram of the plant.
Fig. 2. The schematic diagram of the plant VGIK-1:
1 − vacuum chamber; 2 − emitting electrode; 3 − target
electrode; 4 − electron beam; 5 − Max generator;
6 − control unit; 7, 8 − diffusion and high-pressure vac-
uum pumps; 9, 10 − upper and lateral flanges made
of polymethylmethacrylates
The accelerator electrode system consists of the
semisphere − the electron emitter, the anode plate
whose material was sputtered and deposited on the KCl
salt crystal as it shown on Fig. 3.
The interelectrode spacing was controlled in the
range of 1…3 cm. The electron beam diameter corre-
sponds to the cathode diameter and it is also confirmed
by the imprint on the anode. Hence, the area of the sur-
face modified by the beam is varied in the range of
7…64 cm2 and it depends on the beam energy, the inte-
relectrode spacing and the target material. Using the test
tools we obtained some plant parameters.
mailto:vinniden@gmail.com
ISSN 1562-6016. ВАНТ. 2019. №6(124) 116
Fig. 3. A general view of the diode system.
K is the graphite cathode, A is the anode target,
KCl is the test potassium chloride crystal onto
which the film was deposited
The structure and the dimensions of deposited mate-
rial were analyzed using the transmission electron mi-
croscope (TEM). The morphology of irradiated surfaces
was defined using the optic microscope Olympus GX
51. The processes initiated by the passing beam were
recorded by the high-speed video camera Casio Exilim
EX-FH100 with the resolution of 1000 shots/s. The cur-
rent was measured using the Rogowski loop with the
sensitivity of 1.96 kА/V. The Vickers microhardness
was measured by the microhardness meter PMT-3. The
load weight was 50 g. The X-ray dose was measured by
radiation receivers. The film morphology of sputtered
anode material was defined using the microdiffraction
method. The Laue method was used to get the diffrac-
tion image of the stationary monocrystal. Such materials
as Cu, Ti, Mo, Al and stainless steel were used as the
target electrode. The target mass was weighted using the
scales of a VLP-200 type with the balance error of
0.5 mg for the specimen of up to 50 g and in the weight
range of 50 to 200 g this error was 1 mg. The bacterio-
logical investigations of the survival of conditionally
pathogenic microflora were carried out.
The current oscillogram was obtained that allowed
us to evaluate the discharge circuit parameters given in
the Table 1.
Table 1
SSA parameters, VGIK-1
Charge voltage Up to 30 kV
Discharge current Up to 20 kА
Channel resistance Up to 1.5 Ω
Discharge duration Up to 5 µs
Circuit induction 9 µH
The number of charge stages 9
Capacitor type PC-100/0.4
Interelectrode spacing 5…20 mm
Beam energy 250…300 keV
Energy per 1 µs 100 J
Vacuum 2.5·10-5 Torr
The discharge has an oscillating character and the
largest portion of energy is released during one period.
The analysis of the oscillogram and high-speed vid-
eo-filming data that are given on Figs. 4, 5, allows us to
state that the material treatment process is defined not
only by the action of the beam but also by the action of
plasma in the form of arc.
The accelerator energy was defined experimentally
based on the available parameters of the generator of
pulsed voltages, in particular the battery capacitance,
induction, charge voltage, the electrode material and
geometry and also the interelectrode spacing, vacuum
conditions and obtained current oscillograms.
Fig. 4. The current oscillogram
Fig. 5. The high-speed video filming of the discharge
at the completion stage
2. EXPERIMENTAL DATA
2.1. MASS TRANSFER
Consideration was given to the processes related to
the target material evaporation when exposed to the beam
action using the experimental data obtained for the stored
energy of 1.5 kJ and the thirty pulses for each specimen.
The сomputations done using the experimental data
given in the Table 2.
Table 2
Mass loss. General data
Target
material Cu Ti Mo Al
Mass M0, g 61.486 35.405 20.705 17.554
Mass M1, g 61.007 35.332 20.697 17.430
Mass loss per
30 pulse, mg
478.7
72.9
7.7
123.6
Mass loss per pulse,
mg
15.6
2.43
0.25
4.12
Sublimation energy,
kJ/g
4.75
9.86
8.7
6.78
Evaporation heat,
kJ/g
4.79
8.83
6.15
10.5
Atom mass, 10-23 g 10 8 15.9 4.48
The number of atoms
removed from the
target per 1 pulse,
1019 particles
9.69
9.2
0.15
3.05
The minimum ener-
gy input for the
sublimation of the
lost mass, J
48.55
23.95
1.7
35.8
Energy falling to one
atom per pulse, eV
3.13
4.89
6.77
2.42
ISSN 1562-6016. ВАНТ. 2019. №6(124) 117
The Table shows that the highest mass loss is ob-
served for the materials with the lowest sublimation
energy, i.e. copper and aluminum. At the same time, the
evaporation heat of copper is 1.3 to 2 times higher than
that of other materials in question and it also conditions
the more intensive mass transfer. The material evapora-
tion is also possible for Ti, Mo, Al targets with its trans-
fer to the gaseous phase, because input energies exceed
those required for the transfer to the gaseous phase. The
molybdenum specimen is evaporated with a considera-
bly lower intensity, i.e. 10 times slower than titanium
and 62 times slower than copper due to high values of
the sublimation energy and atomic weight.
Fig. 6 gives a general view of the specimens before
and after the treatment at a 40-fold magnification.
Fig. 6. The microstructure of the surface irradiated by
electron beams with the energy of 300 keV for Cu, Ti, Mo.
a, b, c – before the irradiation;
d, e, f – after the irradiation
It can be seen that the mass loss results in the surface
modification of all the specimens.
2.2. SURFACE MODIFICATION
During the interaction of the heavy-current electron
beams with the solid body surface we observe the set of
processes that represent the common phenomenon and
are called the ablative interaction. The ablation is char-
acterized by many processes that occur simultaneously,
in particular heating, melting and evaporation of the
entire area or just a portion of the interaction area, the
plasma torch formation, the plasma outflow and the
neutral gas emission from the interaction area, the so-
called discharge and the formation of shock waves in
the solid body.
The technical use of the ablation process for the
modification of the surface structure of metals that pro-
vides an increased strength and corrosion resistance
requires as a rule no evaporation of a large amount of
the material; it is sufficient to bring the surface to melt-
ing with the subsequent fast cooling of the target retain-
ing thus the melted material structure. The surface
evaporation is also reasonable for the removal of low-
energy admixtures. The main contribution to the modi-
fication of the structure of internal areas is made by the
shock wave that is propagated in the solid body from the
ablation zone.
Fig. 7 gives the specimens made of copper and
stainless steel. Figs. 7; 8,b depict the marked zones that
differ from each other by the degree of a change in the
morphology of surface layers and these are given in
detail in Figs. 7; 8,c.
Fig. 7. Copper surface morphology after the plasma
beam treatment, a − general view of the specimen treat-
ed using the plasma beam method;
b − specimen with marked characteristic zones;
1, 2, 3, 4 − view of zones with a 50-fold magnification
Fig. 7,a gives the specimen subjected to the plasma
beam treatment with no marked zones. The 4th zone
corresponds to the reference specimen that was not sub-
jected to the plasma beam treatment.
Fig. 8. Stainless steel surface morphology after the
plasma beam treatment, a is a general view of the spec-
imen treated using the plasma beam method;
b − specimen with marked typical zones; c:1, 2, 3, 4 −
view of the zones with a 50-fold magnification
ISSN 1562-6016. ВАНТ. 2019. №6(124) 118
A difference in the surface of different materials after
their treatment depends on their physical properties (heat
conductivity, vapor tension, mechanical properties, etc)
and the composition. The zones with intensive heating
show the sublimation temperature inhomogeneity. The
copper is represented in its pure form. The shape of bright
formations is very close to spherical and these formations
have no great amount of dark spots and are distributed
uniformly across the entire surface. It is peculiar for all
the three zones exposed to the treatment, including the
first zone where the heating is the most intensive. Such
morphology can be indicative of the availability of a great
amount of admixtures and it is conditioned first of all by
the presence of contaminants on the material surface and
approximately identical evaporation rates.
For stainless steel the evaporation of contained ad-
mixtures is defined by the vapor tension of each ele-
ment. Cr whose content varies from 12 to 20% is evapo-
rated first. We can see typical ripples in the domain № 1
with prevailing dark areas and it is indicative of the pos-
sible evaporation of a number of alloying elements.
Stainless steel contains the elements that are associated
with iron and its alloys (C, Si, Mn, S, P). Many alloying
elements Ni, Mn and Ti, Nb, Co, Mo are present here,
therefore the surface is sublimated non-uniformly and
each element has the melting temperature and the evap-
oration temperature of its own. Its vapor tension is high
and it starts to evaporate already at 1100ºС.
The availability of different zones is also explained by
the nonuniform electron beam energy release in the mate-
rial. The microhardness measurement data taken across
the thickness of irradiated plate are indicative of the fact
that the microhardness level is 1.8 to 2.2 times higher in
the zone of the most intensive heating, i.e. zone № 1 in
comparison with the average value of the target micro-
hardness before the treatment. Hence, we can speak of the
available effect produced by the action of the pulsed
plasma beam on the surface structure of studied targets.
2.3. THE IRRADIATION OF COATED SPECIMENS
USING THE PLASMA-ARC METHOD
The studies of the processes that occur during the in-
teraction of the beams of charged particles and plasma
both with the surfaces of pure materials and those with
already applied coatings are of great importance for the
development of technologies related to the use of mate-
rials with new properties. Consideration was given to
the opportunity of a change in the properties (in particu-
lar microhardness) of the materials that were coated
using the plasma – arc method and the Bulat-6 plant.
Fig. 9 gives appropriate specimens before and after the
irradiation using the SSA plant VGIK-1.
Fig. 9. The surface morphology of the specimens that
were coated using the Bulat-6 plant after the irradiation
by the SSA plant VGIK-1
Table 3 gives microhardness measurement data for
the series of specimens before and after their irradiation.
Table 3
Microhardness measurement data
Mat. Iarc,
A
Hititial,
HV
Hirrad,
HV PMT-3
Cu/
NbN
80
100
473 501
50 g
5⋅5 mm2
Cu/
NbN
80
85
358 701
Cu/
Zr
80
90
501 739
Cu/
Nb
80
105
332 435
CuN/
CrN
85
80
236 251
CuN/
CrN
85
80
453 701
ZrN/
CuN
85
80
401 891
TiZrN/
TiSiN
85
80
787 418
It can be seen that approximately two-times increase
in the hardness is peculiar for irradiated materials de-
pending on the specimen composition.
2.4. FILM DEPOSITION
The target material surface modification process is
accompanied by its dispersion. Fig. 10 gives the film
formed by the sputtered material on the cathode and the
target electrode surface after thirty pulses.
Fig. 10. The deposition on the cathode (a)
and the Ti target surface irradiated
with the electron beams of 270 keV (b)
The structure and the dimensions of deposited mate-
rial were analyzed using the transmission electron mi-
croscope (TEM). The measurements were taken for the
electron energy of 125 kV in the bright field with the
marked region diffraction (SAED). All the images were
obtained for film ruptures or for the places transparent
for the electrons. It was established that the film is con-
tinuous and inhomogeneous; the drop fraction can be
seen. Thin layers show that the film is fine-crystalline.
We can state that the film is multilayered. The film
morphology consists of almost continuous coating that
contains the agglomerates with the size of 50 to 100 nm;
the entire field of the film contains small crystals with
the size of 6 to 8 nm. The agglomerates can consist of
the same nanocrystals or the phase that forms a continu-
ous film coating.
ISSN 1562-6016. ВАНТ. 2019. №6(124) 119
Fig. 11. A typical structure of the material deposited
on the KCl crystal surface. Magnification by 104 (a),
4·104 (b), 8·104 (с, d)
The nanocrystal evaporation phenomenon was ob-
served for the electron beam action. Fig. 11,c shows the
same zones at the beginning of filming and Fig. 11,d
shows them after the exposure to the electron beam dur-
ing several minutes. Hence, all the bright spots on the
images with the 80000-fold magnification are the result
of the evaporation of nanocrystals under the action of
electron beam.
Fig. 12. The Lauegram (250000-fold magnification)
of copper deposited on the KCl crystal surface
The method of microdiffraction was used to obtain
the Lauegram (X-ray pattern) shown in Fig. 12, where
the narrow X-ray beam of a continuous spectrum was
directed at the stationary monocrystal that represents the
X-rays diffraction lattice. The diffraction pattern created
by the crystal was registered by the photographic film
placed behind the crystal. In addition to the central spot
formed by the undeflected X-ray beam the Lauegram
shows the ring spots whose number and location depend
on the type of crystal and its orientation relative to the
beam. We detected nine ring spots on the Fig. 12.
Hence, we can draw a conclusion that the film has the
crystalline structure.
The analogous data were obtained for other target
materials. The multilayered films that contain the na-
nosize crystals of the anode material were thus obtained
on the cathode.
2.5. X-RAY RADIATION TOPOGRAPHY
To define the X-ray radiation action opportunities of
the tested accelerator with regard to the materials and
objects its spatial map was made and shown on Fig. 13.
Fig. 13. X-ray radiation topography near lateral
and upper flanges. Side view
Fig. 14. The color map of the X-ray intensity
on the surface of lateral and upper flanges
The X-ray sensors were placed across the area of
each flange and also lengthwise at a distance of up to
50 cm from the flanges. Fig. 14 shows the measurement
data that allowed us to establish that the radiation is
more intensive near the lateral flange where the total
dose after the 10 pulses is equal to 245 mR, and for the
upper flange it is equal to 100 mR.
The obtained data enabled the establishment of the
zones of the most intensive radiation. The regions that
are the most convenient for the placement of treated
materials beyond the accelerator chamber have been
defined.
6 8 10 12 14 16 18 20
0
10
20
30
40
50
60
70
80
90
100
110
120
X-
ra
y
in
te
ns
ity
, m
R
Interelectrode space, mm
LATERAL FLANGE
UPPER FLANGE
6 8 10 12 14 16 18 20
0
10
20
30
40
50
60
70
80
90
100
110
120
X-
ra
y
in
te
ns
ity
, m
R
Interelectrode space, mm
LATERAL FLANGE
UPPER FLANGE
Fig. 15. Dependence of the X-ray intensity
on the interelectrode spacing
ISSN 1562-6016. ВАНТ. 2019. №6(124) 120
The dependence of the X-ray intensity on the inte-
relectrode spacing was defined as it shown on Fig. 15.
The spacing control unit structure does not permit to
increase the gap by more than 20 mm.
Fig. 16. Conditionally pathogenic microflora
irradiation
Preliminary experiments were carried out to define
the X-ray influence on different types of conditionally
pathogenic microflora, in particular the bacteria of
Escherichia coli, Staphylococcus aureus, Bacillus sub-
tilis types. The general view of experiment is shown on
Fig. 16. The methods and the conditions required for the
realization of mutational, bactericidal and bacteriostatic
effects onto the bioobjects have been defined.
CONCLUSIONS
The experiments carried out allowed us to define the
methods of the development of the SSA VGIK-1. At the
moment, we can mark out the following lines:
• Changing the material surface microhardness;
• Hardening copper-containing material surfaces;
• Applying the films consisting of nanocrystals onto
the substrates;
• Using the plant as an X-ray source with the doses of
up to ~100 mR/pulse and with the accumulated dos-
es of up to ~ 2000 mR/h at the pulse repetition rate
of 3 pulses per minute.
It should be noted in conclusion that some energy
and technology characteristics of the small-size acceler-
ator – VGIK-1 were defined. The plant was used to do
research in order to increase the surface microhardness
of metals, alloys and the materials with the preliminary
applied coatings including those made of nitrides. Сu,
Ti, Al, and stainless steel specimens were subjected to
the irradiation. The morphology of irradiated specimens
made of Cu, Ti, and stainless steel was defined. The X-
ray field map was compiled. An optimal interelectrode
spacing was defined to get maximum X-ray doses.
The investigation was carried out in cooperation
with the Institute for the Solid – State Physics. Material
Science and Technologies of the National Academy of
Sciences of Ukraine (NASU) to treat a series of multi-
component specimens with the coatings applied using
the plasma-arc method. The morphology of the anode
material sputtered on the KCl crystal was defined in
cooperation with the Institute of Single Crystals of the
NASU. The conditionally pathogenic flora was treated
in cooperation with the Institute of Cryobiology and
Cryomedicine of NASU.
The accelerator with electron beam parameters (the
electron energy of up to 270 keV, the pulse duration of
up to 5 µs, and the pulse frequency of 20 pulse/h) can be
recommended for the purposeful surface modification of
the metals, alloys and materials with applied coatings
used for different research and technological purposes
and also for the investigation of the X-ray effect on dif-
ferent microflora for medical purposes.
REFERENCES
1. G.А. Mesyatz, D.I. Proskurovskiy, V.P. Rotshtein,
N.I. Lebedeva. Low-Energy Pulsed Electron Beam
of a High Density for the Surface Heating // DAN
USSR. 1983, v. 253, № 6, p. 1383-1386.
2. V.B. Yuferov, Е.I. Skibenko, L.G. Sorokovoy, et al.
On the Possibility of the Use of the System of
Pulsed Electron Accelerator to Modify the Surface-
Volumetric Properties of Different Materials //
Problems of Nuclear Science and Engineering. Se-
ries “The Physics of Radiation Damages and the
Radiation Material Science”. 1997, Issue 1(66),
2(66), p. 197-198.
3. V.F. Zelenskiy, I.М. Neklyudov, V.F. Rybalko,
S.V. Shevchenko, et al. Influence of the Irradiation
by Pulsed Plasma Streams on the Mechanical Prop-
erties of Austenitic Stainless Steel Х16Н15МЗБ and
Х18Н10Т: preprint KhFTI 89-64, Kharkov, 1989,
12 p.
4. V.B. Yuferov, L.G. Sorokovoy, Е.I. Skibenko,
Yu.V. Holod, E.V. Mufel. Some Applications of
High-Voltage High-Power Pulsed Equipment //
Problems of Atomic Science and Technology. Series
“Vacuum, Pure Materials and Superconductors”.
1999, Issue 2 (10), p. 21-25.
5. А.N. Dovbnya, V.V. Zakutin, A.A. Parhomenko,
О.А. Repihov, N.G. Reshetnyak, et al. Electron
Beams for Radiation Technologies // Problems of
Atomic Science and Technology. Series “Physics of
Radiation Effect and Radiation Materials Science”.
2002, № 6, p. 152-153.
6. А.N. Dovbnya, S.D. Lavrinenko, V.V. Zakutin,
А.N. Aksenova, N.G. Reshetnyak, N.N. Pilipenko,
V.N. Pelyh, G.N. Tolmacheva. The Zirconium and
the Zr1%Nb Alloy Surface Modification by the
Electron Beam of the Magnetron Gun-Based Accelera-
tor // Problems of Atomic Science and Technology.
Series “Physics of Radiation Effect and Radiation
Materials Science”. 2011, № 2, p. 39-45.
7. А.D. Pogrebnyak, О.P. Kulmentieva. Structure and
Phase Transformations in the Surface Layers and the
Properties of Metal Materials after the Pulsed Action
of Particle Beams // PSE. 2003, Issue 1, № 2, v. 1.
8. A.B. Batrakov, M.I. Bazaleev, S.E. Donets,
V.F. Klepikov, Yu.F. Lonin, V.V. Lytvynenko,
A.G. Ponomarev, V.V. Uvarov, V.T. Uvarov,
V.N. Robuk. The Particularities of the Influence
Produced by High-Current Relativistic Electron
Beams on Construction Material Targets // Problems
of Atomic Science and Technology. “Nuclear Phys-
ics Investigations”. 2013, № 6, p. 225-229.
9. А.P. Chernyaev, М.А. Kolyvanova,
P.Yu. Borshegovskaya. Radiation Technologies in
Medicine. Part 1. Medical Accelerators. Biophysics
http://vant.kipt.kharkov.ua/CONTENTS/CONTENTS_2014_2.html
http://vant.kipt.kharkov.ua/CONTENTS/CONTENTS_2014_2.html
http://vant.kipt.kharkov.ua/CONTENTS/CONTENTS_2014_2.html
http://vant.kipt.kharkov.ua/CONTENTS/CONTENTS_2014_2.html
ISSN 1562-6016. ВАНТ. 2019. №6(124) 121
and Medical Physics. Seria 3 // Phisics. Astronomy.
2015, № 6, p. 28-36.
10. А.А. Tsutsaeva, I.P. Vysekancev, N.F. Severin,
Yu.А. Itkin. Lethal and Mutagenic Action of the
Electron Irradiation on the r II Mutant Phage Т4 in
the Low-Temperature Range (-196ºС) // Radiobiol-
ogy. 1981, v. 21, p. 133-134.
Article received 05.11.2019
ВОЗМОЖНОСТИ ИСПОЛЬЗОВАНИЯ МАЛОГАБАРИТНОГО УСКОРИТЕЛЯ ВГИК-1
Д.В. Винников, И.В. Буравилов, В.Б. Юферов, А.Н. Пономарев, В.И. Ткачев
Представлены экспериментальные результаты по модифицированию поверхности металлов, сплавов и
материалов с нанесенными покрытиями методом облучения сильноточным электронным пучком с энергией
до 300 кэВ. Изучены структура поверхности образцов до и после облучения методом оптической микроско-
пии и измерения микротвердости в поверхностном слое. Методом электронной микроскопии проведен ана-
лиз структуры и размеров распыляемого материала анода. Получены пленки, состоящие из кристаллов с
размером 6…8 нм. Исследованы процессы массопереноса материала металлических мишеней Cu, Ti, Mo, Al.
Составлена объемная карта рентгеновского поля установки. Проведены эксперименты по воздействию рент-
геновского излучения на различные типы условно патогенной микрофлоры: бактерии типа Escherichia coli,
Staphylococcus aureus, Bacillus subtilis. Определены дальнейшие направления применения установки.
МОЖЛИВОСТІ ВИКОРИСТАННЯ МАЛОГАБАРИТНОГО ПРИСКОРЮВАЧА ВГІК-1
Д.В. Вінніков, І.В. Буравілов, В.Б. Юферов, О.М. Пономарьов, В.І. Ткачов
Представлено експериментальні результати по модифікації поверхні металів, сплавів і матеріалів з нане-
сеними покриттями методом опромінення потужнострумовим електронним пучком з енергією до 300 кеВ.
Вивчена структура поверхні зразків до і після опромінення методом оптичної мікроскопії та вимірювання
мікротвердості в поверхневому шарі. Методом електронної мікроскопії проведено аналіз структури і розмі-
рів розпорошуваного матеріалу анода. Отримано плівки, що складаються з кристалів розміром 6…8 нм. До-
сліджено процеси масопереносу матеріалу металевих мішеней Cu, Ti, Mo, Al. Складено об'ємну карту рент-
генівського поля установки. Проведено експерименти з впливу рентгенівського випромінювання на різні
типи умовно патогенної мікрофлори: бактерії типу Escherichia coli, Staphylococcus aureus, Bacillus subtilis.
Визначено подальші напрямки застосування установки.
|