Simulation studies of the Moliere radius for EM calorimeter materials

The Monte-Carlo calculations of the Moliere radius (RM) for some homogeneous and heterogeneous media used in electromagnetic calorimetry in the energy range from 50 MeV to 10 GeV are presented in detail. The obtained results, the uncertainties in determining RM, estimations of the absorbed energy, m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Вопросы атомной науки и техники
Datum:2021
Hauptverfasser: Gavrishchuk, O.P., Kovtun, V.E., Malykhina, T.V.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2021
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/195804
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Simulation studies of the Moliere radius for EM calorimeter materials / O.P. Gavrishchuk, V.E. Kovtun, T.V. Malykhina // Problems of Atomic Science and Technology. — 2021. — № 6. — С. 171-174. — Бібліогр.: 9 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-195804
record_format dspace
spelling Gavrishchuk, O.P.
Kovtun, V.E.
Malykhina, T.V.
2023-12-07T10:36:18Z
2023-12-07T10:36:18Z
2021
Simulation studies of the Moliere radius for EM calorimeter materials / O.P. Gavrishchuk, V.E. Kovtun, T.V. Malykhina // Problems of Atomic Science and Technology. — 2021. — № 6. — С. 171-174. — Бібліогр.: 9 назв. — англ.
1562-6016
PACS: 02.70.Uu, 7.05.Tp, 29.40.Vj
DOI: https://doi.org/10.46813/2021-136-171
https://nasplib.isofts.kiev.ua/handle/123456789/195804
The Monte-Carlo calculations of the Moliere radius (RM) for some homogeneous and heterogeneous media used in electromagnetic calorimetry in the energy range from 50 MeV to 10 GeV are presented in detail. The obtained results, the uncertainties in determining RM, estimations of the absorbed energy, methods for approximating the absorbed energy, and the accuracy of the results are discussed as well. Some RM are shown for calorimeter prototypes of the Spin Physics Detector experiment (SPD). A one-parameter function of the Moliere radius dependence on the absorber-scintillator thickness ratio is obtained.
Представлені детальні обчислення методом Монте-Карло радіуса Мольєра (RM) для деяких гомогенних і гетерогенних середовищ, що використовуються в електромагнітній калориметрії в діапазоні енергій від 50 МеВ до 10 ГеВ. Обговорюються отримані результати, невизначеності опису RM, оцінки поглиненої енергії, методи апроксимації поглиненої енергії, точність результатів. Наведено RM для прототипів калориметра експерименту SPD. Отримано однопараметричну функцію залежності радіуса Мольєра від співвідношення товщин поглинача та сцинтилятора.
Представлены детальные вычисления методом Монте-Карло радиуса Мольера (RM) для некоторых гомогенных и гетерогенных сред, используемых в электромагнитной калориметрии в диапазоне энергий от 50 МэВ до 10 ГэВ. Обсуждаются полученные результаты, неопределенности описания RM, оценки поглощенной энергии, методы аппроксимации поглощенной энергии,точность результатов. Приведены RM для прототипов калориметра эксперимента SPD. Получена однопараметрическая функция зависимости радиуса Мольера от соотношения толщин поглотителя и сцинтиллятора.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Experimental methods and processing of data
Simulation studies of the Moliere radius for EM calorimeter materials
Дослідження радіуса Мольєра для матеріалів електромагнітного калориметра методом комп'ютерного моделювання
Исследование радиуса Мольера для материалов электромагнитного калориметра методом компьютерного моделирования
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Simulation studies of the Moliere radius for EM calorimeter materials
spellingShingle Simulation studies of the Moliere radius for EM calorimeter materials
Gavrishchuk, O.P.
Kovtun, V.E.
Malykhina, T.V.
Experimental methods and processing of data
title_short Simulation studies of the Moliere radius for EM calorimeter materials
title_full Simulation studies of the Moliere radius for EM calorimeter materials
title_fullStr Simulation studies of the Moliere radius for EM calorimeter materials
title_full_unstemmed Simulation studies of the Moliere radius for EM calorimeter materials
title_sort simulation studies of the moliere radius for em calorimeter materials
author Gavrishchuk, O.P.
Kovtun, V.E.
Malykhina, T.V.
author_facet Gavrishchuk, O.P.
Kovtun, V.E.
Malykhina, T.V.
topic Experimental methods and processing of data
topic_facet Experimental methods and processing of data
publishDate 2021
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Дослідження радіуса Мольєра для матеріалів електромагнітного калориметра методом комп'ютерного моделювання
Исследование радиуса Мольера для материалов электромагнитного калориметра методом компьютерного моделирования
description The Monte-Carlo calculations of the Moliere radius (RM) for some homogeneous and heterogeneous media used in electromagnetic calorimetry in the energy range from 50 MeV to 10 GeV are presented in detail. The obtained results, the uncertainties in determining RM, estimations of the absorbed energy, methods for approximating the absorbed energy, and the accuracy of the results are discussed as well. Some RM are shown for calorimeter prototypes of the Spin Physics Detector experiment (SPD). A one-parameter function of the Moliere radius dependence on the absorber-scintillator thickness ratio is obtained. Представлені детальні обчислення методом Монте-Карло радіуса Мольєра (RM) для деяких гомогенних і гетерогенних середовищ, що використовуються в електромагнітній калориметрії в діапазоні енергій від 50 МеВ до 10 ГеВ. Обговорюються отримані результати, невизначеності опису RM, оцінки поглиненої енергії, методи апроксимації поглиненої енергії, точність результатів. Наведено RM для прототипів калориметра експерименту SPD. Отримано однопараметричну функцію залежності радіуса Мольєра від співвідношення товщин поглинача та сцинтилятора. Представлены детальные вычисления методом Монте-Карло радиуса Мольера (RM) для некоторых гомогенных и гетерогенных сред, используемых в электромагнитной калориметрии в диапазоне энергий от 50 МэВ до 10 ГэВ. Обсуждаются полученные результаты, неопределенности описания RM, оценки поглощенной энергии, методы аппроксимации поглощенной энергии,точность результатов. Приведены RM для прототипов калориметра эксперимента SPD. Получена однопараметрическая функция зависимости радиуса Мольера от соотношения толщин поглотителя и сцинтиллятора.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/195804
citation_txt Simulation studies of the Moliere radius for EM calorimeter materials / O.P. Gavrishchuk, V.E. Kovtun, T.V. Malykhina // Problems of Atomic Science and Technology. — 2021. — № 6. — С. 171-174. — Бібліогр.: 9 назв. — англ.
work_keys_str_mv AT gavrishchukop simulationstudiesofthemoliereradiusforemcalorimetermaterials
AT kovtunve simulationstudiesofthemoliereradiusforemcalorimetermaterials
AT malykhinatv simulationstudiesofthemoliereradiusforemcalorimetermaterials
AT gavrishchukop doslídžennâradíusamolʹêradlâmateríalívelektromagnítnogokalorimetrametodomkompûternogomodelûvannâ
AT kovtunve doslídžennâradíusamolʹêradlâmateríalívelektromagnítnogokalorimetrametodomkompûternogomodelûvannâ
AT malykhinatv doslídžennâradíusamolʹêradlâmateríalívelektromagnítnogokalorimetrametodomkompûternogomodelûvannâ
AT gavrishchukop issledovanieradiusamolʹeradlâmaterialovélektromagnitnogokalorimetrametodomkompʹûternogomodelirovaniâ
AT kovtunve issledovanieradiusamolʹeradlâmaterialovélektromagnitnogokalorimetrametodomkompʹûternogomodelirovaniâ
AT malykhinatv issledovanieradiusamolʹeradlâmaterialovélektromagnitnogokalorimetrametodomkompʹûternogomodelirovaniâ
first_indexed 2025-11-26T01:39:54Z
last_indexed 2025-11-26T01:39:54Z
_version_ 1850604074365353984
fulltext ISSN 1562-6016. ВАНТ. 2021. № 6(136) 171 https://doi.org/10.46813/2021-136-171 SIMULATION STUDIES OF THE MOLIERE RADIUS FOR EM CALORIMETER MATERIALS O.P. Gavrishchuk 1 , V.E. Kovtun 2 , T.V. Malykhina 2 1 Joint Institute for Nuclear Research (JINR), Dubna, Moscow Region, Russia; 2 V.N. Karazin Kharkiv National University, Kharkiv, Ukraine E-mail: vladimir.e.kovtun@univer.kharkov.ua The Monte-Carlo calculations of the Moliere radius (RM) for some homogeneous and heterogeneous media used in electromagnetic calorimetry in the energy range from 50 MeV to 10 GeV are presented in detail. The obtained results, the uncertainties in determining RM, estimations of the absorbed energy, methods for approximating the ab- sorbed energy, and the accuracy of the results are discussed as well. Some RM are shown for calorimeter prototypes of the Spin Physics Detector experiment (SPD). A one-parameter function of the Moliere radius dependence on the absorber-scintillator thickness ratio is obtained. PACS: 02.70.Uu, 7.05.Tp, 29.40.Vj INTRODUCTION Requirements for the electromagnetic ECal calorim- eter emerge from the physical problems of the SPD NICA experiment [1]. A good energy resolution of 5% must be ensured as well as effective π 0 -γ separation in the energy range from 50 MeV to 10 GeV. The calorim- eter module is a sampling lead-scintillator structure, which has been investigated and significantly improved for experiments KOPIO [2] and COMPASS II [3]. The polystyrene scintillator thickness is the same for all pro- totypes and is DPS=1.5 mm. The main prototype of the ECaL SPD module has 4 cells and the silicon photomul- tiplier (SiPM) with fiber readout. The final design ver- sion will take into account the price factor and a detailed calculation by the Monte-Carlo method for the im- provement of the SPD calorimeter parameters [4, 5]. In this work we present the results of Monte-Carlo simulation of the transverse evolution of an electromag- netic shower in the ECal SPD module. The final goal is to obtain reasonable values of the Moliere radius for the heterogeneous structure of the prototypes of the SPD calorimeter module. 1. RM CALCULATIONS METHODS By definition [6], the Moliere radius RM is found from the transverse dimension of the electromagnetic (EM) shower absorbed by the medium according to the formula: ( ) 0.9 ( ) ME R R = E R    . (1) The results of the numerical solution of equation (1) based on the first principles of the EM shower propaga- tion in a medium by the Monte-Carlo method [7] showed a significant difference with the estimates ac- cording to the known formulas for RM both for homoge- neous media and for heterogeneous media. We consider various methods for solving equation (1) by calorimeter modeling and subsequent processing of the obtained data. The first standard step consists of the generation of a large number (in our case, N=10 4 ) events using the Geant4 toolkit for simulation of electromagnetic show- ers from electrons with primary energy of 1 GeV. The simulation of an infinite calorimeter was performed in order to avoid shower energy leakage. At the next step, 90% of the deposited energy is summed up in accord- ance with the chosen method. 1.1. RM CALCULATION FROM THE TRANSVERSE SHAPE OF THE EM SHOWER There are many parameterizations of the transverse shape of the EM shower. The LumiCal collaboration function was chosen as an example [8]. This function was used to process experimental data from experiments specifically devoted to finding the Moliere radius. Comparisons (Fig. 1) were also made with Monte-Carlo calculations. Fig. 1. Parametrization of the shower transverse profile. The function is taken from [8] It was assumed that the shape of the EM shower has an axial symmetry, and the distribution function consists of a narrow Gaussian kernel and a wide hyperbola tail. The function has four parameters that are found when fitting. The result of this method depends on the region of convergence and has, as a rule, a large parameter error. 1.2. RM CALCULATION BY FRACTION OF DEPOSITED ENERGY As a rule, the method for calculating the deposited energy is based on the fact that the calorimeter is divid- ed into pads with coordinates xiyj. In our case the pad ISSN 1562-6016. ВАНТ. 2021. № 6(136) 172 size is selected 0.150.15 mm. The deposited energy is equal E90%=ΣEij provided R<RM. Fig. 2 shows a frag- ment of the geometrical calculation of the Moliere radi- us for some homogeneous materials that are used in calorimetry. Fig. 2. Geometric method of RM calculation for some homogeneous media The Moliere radius is determined by the intersection of the E=E(R) function and the straight line E= 0.9·E0, using this method. Table 1 presents the numerical val- ues of the Moliere radius for some homogeneous mate- rials. The presented results were obtained by the method described above. Table 1 Moliere radii for some homogeneous materials Material Pb W U Cu Fe PS RM , mm 19.4 11.9 11.14 25.1 28.1 137.5 The systematic error of the method is obviously de- termined by the pad size and in our case is equal ΔRm(syst.)~±0.2 mm. 1.3. RM CALCULATION FROM ENERGY SPECTRUM We propose a method for calculating RM directly from the 90% peak of the total absorption of an EM shower in the cylindrical volume of the calorimeter. An example of an energy spectrum is shown in Fig. 3. In this case, the shape of the peak will differ from the Gaussian due to the energy leakage of the shower into the outer cylinder. The total absorption peak has the form of a δ- function under the condition R<∞ since Emean=E0. Thus, the problem is reduced to the correct determination of the peak maximum when 90% of the shower energy is absorbed. It should be noted that this effect of volume energy leakage also exists for the previous case of cal- culations. This effect is usually ignored when calculat- ing the Moliere radius. The question is what value of the deposited energy should be chosen. Whether the most probable value of the deposited energy or the average deposited energy value should be chosen. In our case (E0=1 GeV), the difference between the most probable energy distribution of events and the av- erage value is ~4 MeV (0.5% of E0). The difference is not very large for practical use, so we use the most probable value. Fig. 3. Energy spectrum of 90% of the deposited energy in a lead cylinder. Vertical lines are the average and the most probable value of deposited energies The peak was approximated by the Das function [9], from which the distribution parameters were obtained. The most probable peak value ES and the standard devi- ation σ are shown in Fig. 3. Thus, we consider the most probable value of the re- sulting distribution of the deposited energy in the cylin- der, and not the average value. Such energy spectra are close to the Gaussian distribution. Therefore, we have χ 2 /ndf~1 for the used approximation as a rule [9]. The difference in the results of the two previous methods is negligible, so the subsequent results were obtained by the pads method. 2. RM FOR IDEAL SPD ECAL The obtained values of Moliere radii for ideal proto- types of calorimeters with Pb and W absorbers are pre- sented in Tables 2 and 3. Table 2 Moliere radii for ideal prototypes of calorimeters with Pb absorbers DPb[mm]+DPS(1.5 mm) 0.3 0.4 0.5 RM [mm] 74.0 65.0 58.5 Table 3 Moliere radii for ideal prototypes of calorimeters with W absorbers DW[mm]+DPS(1.5 mm) 0.3 0.4 0.5 RM [mm] 53.2 45.3 40.0 DPS, DPb, DW – thickness of the active and passive parts of the calorimeter. We present the result of RM calculations for the het- erogeneous structure of the SPD calorimeter prototype (Fig. 4) for comparison with the homogeneous structure (see Fig. 2). ISSN 1562-6016. ВАНТ. 2021. № 6(136) 173 Fig. 4. Geometric method of RM calculation for ECal prototypes with lead absorber 3. RM DEPENDENCE ON THE ABSORBER THICKNESS The Monte-Carlo method was used to investigate the Moliere radius in more detail, depending on any ratio of the thicknesses of the passive and active substances of the calorimeter. A universal approximation function is found: 1 1 1 PS abs M M M x x+a x R (x)= R +R +a x +a x       , (2) where the variable x varies within [0,1]: abs abs PS D x = D + D , (3) 0 PS M M R ( )= R , 1 abs M M R ( )= R , (4) DPS, Dаbs – the thicknesses of the active and passive parts of the calorimeter. PS M R , abs MR – Moliere radii of the plastic scintillator and absorber, MR (x) – the Mo- liere radius of the sampling calorimeter as a function of the ratio of the thicknesses x. The ‘a’ parameter is the only dimensionless fitting parameter in the formula (2). Fig. 5 shows functions (2)-(4) for a sampling calo- rimeter with lead and tungsten absorbers and the ‘a’ parameter values obtained by fitting. 4. THE RESULTS TESTING In order to obtain the test results and identify sys- tematic errors, the parameters of computer models were varied. Fig. 6 shows that in a wide range of RangeCut values (from 1 m to 1 mm) the RM calculation results do not differ significantly. The calculations were also performed with a statistical accuracy of 1% for incident electrons or photons in energy range from 100 MeV to 10 GeV. During a series of calculations, the most suitable model of physical processes emstandard_opt4 was cho- sen instead of QGSP_BERT model in the Physics List class. Fig. 5. Universal function from (2)-(4) and RM depend- ence on variable thickness x and fitting parameter ‘a’ Fig. 6. RM dependence on the cut-off value Fig. 7. RM dependence on the energy of primary particles This allows to focus on purely electromagnetic pro- cesses without taking into account nuclear reactions, which appear in a small quantity when using ISSN 1562-6016. ВАНТ. 2021. № 6(136) 174 QGSP_BERT model. It is also shown (Fig. 7) that the Moliere radius does not depend on the energy of the incident particle. The increase of RM in function RM=RM(E0) at the beginning of the curve can be explained by the actual absence of multiple processes of an electromagnetic shower in the region of very low energies. It is also dif- ficult to find the correct definition of RM in this area. Errors in RM calculations are determined by the statisti- cal error associated with the number of events and sys- tematic errors due to data processing methods. To determine the latter, series of calculations were carried out. We estimate the total errors in calculating RM as ΔRM±0.5 mm for the data from Tables 1-3. CONCLUSIONS A simulation study of the Moliere radius for an ideal sampling calorimeter is presented. Various practical methods are shown for solving the equation for the Mo- liere radius, which follows from the Moliere radius def- inition. The data were obtained by the Monte-Carlo method. A convenient approximation of the curve of the Moliere radius dependence on any possible thicknesses of the active and passive parts of the sampling calorime- ter is found. Thus, the formula is suitable for use in both homogeneous and heterogeneous environments. An estimate of the calculation accuracy for the obtained results is made, which can be used in the development of a sampling calorimeter of the SPD NICA setup. The obtained results are practically independent of some Geant4 parameters, such as cut, the Physics Lists model, and the energy range of electrons or gamma quanta. The methodology described in this paper for Moliere radius calculation can be easily adapted to any sampling calo- rimeter. REFERENCES 1. Conceptual design of the Spin Physics Detector, 3 Feb 2021, Version 1, The SPD proto-collaboration, arXiv::2102.00442v1, 31 Jan 2021, p. 191. 2. G.S. Atoian et al. An improved Shashlyk calorimeter // Nucl. Instrum. Meth. A. 2008, v. 584(2), p. 291- 303, https://doi.org/10.1016/j.nima.2007.10.022. 3. I. Chirikov-Zorin, Z. Krumshtein, and A. Olchevski. The design of a photodetector unit of a new Shashlyk EM calorimeter for COMPASS II // Nucl. Instrum. Meth. A. 2016, v. 824, p. 674. 4. O.P. Gavrishchuk, V.E. Kovtun, T.V. Malykhina. Simulation Study of Energy Resolution of the Elec- tromagnetic Shashlyk Calorimeter for Different of Layers and Absorber Combinations // East Eur. J. Phys. 2020, v. 3, p. 73-80, https://doi.org/10.26565/ 2312-4334-2020-3-09. 5. O.P. Gavrishchuk, V.E. Kovtun, T.V. Malykhina. Effect of energy leakage on the energy resolution of E.M. sampling calorimeters // Problems of Atomic Science and Technology. 2021, № 3(133), p. 76-80, https://doi.org/10.46813/2021-133-076. 6. P.A. Zyla et al. Review of Particle Physics. Particle Data Group. (Particle Data Group) // Prog. Theor. Exp. Phys. 2020, 083C01, p. 2093, https://doi.org/10.1093/ptep/ptaa104. 7. A. Popescu, A. Rosca. Simulations for the BeamCal at the ILC // Annals of West University of Timisoara: Physics. 2007, v. 50, p. 114-119. 8. H. Abramowicz et al. Measurement of shower de- velopment and its Molière radius with a four-plane LumiCal test set-up // Eur. Phys. J. C. 2018, p. 78- 135, https://doi.org/10.1140/epjc/s10052-018-5611-9. 9. S. Das. A simple alternative to the Crystal Ball func- tion. 2016, p. 5, https://arxiv.org/abs/1603.08591. Article received 04.10.2021 ИССЛЕДОВАНИЕ РАДИУСА МОЛЬЕРА ДЛЯ МАТЕРИАЛОВ ЭЛЕКТРОМАГНИТНОГО КАЛОРИМЕТРА МЕТОДОМ КОМПЬЮТЕРНОГО МОДЕЛИРОВАНИЯ О.П. Гаврищук, В.Е. Ковтун, Т.В. Малыхина Представлены детальные вычисления методом Монте-Карло радиуса Мольера (RM) для некоторых гомо- генных и гетерогенных сред, используемых в электромагнитной калориметрии в диапазоне энергий от 50 МэВ до 10 ГэВ. Обсуждаются полученные результаты, неопределенности описания RM, оценки погло- щенной энергии, методы аппроксимации поглощенной энергии, точность результатов. Приведены RM для прототипов калориметра эксперимента SPD. Получена однопараметрическая функция зависимости радиуса Мольера от соотношения толщин поглотителя и сцинтиллятора. ДОСЛІДЖЕННЯ РАДІУСА МОЛЬЄРА ДЛЯ МАТЕРІАЛІВ ЕЛЕКТРОМАГНІТНОГО КАЛОРИМЕТРА МЕТОДОМ КОМП’ЮТЕРНОГО МОДЕЛЮВАННЯ О.П. Гаврищук, В.Є. Ковтун, Т.В. Малихіна Представлені детальні обчислення методом Монте-Карло радіуса Мольєра (RM) для деяких гомогенних і гетерогенних середовищ, що використовуються в електромагнітній калориметрії в діапазоні енергій від 50 МеВ до 10 ГеВ. Обговорюються отримані результати, невизначеності опису RM, оцінки поглиненої енер- гії, методи апроксимації поглиненої енергії, точність результатів. Наведено RM для прототипів калориметра експерименту SPD. Отримано однопараметричну функцію залежності радіуса Мольєра від співвідношення товщин поглинача та сцинтилятора. https://doi.org/10.1016/j.nima.2007.10.022 https://doi.org/10.26565/2312-4334-2020-3-09 https://doi.org/10.26565/2312-4334-2020-3-09 https://doi.org/10.26565/2312-4334-2020-3-09 https://doi.org/10.26565/2312-4334-2020-3-09 https://doi.org/10.46813/2021-133-076 https://doi.org/10.1093/ptep/ptaa104 https://doi.org/10.1140/epjc/s10052-018-5611-9 https://arxiv.org/abs/1603.08591