Dynamics of the electron beam generated by the magnetron gun with different configurations of the magnetic field in the transportation channel
The dynamics of the dimensions of the electron beam generated by the magnetron gun in the particle transport channel and the efficiency of focusing the tubular electron beam in the gradient magnetic field are investigated. The experiments were carried out with magnetron guns with secondary-emission...
Збережено в:
| Дата: | 2021 |
|---|---|
| Автори: | , , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2021
|
| Назва видання: | Вопросы атомной науки и техники |
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/195651 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Dynamics of the electron beam generated by the magnetron gun with different configurations of the magnetic field in the transportation channel / O.S. Mazmanishvili, M.G. Reshetnyak, V.P. Romasko, I.A. Chertishchev // Problems of Atomic Science and Technology. — 2021. — № 6. — С. 121-125. — Бібліогр.: 6 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-195651 |
|---|---|
| record_format |
dspace |
| spelling |
nasplib_isofts_kiev_ua-123456789-1956512025-02-09T15:40:32Z Dynamics of the electron beam generated by the magnetron gun with different configurations of the magnetic field in the transportation channel Динаміка електронного пучка, що генерується магнетронною гарматою, при різних конфігураціях магнітного поля в каналі транспортування Динамика электронного пучка, генерированного магнетронной пушкой, при различных конфигурациях магнитного поля в канале транспортировки Mazmanishvili, O.S. Reshetnyak, M.G. Romasko, V.P. Chertishchev, I.A. Beam dynamics The dynamics of the dimensions of the electron beam generated by the magnetron gun in the particle transport channel and the efficiency of focusing the tubular electron beam in the gradient magnetic field are investigated. The experiments were carried out with magnetron guns with secondary-emission cathodes (cathode diameters 36 and 16 mm, anodes diameters 78 and 36 mm) at cathode voltage of 20…80 kV. Magnetic fields were created both by the solenoid and jointly by the solenoid and the permanent magnet. The dependence of the radial distribution of the beam on metal targets on the amplitude and gradient of the magnetic field along the axis of the system is investigated. The possibility of controlling the beam diameter by varying the magnetic field is shown. The imprints of collimated beams were obtained experimentally on targets located at selected distances. The obtained experimental data agree with the results of numerical simulation. It is shown that with an increase in the amplitude of the gradient magnetic field, the effect of radial focusing of the beam is more pronounced. Досліджено динаміку електронного пучка, що генерується магнетронною гарматою, в каналі транспортування частинок і ефективність фокусування трубчастого електронного потоку в градієнтному магнітному полі. Експерименти проводилися з магнетронними гарматами зі вторинно-емісійними катодами (діаметри катодів 36 і 16 мм, анодів 78 і 36 мм) при напрузі на катоді 20…80 кВ. Магнітні поля створювалися як соленоїдом, так і спільно соленоїдом і постійним магнітом. Досліджено залежність радіального розподілу пучка на металевих мішенях від амплітуди і градієнта магнітного поля уздовж осі системи. Показана можливість регулювання діаметра пучка шляхом варіації розподілу магнітного поля. Отримано відбитки колімованих пучків на мішенях, розташованих на обраних відстанях. Встановлено, що зі збільшенням амплітуди магнітного поля ефект радіального фокусування пучка є більше виражений. Исследована динамика размеров электронного пучка, генерируемого магнетронной пушкой, в канале транспортировки частиц и эффективность фокусировки трубчатого электронного потока в градиентном магнитном поле. Эксперименты проводились с магнетронными пушками с вторично-эмиссионными катодами (диаметр катодов 36 и 16 мм, диаметр анодов 78 и 36 мм) при напряжении на катоде 20…80 кВ. Магнитные поля создавались как соленоидом, так и совместно соленоидом и постоянным магнитом. Исследована зависимость радиального распределения пучка на металлических мишенях от амплитуды и градиента магнитного поля вдоль оси системы. Показана возможность регулирования диаметра пучка путем вариации магнитного поля. Экспериментально получены отпечатки коллимированных пучков на мишенях, расположенных на выбранных расстояниях. Полученные экспериментальные данные согласуются с результатами численного моделирования. Показано, что с увеличением амплитуды градиентного магнитного поля эффект радиального фокусирования пучка больше выражен. 2021 Article Dynamics of the electron beam generated by the magnetron gun with different configurations of the magnetic field in the transportation channel / O.S. Mazmanishvili, M.G. Reshetnyak, V.P. Romasko, I.A. Chertishchev // Problems of Atomic Science and Technology. — 2021. — № 6. — С. 121-125. — Бібліогр.: 6 назв. — англ. 1562-6016 PACS: 29.17.+w DOI: https://doi.org/10.46813/2021-136-121 https://nasplib.isofts.kiev.ua/handle/123456789/195651 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
English |
| topic |
Beam dynamics Beam dynamics |
| spellingShingle |
Beam dynamics Beam dynamics Mazmanishvili, O.S. Reshetnyak, M.G. Romasko, V.P. Chertishchev, I.A. Dynamics of the electron beam generated by the magnetron gun with different configurations of the magnetic field in the transportation channel Вопросы атомной науки и техники |
| description |
The dynamics of the dimensions of the electron beam generated by the magnetron gun in the particle transport channel and the efficiency of focusing the tubular electron beam in the gradient magnetic field are investigated. The experiments were carried out with magnetron guns with secondary-emission cathodes (cathode diameters 36 and 16 mm, anodes diameters 78 and 36 mm) at cathode voltage of 20…80 kV. Magnetic fields were created both by the solenoid and jointly by the solenoid and the permanent magnet. The dependence of the radial distribution of the beam on metal targets on the amplitude and gradient of the magnetic field along the axis of the system is investigated. The possibility of controlling the beam diameter by varying the magnetic field is shown. The imprints of collimated beams were obtained experimentally on targets located at selected distances. The obtained experimental data agree with the results of numerical simulation. It is shown that with an increase in the amplitude of the gradient magnetic field, the effect of radial focusing of the beam is more pronounced. |
| format |
Article |
| author |
Mazmanishvili, O.S. Reshetnyak, M.G. Romasko, V.P. Chertishchev, I.A. |
| author_facet |
Mazmanishvili, O.S. Reshetnyak, M.G. Romasko, V.P. Chertishchev, I.A. |
| author_sort |
Mazmanishvili, O.S. |
| title |
Dynamics of the electron beam generated by the magnetron gun with different configurations of the magnetic field in the transportation channel |
| title_short |
Dynamics of the electron beam generated by the magnetron gun with different configurations of the magnetic field in the transportation channel |
| title_full |
Dynamics of the electron beam generated by the magnetron gun with different configurations of the magnetic field in the transportation channel |
| title_fullStr |
Dynamics of the electron beam generated by the magnetron gun with different configurations of the magnetic field in the transportation channel |
| title_full_unstemmed |
Dynamics of the electron beam generated by the magnetron gun with different configurations of the magnetic field in the transportation channel |
| title_sort |
dynamics of the electron beam generated by the magnetron gun with different configurations of the magnetic field in the transportation channel |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| publishDate |
2021 |
| topic_facet |
Beam dynamics |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/195651 |
| citation_txt |
Dynamics of the electron beam generated by the magnetron gun with different configurations of the magnetic field in the transportation channel / O.S. Mazmanishvili, M.G. Reshetnyak, V.P. Romasko, I.A. Chertishchev // Problems of Atomic Science and Technology. — 2021. — № 6. — С. 121-125. — Бібліогр.: 6 назв. — англ. |
| series |
Вопросы атомной науки и техники |
| work_keys_str_mv |
AT mazmanishvilios dynamicsoftheelectronbeamgeneratedbythemagnetrongunwithdifferentconfigurationsofthemagneticfieldinthetransportationchannel AT reshetnyakmg dynamicsoftheelectronbeamgeneratedbythemagnetrongunwithdifferentconfigurationsofthemagneticfieldinthetransportationchannel AT romaskovp dynamicsoftheelectronbeamgeneratedbythemagnetrongunwithdifferentconfigurationsofthemagneticfieldinthetransportationchannel AT chertishchevia dynamicsoftheelectronbeamgeneratedbythemagnetrongunwithdifferentconfigurationsofthemagneticfieldinthetransportationchannel AT mazmanishvilios dinamíkaelektronnogopučkaŝogeneruêtʹsâmagnetronnoûgarmatoûpriríznihkonfíguracíâhmagnítnogopolâvkanalítransportuvannâ AT reshetnyakmg dinamíkaelektronnogopučkaŝogeneruêtʹsâmagnetronnoûgarmatoûpriríznihkonfíguracíâhmagnítnogopolâvkanalítransportuvannâ AT romaskovp dinamíkaelektronnogopučkaŝogeneruêtʹsâmagnetronnoûgarmatoûpriríznihkonfíguracíâhmagnítnogopolâvkanalítransportuvannâ AT chertishchevia dinamíkaelektronnogopučkaŝogeneruêtʹsâmagnetronnoûgarmatoûpriríznihkonfíguracíâhmagnítnogopolâvkanalítransportuvannâ AT mazmanishvilios dinamikaélektronnogopučkagenerirovannogomagnetronnojpuškojprirazličnyhkonfiguraciâhmagnitnogopolâvkanaletransportirovki AT reshetnyakmg dinamikaélektronnogopučkagenerirovannogomagnetronnojpuškojprirazličnyhkonfiguraciâhmagnitnogopolâvkanaletransportirovki AT romaskovp dinamikaélektronnogopučkagenerirovannogomagnetronnojpuškojprirazličnyhkonfiguraciâhmagnitnogopolâvkanaletransportirovki AT chertishchevia dinamikaélektronnogopučkagenerirovannogomagnetronnojpuškojprirazličnyhkonfiguraciâhmagnitnogopolâvkanaletransportirovki |
| first_indexed |
2025-11-27T13:23:54Z |
| last_indexed |
2025-11-27T13:23:54Z |
| _version_ |
1849950041945407488 |
| fulltext |
ISSN 1562-6016. ВАНТ. 2021. № 6(136) 121
https://doi.org/10.46813/2021-136-121
DYNAMICS OF THE ELECTRON BEAM GENERATED
BY THE MAGNETRON GUN WITH DIFFERENT CONFIGURATIONS
OF THE MAGNETIC FIELD IN THE TRANSPORTATION CHANNEL
O.S. Mazmanishvili, M.G. Reshetnyak, V.P. Romasko, I.A. Chertishchev
National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine
E-mail: nreshetnyak@kipt.kharkov.ua
The dynamics of the dimensions of the electron beam generated by the magnetron gun in the particle transport
channel and the efficiency of focusing the tubular electron beam in the gradient magnetic field are investigated. The
experiments were carried out with magnetron guns with secondary-emission cathodes (cathode diameters 36 and
16 mm, anodes diameters 78 and 36 mm) at cathode voltage of 20...80 kV. Magnetic fields were created both by the
solenoid and jointly by the solenoid and the permanent magnet. The dependence of the radial distribution of the
beam on metal targets on the amplitude and gradient of the magnetic field along the axis of the system is investigat-
ed. The possibility of controlling the beam diameter by varying the magnetic field is shown. The imprints of colli-
mated beams were obtained experimentally on targets located at selected distances. The obtained experimental data
agree with the results of numerical simulation. It is shown that with an increase in the amplitude of the gradient
magnetic field, the effect of radial focusing of the beam is more pronounced.
PACS: 29.17.+w
INTRODUCTION
The study of electron beams of various configura-
tions and intensities is associated with their use in high-
voltage pulsed microwave electronics, accelerator tech-
nology, etc. [1, 2]. At the same time, the range of prob-
lems for the solution of which electron beams are used
is constantly expanding. Irradiation with electron beams
with specified parameters makes it possible to regulate
the structural-phase state in the surface layers and
change the structural capabilities of materials [3, 4]. In
practice, beam technologies for material processing are
developed and introduced into industrial production. To
solve these problems, accelerators of intense electron
beams with electron energies of 100...400 keV are wide-
ly used [1, 3].
A linear electron accelerator for irradiating metal
targets has been created at the NSC KIPT [5]. One of
the main elements of the accelerator is the magnetron
gun with cold metal cathodes, which operate in the sec-
ondary emission mode, in crossed electron and magnetic
fields. The secondary emission mechanism of beam
generation in such the gun, due to its weakly destructive
effect on the cathode material, preserves the emission
properties of the electron source for long time (accord-
ing to estimates up to 100000 hours). Irradiation of var-
ious metal targets was carried out [4] and the possibility
of irradiating the inner cylindrical surface using a radial
electron beam was studied [6].
In his paper presents the results of studying the dy-
namics of the electron beam in the transport channel for
various configurations of the magnetic field and the
efficiency of focusing the tubular flow using the gradi-
ent magnetic field.
EXPERIMENTAL RESULTS
Experiments on the formation of an electron beam
were carried out on a setup, the block diagram of which
is shown in Fig. 1.
Experiments on electron beam transportation were
carried out with the magnetron gun with the secondary
emission cathode (cathode diameter – 36 mm, anode –
78 mm) at different distances from the gun anode cut
and for different configurations of the solenoid magnet-
ic field Вz in the electron beam transport channel. The
research results were recorded on metal targets at dis-
tance of 15...200 mm from the gun anode cut, which
made it possible to interpret the dynamics of the elec-
tron flow.
Fig. 1. Block diagram of the experimental setup.
1 – sections-solenoid (I, II, III, IV); 2 – vacuum volume;
3 – high-voltage pulse generator; 4 – insulator; 5 – syn-
chronization unit; 6 – measuring system; 7 – centering
rod; 8 – gain; 9 – Faraday cylinder; 10 – ring magnet;
11 – metal target; 12 – generator; A – anode;
C – cathode
In Fig. 2 shows the distributions of the magnetic
field along the axis of the magnetron gun and the beam
transport channel, which were used in the research.
In Fig. 3 shows 3 typical imprints of the electron
beam (energy 55 keV) on targets when it moves in the
uniform, increasing and decreasing magnetic fields.
The print shown in Fig. 3,a was obtained in the uni-
form magnetic field (see Fig. 2, curve 3) at distance of
15 mm from the gun edge. Its outer beam diameter was
D ~ 40 mm.
In the increasing magnetic field (see Fig. 2, curve 4)
at distance of 70 mm from the gun edge, the beam di-
ISSN 1562-6016. ВАНТ. 2021. № 6(136) 122
ameter decreased to 36 mm (see Fig. 3,b, imprint 1), and
in the decreasing magnetic field (see Fig. 2, curve 2) the
beam diameter increased up to 49 mm (see Fig. 3,b,
imprint 2).
Fig. 2. Distributions of magnetic fields (curves 1-5)
along the axis of the magnetron gun
and the beam transport channel);
A – anode; C – cathode; FC – Faraday cylinder
In decreasing configurations of the magnetic field
(see Fig. 2, curves 2 and 5) at the distance of 180 mm
from the gun edge, the beam diameter was D ~ 80 mm
and D ~ 54 mm (see Fig. 3,c).
a b
c
Fig. 3. Target beam prints:
a) is the outer diameter of the beam D ~ 40 mm,
B=0.081 T (Fig. 2, curve 3), z=150 mm;
b) 1 – outer diameter of the beam D ~ 36 mm,
B=0.146 T (Fig. 2, curve 4); 2 – outer diameter
of the beam D ~ 51 mm, B=0.049 T (Fig. 2, curve 2),
z=205 mm; c) 1 – outer diameter of the beam
D ~54 mm, B=0.5 T (Fig. 2, curve 5; 2 – outer diameter
of the beam D ~ 80 mm, B=0.009 T (Fig. 2, curve 1),
z=310 mm
The dependence of the transverse dimensions of the
electron beam at different distances from the cut of the
magnetron gun during the transportation of the electron
beam in the magnetic field (Fig. 4), which was created
jointly by a solenoid with the permanent magnet, was
studied.
From the prints in Fig. 3 it can be seen that for the
used three configurations of the magnetic field, the
beams in the cross section have the form of concentric
rings with the uniform distribution of particles. From
the experimental data (Fig. 5), one can see the dynamics
of the radial dimensions of the electron beam when it
moves in the transport channel.
Fig. 4. Distribution of the magnetic field along the
magnetron gun and the beam transport channel when
using the permanent magnet together with the solenoid
with the permanent magnet;
A – anode, C – cathode, FC – Faraday cylinder
a b
Fig. 5. Imprints of beams on targets:
a) B=0.10 T (homogeneous magnetic field),
z=150 mm, outer beam diameter D=39 mm;
b) B=0.37 T (increasing magnetic field), z=205 mm,
outer diameter of the beam D=22 mm
As can be seen from the print of Fig. 5,a, in the uni-
form magnetic field (z=150 mm), the magnetron gun
forms the electron beam with an outer diameter of
D = 39 mm. During the motion of the electron flux in
the increasing magnetic field with the gradient of
0.1 T/cm and amplitude of 0.37 T at distance of
205 mm, there is a marked decrease in the beam diame-
ter to D = 22 mm (see Fig. 5,b), which is determined by
focusing the electron flux.
Thus, it was found that when the electron beam is
transported in magnetic fields with higher amplitude,
the outer diameter and the thickness of the beam wall
decrease.
In Fig. 6,a,b shows the dependences of the trans-
verse dimensions of the beam on the amplitude and con-
figuration of the magnetic field. Experimental data (see
Fig. 6,a) were obtained when the targets were located at
different distances of 150...315 mm. Fig. 6,b were ob-
tained when the target was located at the distance of
205 mm; and the configuration of the magnetic field
changed. It is seen that the outer diameter of the beam,
ISSN 1562-6016. ВАНТ. 2021. № 6(136) 123
depending on the amplitude of the magnetic field, coin-
cides in the first and second cases.
Experiments were carried out to measure the radial
dimensions of an electron beam at energy of 30...35 keV
at the output of the magnetron gun of different geometry
(cathode diameter 16 mm and anode 36 mm). These
experiments were carried out at different distances from
the gun cut with different configurations of the solenoid
magnetic field Bz, which are shown in Fig. 7.
The dependence of the transverse dimensions of
electron beams on the configuration of the solenoid
magnetic field Bz at different distances from the cut of
the magnetron gun is studied. In Fig. 8 shows the ob-
tained imprints of the beams at distances of 150, 205
and 315 mm with uniform, increasing and decreasing
magnetic field.
a
b
Fig. 6. The dependence of the diameter of the electron
beam on the amplitude of the magnetic field at different
distances in the transport channel (a)
and on the configuration of the field (b) at 205 mm
(logarithmic scale)
Fig. 7. Distribution of magnetic fields (curves 1–4)
along the axis of the magnetron gun and the beam
transport channel, placement of gun elements;
A – anode; C – cathode; FC – Faraday cylinder (target)
In Fig. 8,a shows the imprint of the beam in homo-
geneous magnetic field (see Fig. 7, curve 3) at distance
z=150 mm, the outer diameter of which is D=20 mm.
When the electron flux moves in the increasing magnet-
ic field (see Fig. 7, curve 4) at distance of z=205 mm, its
diameter decreased to 17 mm (see Fig. 8,b), and in the
descending magnetic field (see Fig. 7, curve 2) at dis-
tance of z=315 mm increased to 32 mm (see Fig. 8,c).
From the experimental data of Fig. 8, it can be seen
that for the three configurations of the magnetic field
used, the beams in cross section have the form of con-
centric rings with the uniform distribution of particle
density, with different inner and outer diameters. It fol-
lows from the above studies that when the beam is
transported in magnetic fields with the smaller ampli-
tude, both the outer and inner diameters increase.
a b
c
Fig. 8. Beam prints on targets at different
configurations of the solenoid Bz magnetic field:
a) is homogeneous magnetic field, outer diameter
of the beam D=20 mm, z=150 mm, Bz=0.11 T;
b) is increasing magnetic field with a gradient
of 0.0154 T/cm, outer diameter D=17 mm, Bz=0.15 T,
z=205 mm; c) is a decreasing magnetic field with
a gradient of 0.0062 T/cm, the outer diameter
of the beam D=32 mm, Bz=0.0240 T, z=315 mm
One or two permanent magnets were used to focus
the electron beam, which made it possible to obtain the
amplitude of the increasing magnetic field in the beam
transport channel of 0.32...0.42 T.
During the movement of the electron beam in the in-
creasing magnetic field with gradient of 0.08 T/cm and
the amplitude of 0.32 T (Fig. 9,a, curve 2) at distance of
205 mm, there is the noticeable decrease in the beam
diameter to 10.5 mm (Fig. 9,b), which is determined by
the focusing of the electron beam.
The print shown in Fig. 9,d, was obtained under the
same conditions as the imprint 9c, but with the larger
amplitude of the growing magnetic field of 0.42 T with
gradient of 0.12 T/cm (Fig. 9,a, curve 1). Fig. 9,d is
shown on the enlarged scale.
ISSN 1562-6016. ВАНТ. 2021. № 6(136) 124
a
b c
d
Fig. 9. Magnetic fields and prints on targets:
a) is the distribution of the magnetic field along the axis
of the magnetron gun and the beam transport channel;
b) is the imprint of the beam on the target, the outer
diameter of the beam D=20 mm, B=0.125 T,
z=150 mm; c) is the outer diameter of the beam
D=10.5 mm, B=0.25 T (curve 2), z=205 mm;
d) is the outer diameter of the beam D=9 mm,
increasing magnetic field, gradient 0.13 T/cm,
B=0.43 T (curve 1), z=205 mm
As can be seen from the above prints, for the used
magnetic field configurations, the cross sections of the
beams have the form of concentric rings with the uni-
form distribution of particle density with different outer
and inner diameters.
It follows from these prints that the fairly good ho-
mogeneity of the azimuthally distribution of the electron
beam is obtained. These data show that by adjusting the
amplitude of the magnetic field, it is possible to control
the radial dimensions of the beam along the transport
channel.
In Fig. 10,a,b show the dependence of the outer di-
ameter of the beam on the amplitude and configuration
of the magnetic field. Experimental data (Fig. 10,a)
were obtained in the case when the targets were located
at different distances of 150...315 mm, at which the cor-
responding amplitude of the magnetic field Bz was. The
data (see Fig. 10,b) were obtained when the target was
located at fixed distance of 205 mm; and the configura-
tion of the magnetic field changed together with the
amplitude of the magnetic field Bz.
It can be seen that the outer diameter of the beam,
depending on the amplitude of the magnetic field, coin-
cides for the first and second cases of their determina-
tion. It can be seen from the figure that as the amplitude
of the magnetic field decreases, the diameter of the elec-
tron beam increases.
a
b
Fig. 10. The dependence of the diameter of the electron
beam on the amplitude of the magnetic field at different
distances in the transport channel (a)
and on the configuration of the field (b)
at 205 mm (logarithmic scale)
From Fig. 10 it follows that with increasing ampli-
tude of the magnetic field there is the significant de-
crease in the transverse dimensions of the beam. Thus,
with increasing amplitude from 0.024 to 0.32 T, the
beam size decreased from 32 to 9 mm.
CONCLUSIONS
From the conducted researches it follows that the
flow of electrons at the output of the magnetron gun
feels the rearrangement of the radial distribution, which
is formed by the type of magnetic field and its gradient
in the transport channel of the beam. The possibility of
adjusting the beam diameter by varying the magnetic
field is shown. It is shown that the obtained experi-
mental results coincide with the simulation results. It is
shown that with an increase in the maximum amplitude
or gradient of the field, the effect of the radial focusing
of the beam is more pronounced. These experimental
results indicate the possibility of focusing the electron
beam, can be used when irradiating cylindrical samples,
which are located in the region of the increasing mag-
netic field.
REFERENCES
1. V.I. Engelko, G. Mueller, A. Andreev, et al. Pulsed
Electron Beam Facilities (GESA) for Surface
Treatment // Proc. of 10
th
International Conf. on Ap-
plied Charged Particle. Accelerators in Medicine
ISSN 1562-6016. ВАНТ. 2021. № 6(136) 125
and Industry. St.-Petersburg, Russia, 2001, p. 412-
4172.
2. I.V. Barsuk, G.S. Vororiev, A.A. Ponomareva. Nu-
merical modeling of electron beam formation pro-
cesses in axially symmetric systems // Journal
Nano- and Electronic Physics. 2014, v. 6, № 2,
02012-1.
3. M.F. Vorogushin, V.A. Glukhikh, G.S. Manukyan,
et al. Beam and ion-plasma technologies // Problems
of Atomic Science and Technology. Series “Physics
of Radiation Effects and Radiation Materials Sci-
ence”. 2002, № 3, p. 101-109.
4. A.N. Dovbnya, S.D. Lavrinenko, V.V. Zakutin, et al.
Surface modification of zirconium and Zr1%Nb al-
loy by the electron beam of the magnetron gun-
based accelerator // Problems of Atomic Science and
Technology. Series “Physics of Radiation Effects and
Radiation Materials Science”. 2011, № 2, p. 39-45.
5. A.N. Dovbnya, V.V. Zakutin, N.G. Reshetnyak, et
al. Investigation of beam formation in an electron
accelerator with a secondary-emission source //
Visnik Kharkivskogo University, Series “Nuclei,
particles, fields”. 2006, № 732, v. 2(30), p. 96-100.
6. M.I. Ayzatsky, A.N. Dovbnya, S. Mazmanishvili, et
al. Studies on formation of the radially-directed elec-
tron beam generated by the magnetron gun with a
secondary emission cathode // Problems of Atomic
Science and Technology. Series “Nuclear Physics
Investigations”. 2016, № 3, p. 11-16.
Article received 03.10.2021
ДИНАМИКА ЭЛЕКТРОННОГО ПУЧКА, ГЕНЕРИРОВАННОГО МАГНЕТРОННОЙ ПУШКОЙ,
ПРИ РАЗЛИЧНЫХ КОНФИГУРАЦИЯХ МАГНИТНОГО ПОЛЯ В КАНАЛЕ ТРАНСПОРТИРОВКИ
А.С. Мазманишвили, Н.Г. Решетняк, В.П. Ромасько, И.А. Чертищев
Исследована динамика размеров электронного пучка, генерируемого магнетронной пушкой, в канале
транспортировки частиц и эффективность фокусировки трубчатого электронного потока в градиентном маг-
нитном поле. Эксперименты проводились с магнетронными пушками с вторично-эмиссионными катодами
(диаметр катодов 36 и 16 мм, диаметр анодов 78 и 36 мм) при напряжении на катоде 20…80 кВ. Магнитные
поля создавались как соленоидом, так и совместно соленоидом и постоянным магнитом. Исследована зави-
симость радиального распределения пучка на металлических мишенях от амплитуды и градиента магнитно-
го поля вдоль оси системы. Показана возможность регулирования диаметра пучка путем вариации магнит-
ного поля. Экспериментально получены отпечатки коллимированных пучков на мишенях, расположенных
на выбранных расстояниях. Полученные экспериментальные данные согласуются с результатами численно-
го моделирования. Показано, что с увеличением амплитуды градиентного магнитного поля эффект радиаль-
ного фокусирования пучка больше выражен.
ДИНАМІКА ЕЛЕКТРОННОГО ПУЧКА, ЩО ГЕНЕРУЄТЬСЯ МАГНЕТРОННОЮ ГАРМАТОЮ,
ПРИ РІЗНИХ КОНФІГУРАЦІЯХ МАГНІТНОГО ПОЛЯ В КАНАЛІ ТРАНСПОРТУВАННЯ
О.С. Мазманішвілі, М.Г. Решетняк, В.П. Ромасько, І.А. Чертіщев
Досліджено динаміку електронного пучка, що генерується магнетронною гарматою, в каналі транспор-
тування частинок і ефективність фокусування трубчастого електронного потоку в градієнтному магнітному
полі. Експерименти проводилися з магнетронними гарматами зі вторинно-емісійними катодами (діаметри
катодів 36 і 16 мм, анодів 78 і 36 мм) при напрузі на катоді 20...80 кВ. Магнітні поля створювалися як соле-
ноїдом, так і спільно соленоїдом і постійним магнітом. Досліджено залежність радіального розподілу пучка
на металевих мішенях від амплітуди і градієнта магнітного поля уздовж осі системи. Показана можливість
регулювання діаметра пучка шляхом варіації розподілу магнітного поля. Отримано відбитки колімованих
пучків на мішенях, розташованих на обраних відстанях. Встановлено, що зі збільшенням амплітуди магніт-
ного поля ефект радіального фокусування пучка є більше виражений.
|