Optimization of "Glucose ¹¹C" pharmaceutical production on the beam of an electron accelerator
The process of “Glucose ¹¹C” pharmaceutical production by means of a photonuclear reaction ¹²C(γ, n)¹¹C is considered. The parameters of bremsstrahlung and electron beam scattered in the converter are investigated and optimized. It is proposed to use a constant-field magnet to remove electrons from...
Збережено в:
| Опубліковано в: : | Вопросы атомной науки и техники |
|---|---|
| Дата: | 2021 |
| Автори: | , , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2021
|
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/195805 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Optimization of "Glucose ¹¹C" pharmaceutical production on the beam of an electron accelerator / I.S. Guk, R.N. Dronov, O.S. Deiev, B.I. Shramenko // Problems of Atomic Science and Technology. — 2021. — № 6. — С. 175-180. — Бібліогр.: 25 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-195805 |
|---|---|
| record_format |
dspace |
| spelling |
Guk, I.S. Dronov, R.N. Deiev, O.S. Shramenko, B.I. 2023-12-07T10:36:46Z 2023-12-07T10:36:46Z 2021 Optimization of "Glucose ¹¹C" pharmaceutical production on the beam of an electron accelerator / I.S. Guk, R.N. Dronov, O.S. Deiev, B.I. Shramenko // Problems of Atomic Science and Technology. — 2021. — № 6. — С. 175-180. — Бібліогр.: 25 назв. — англ. 1562-6016 PACS: 07.05.Tr, 41.50.+h; 41.75.Fr; 78.70 En DOI: https://doi.org/10.46813/2021-136-175 https://nasplib.isofts.kiev.ua/handle/123456789/195805 The process of “Glucose ¹¹C” pharmaceutical production by means of a photonuclear reaction ¹²C(γ, n)¹¹C is considered. The parameters of bremsstrahlung and electron beam scattered in the converter are investigated and optimized. It is proposed to use a constant-field magnet to remove electrons from the photon beam. A magnet design is proposed that allows obtaining a field of 0.5 T in a gap of 25 mm. The production of the ¹¹C isotope in the glucose target was estimated. Розглянуто процес одержання фармпрепарату «Глюкоза ¹¹C» за допомогою фотоядерної реакції ¹²C(γ, n)¹¹C. Досліджені і оптимізовані параметри гальмового випромінювання і розсіяного в конверторі електронного пучка. Для очищення фотонного пучка від електронів пропонується використовувати магніт з постійним полем. Запропоновано конструкцію магніту, що дозволяє одержати поле 0,5 Тл у зазорі 25 мм. Проведено оцінку апрацювання ізотопу ¹¹C у мішені з глюкози. Рассмотрен процесс получения фармпрепарата «Глюкоза ¹¹C» с помощью фотоядерной реакции ¹²C(γ, n)¹¹C. Исследованы и оптимизированы параметры тормозного излучения и рассеянного в конверторе электронного пучка. Для очистки фотонного пучка от электронов предлагается использовать магнит с постоянным полем. Предложена конструкция магнита, позволяющая получить поле 0,5 Тл в зазоре 25 мм. Проведена оценка наработки изотопа ¹¹C в мишени из глюкозы. en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Вопросы атомной науки и техники Application of nuclear methods Optimization of "Glucose ¹¹C" pharmaceutical production on the beam of an electron accelerator Оптимізація виробництва фармацевтичного препарату "Глюкоза ¹¹C" на пучку прискорювача електронів Оптимизация наработки фармпрепарата "Глюкоза ¹¹C" на пучке ускорителя электронов Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Optimization of "Glucose ¹¹C" pharmaceutical production on the beam of an electron accelerator |
| spellingShingle |
Optimization of "Glucose ¹¹C" pharmaceutical production on the beam of an electron accelerator Guk, I.S. Dronov, R.N. Deiev, O.S. Shramenko, B.I. Application of nuclear methods |
| title_short |
Optimization of "Glucose ¹¹C" pharmaceutical production on the beam of an electron accelerator |
| title_full |
Optimization of "Glucose ¹¹C" pharmaceutical production on the beam of an electron accelerator |
| title_fullStr |
Optimization of "Glucose ¹¹C" pharmaceutical production on the beam of an electron accelerator |
| title_full_unstemmed |
Optimization of "Glucose ¹¹C" pharmaceutical production on the beam of an electron accelerator |
| title_sort |
optimization of "glucose ¹¹c" pharmaceutical production on the beam of an electron accelerator |
| author |
Guk, I.S. Dronov, R.N. Deiev, O.S. Shramenko, B.I. |
| author_facet |
Guk, I.S. Dronov, R.N. Deiev, O.S. Shramenko, B.I. |
| topic |
Application of nuclear methods |
| topic_facet |
Application of nuclear methods |
| publishDate |
2021 |
| language |
English |
| container_title |
Вопросы атомной науки и техники |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Оптимізація виробництва фармацевтичного препарату "Глюкоза ¹¹C" на пучку прискорювача електронів Оптимизация наработки фармпрепарата "Глюкоза ¹¹C" на пучке ускорителя электронов |
| description |
The process of “Glucose ¹¹C” pharmaceutical production by means of a photonuclear reaction ¹²C(γ, n)¹¹C is considered. The parameters of bremsstrahlung and electron beam scattered in the converter are investigated and optimized. It is proposed to use a constant-field magnet to remove electrons from the photon beam. A magnet design is proposed that allows obtaining a field of 0.5 T in a gap of 25 mm. The production of the ¹¹C isotope in the glucose target was estimated.
Розглянуто процес одержання фармпрепарату «Глюкоза ¹¹C» за допомогою фотоядерної реакції ¹²C(γ, n)¹¹C. Досліджені і оптимізовані параметри гальмового випромінювання і розсіяного в конверторі електронного пучка. Для очищення фотонного пучка від електронів пропонується використовувати магніт з постійним полем. Запропоновано конструкцію магніту, що дозволяє одержати поле 0,5 Тл у зазорі 25 мм. Проведено оцінку апрацювання ізотопу ¹¹C у мішені з глюкози.
Рассмотрен процесс получения фармпрепарата «Глюкоза ¹¹C» с помощью фотоядерной реакции ¹²C(γ, n)¹¹C. Исследованы и оптимизированы параметры тормозного излучения и рассеянного в конверторе электронного пучка. Для очистки фотонного пучка от электронов предлагается использовать магнит с постоянным полем. Предложена конструкция магнита, позволяющая получить поле 0,5 Тл в зазоре 25 мм. Проведена оценка наработки изотопа ¹¹C в мишени из глюкозы.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/195805 |
| citation_txt |
Optimization of "Glucose ¹¹C" pharmaceutical production on the beam of an electron accelerator / I.S. Guk, R.N. Dronov, O.S. Deiev, B.I. Shramenko // Problems of Atomic Science and Technology. — 2021. — № 6. — С. 175-180. — Бібліогр.: 25 назв. — англ. |
| work_keys_str_mv |
AT gukis optimizationofglucose11cpharmaceuticalproductiononthebeamofanelectronaccelerator AT dronovrn optimizationofglucose11cpharmaceuticalproductiononthebeamofanelectronaccelerator AT deievos optimizationofglucose11cpharmaceuticalproductiononthebeamofanelectronaccelerator AT shramenkobi optimizationofglucose11cpharmaceuticalproductiononthebeamofanelectronaccelerator AT gukis optimízacíâvirobnictvafarmacevtičnogopreparatuglûkoza11cnapučkupriskorûvačaelektronív AT dronovrn optimízacíâvirobnictvafarmacevtičnogopreparatuglûkoza11cnapučkupriskorûvačaelektronív AT deievos optimízacíâvirobnictvafarmacevtičnogopreparatuglûkoza11cnapučkupriskorûvačaelektronív AT shramenkobi optimízacíâvirobnictvafarmacevtičnogopreparatuglûkoza11cnapučkupriskorûvačaelektronív AT gukis optimizaciânarabotkifarmpreparataglûkoza11cnapučkeuskoritelâélektronov AT dronovrn optimizaciânarabotkifarmpreparataglûkoza11cnapučkeuskoritelâélektronov AT deievos optimizaciânarabotkifarmpreparataglûkoza11cnapučkeuskoritelâélektronov AT shramenkobi optimizaciânarabotkifarmpreparataglûkoza11cnapučkeuskoritelâélektronov |
| first_indexed |
2025-11-25T20:32:34Z |
| last_indexed |
2025-11-25T20:32:34Z |
| _version_ |
1850524753640554496 |
| fulltext |
ISSN 1562-6016. ВАНТ. 2021. № 6(136) 175
APPLICATION OF NUCLEAR METHODS
https://doi.org/10.46813/2021-136-175
OPTIMIZATION OF "GLUCOSE
11
C" PHARMACEUTICAL
PRODUCTION ON THE BEAM OF ELECTRON ACCELERATOR
I.S. Guk, R.N. Dronov, O.S. Deiev, B.I. Shramenko
National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine
E-mail: guk@kipt.kharkov.ua
The process of "Glucose
11
C" pharmaceutical production by means of a photonuclear reaction
12
C(γ, n)
11
C is
considered. The parameters of bremsstrahlung and electron beam scattered in the converter are investigated and op-
timized. It is proposed to use a constant-field magnet to remove electrons from the photon beam. A magnet design is
proposed that allows obtaining a field of 0.5 T in a gap of 25 mm. The production of the
11
C isotope in the glucose
target was estimated.
PACS: 07.05.Tr, 41.50.+h; 41.75.Fr; 78.70 En
INTRODUCTION
Positron emission tomography (PET) is one of the
two most common diagnostic techniques in nuclear med-
icine, based on the use of isotopes that emit positrons
because of nuclear transformations [1]. The isotopes rec-
ommended for use in PET diagnostics [2, 3], radiophar-
maceuticals containing
15
O (half-life 2.04 min),
13
N
(9.96 min),
11
C (20.4 min),
18
F (110 min) are mainly
used.
18
F isotope has optimal characteristics for use in
PET: long half-life and lowest β + -radiation energy. Cur-
rently, the most commonly used pharmaceutical in clini-
cal PET scanning is fluorodeoxyglucose, a glucose ana-
logue labeled with the
18
F isotope. Fluorodeoxyglucose is
used in virtually all scans for oncology and in most cases
in neurology, accounting for more than 95% of all PET
scans. However, the images of highest quality are ob-
tained using
15
O,
13
N, and
11
C radionuclides [1].
All these isotopes are obtained using nuclear reac-
tions at cyclotrons [4, 5]. The same isotopes can be ob-
tained using electron accelerators and photonuclear re-
actions. It should be noted that the isotopes
18
F and
11
C,
obtained on cyclotrons in complex and expensive tech-
nological processes [1, 2, 6], which results in significant
increase in the cost of the diagnostics. The use of the
12
C (γ, n)
11
C reaction makes it possible to significantly
simplify the process of obtaining a pharmaceuticals us-
ing the irradiation of glucose (C6H12O6H2O) with a
beam of bremsstrahlung gamma quanta of an electron
accelerator [6 - 8]. A more detailed consideration and
optimization of this method for obtaining a diagnostic
isotope is of substantial practical interest.
1. OBTAINING ISOTOPE
11
C
BY THE PHOTONUCLEAR METHOD
An experimental study of the photonuclear reaction
12
C (γ, n)
11
C was carried out in a number of works [9-
12]. A generalization of a number of experimental cross
sections for the photonuclear reaction
12
C (γ, n)
11
C is
shown in Fig. 1, presented in [12]. The energy threshold
for the formation of the
11
C isotope on the
12
C nucleus is
18.72 MeV, the cross section of reaction drops signifi-
cantly at energies above 35 MeV.
Fig. 2 shows the cross section of the photonuclear
reaction
12
C (γ, n)
11
C, calculated in the TALYS 1.95
code [13].
Fig. 1. Photonuclear reaction cross section
12
C(γ, n)
11
C
The general view of the cross section is complex,
due to the various mechanisms of interaction of photons
with the carbon nuclei. In addition, the total of the areas
under the cross-sectional curve in the experiment is ap-
proximately 3 times greater, which was taken into ac-
count in the calculations of the drug activity.
18 20 22 24 26 28 30 32 34 36
0,0
0,5
1,0
1,5
2,0
2,5
3,0
3,5
C
ro
s
s
-s
e
c
ti
o
n
,
m
b
Eg, MeV
Talys1.95
12C(,n)11C
Fig. 2. Cross section for the photonuclear reaction
12
C (γ, n)
11
C, calculated in the TALYS 1.95 code
The influence of other channels of reactions that
take place in
12
C and
16
O under the influence of photons
can be neglected.
12
C(,n)
11
C
ISSN 1562-6016. ВАНТ. 2021. № 6(136) 176
It was shown in [6, 8] that
11
C isotope activity equal
to 440 MBq was obtained in a sample of glucose with a
weight of 4 g on an LU-40 electron accelerator at an
electron beam energy of 36 MeV. The accumulated
amount of
11
C isotope is sufficient for PET diagnostics.
The main problem of the proposed method of ob-
taining a pharmaceutical product is to eliminate the neg-
ative effect of the electron beam. Electrons that passed
through the converter can heat the target and change the
physical and chemical properties of the irradiated glu-
cose.
The solution to this problem can be found in the ap-
plication of a magnetic field to prevent the electron
beam from hitting the target. Fig. 3 shows a diagram of
a device for removing a charged component from the
beam of gamma quanta.
Fig. 3. Diagram of a device for removing a charged
component from the beam of gamma quanta:
1 primary electron beam of the accelerator;
2 converter, Ta; 3 permanent magnets (NdFeB);
4 H, magnetic field; 5 gamma quanta from the con-
verter, γ; 6 target irradiated with gamma quanta;
7 secondary charged component; 8 magnetic core
Similar schemes in various versions are used in the
study of photonuclear reactions [14 - 16]. Since our task
is to obtain the maximum amount of the isotope, we will
try to optimize the proposed scheme taking into account
the real parameters of the electron and photon beams.
2. ESTIMATION OF PHOTON BEAM
PARAMETERS
2.1. DEPENDENCE OF PHOTON
AND ELECTRON BEAMS ON CONVERTER
THICKNESS
Let’s consider the parameters of the photon and
electron beams that significantly affect the implementa-
tion of the proposed photon and electron beams separa-
tion scheme.
The electron bremsstrahlung spectra were calculated
using the GEANT 4.9.2 program [17] for the real geom-
etry of the experiment, which took into account the spa-
tial and energy distribution of the electron beam. The
program code GEANT 4.9.2, PhysList G4LowEnergy
makes it possible to carry out calculations with correct
consideration of all physical processes for the case of an
amorphous target. Tantalum was used as the converter
material, which has a number of advantages over other
target materials [8].
The calculation was carried out on the assumption
that the size of the bending magnet pole is about
150 mm, and thus the minimum distance D from the
converter to the target is set to be 150 mm. The diameter
of the electron beam at the converter is 5 mm. The elec-
tron energy is 35 MeV. The target is a cylinder. The
target diameter d is variable from 5 mm to a limiting
value of ~1000 mm, the length L of the cylinder can
also change.
Fig. 4 shows the visualization of the calculation in
the GEANT 4.9.2 code. The red lines correspond to a
parallel beam of electrons incident on a target-converter
of different thicknesses (the cylinder in Fig. 4,a is
0.5 mm thick, in Fig. 4,b it is 8 mm). A circle with a
diameter d=60 mm corresponds to the end face of the
irradiated target. Green lines bremsstrahlung gamma
quanta. The red lines behind the converter are scattered
electrons. The figure illustrates that the thickness of the
converter determines both the number of electrons pass-
ing through the converter, which then fall on the target,
and the total number of quanta falling on the target.
a
b
Fig. 4. Visualization of the GEANT code 4.9.2. calculation:
100 electrons Ee=35 MeV, Ta=0.5 mm, d=60 mm (a);
100 electrons Ee=35 MeV, Ta=8 mm, d=60 mm (b)
ISSN 1562-6016. ВАНТ. 2021. № 6(136) 177
Fig. 5 shows the energy spectra of bremsstrahlung
gamma quanta for converters of different thicknesses
hitting a target 60 mm in diameter.
Fig. 6 shows the dependence of the number of pho-
tons with energies Eγ>18.8 MeV, >22 MeV, >25 MeV,
incident on a target 60 mm in diameter, depending on
the converter thickness. In addition, the
11
C yield was
estimated for these conditions using the cross section
calculated in the TALYS 1.95 code.
18 20 22 24 26 28 30 32 34 36
0
5000
10000
15000
20000
25000
30000
C
o
u
n
ts
E
, MeV
0.5mm
1 mm
1.5 mm
2 mm
2.5 mm
3 mm
4 mm
6 mm
8 mm
Fig. 5. Bremsstrahlung gamma spectra for different
thicknesses of Ta converter. D distance from
converter 150 mm. d target diameter 60 mm
0 2 4 6 8
200000
300000
400000
500000
600000
700000
800000
900000
1000000
t, mm
N
s
u
m
0
200000
400000
600000
800000
1000000
1200000
>18.8 MeV
>22 MeV
Y
ie
ld
1
1
C
,
a
rb
.u
n
.
>25 MeV
Yield
Fig. 6. The flux of photons with energies >18.8 MeV,
>22 MeV, >25 MeV, incident on a target 60 mm in di-
ameter, depending on the thickness of the converter.
11
C yield for these conditions using the section calculat-
ed in the TALYS 1.95 code
The change in the electron energy in calculations by
± 5 MeV had an insignificant effect on the value of the
optimal thickness of the converter in this geometry. The
figures show that the optimal converter thickness corre-
sponding to the maximum number of quanta and, ac-
cordingly, target activation is ~ 2 mm.
The situation is completely different when the num-
ber of electrons falling on the target is estimated. Fig. 7
shows the energy spectra of electrons passing through a
Ta converter with a thickness of 0.5 to 8 mm and hitting
a target with a diameter of 60 mm.
From Fig. 7 it can be seen that the number of elec-
trons significantly decreases with an increase in the
thickness of the Ta converter. The maximum electron
energy after passing through the converter also decreas-
es. However, an increase in the thickness of the con-
verter is accompanied not only by a decrease in the
number of bremsstrahlung quanta, but also by an in-
crease in the generation of photoneutrons, which makes
the use of thick converters problematic.
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
10
100
1000
10000
100000
1000000
N
e
,
c
o
u
n
ts
E
e
, MeV
0.5mm
1 mm
1.5 mm
2 mm
2.5 mm
3 mm
4 mm
6 mm
8 mm
Fig. 7. Energy distributions of electrons passing
through a Ta converter with a thickness of 0.5 to 8 mm
and hitting a target 60 mm in diameter. The distance
from the converter to the target is 150 mm, Ee=35 MeV
2.2. DEPENDENCE OF PHOTON
AND ELECTRON BEAMS ON THE TARGET
DIAMETER
Fig. 8 shows the energy spectra of electrons passed
through a Ta converter 2 mm thick and hitting a target
with different diameters d=20…1000 mm. Ee=35 MeV,
the diameter of the electron beam is 5 mm.
6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
0
20000
40000
60000
80000
100000
120000
C
o
u
n
ts
E
e
, MeV
20
30
40
60
80
100
120
160
200
1000
Fig. 8. Energy spectra of electrons passing through
a 2 mm thick Ta converter
18 20 22 24 26 28 30 32 34 36
0
5000
10000
15000
20000
25000
30000
35000
C
o
u
n
ts
E
, MeV
10
20
40
60
80
120
160
1000
Fig. 9. Energy spectra of bremsstrahlung gamma
quanta hitting a target with different diameters (mm)
ISSN 1562-6016. ВАНТ. 2021. № 6(136) 178
Fig. 9 shows the energy spectra of bremsstrahlung
gamma quanta falling on a target with different diame-
ters d=10…1000 mm, located at a distance of 150 mm
from the converter.
It can be seen that in the photon energy range
18…35 MeV, the flux on a target with a diameter of
40 mm differs from the flux on a target with a diameter
of 1000 mm by no more than 3 times.
2.3. ANGULAR DISTRIBUTION OF GAMMA
QUANTA AND ELECTRONS
The angular distribution of gamma quanta and elec-
trons after passing through a 2 mm Ta converter was
calculated using the angle formed by two legs equal to
the distance between the converter and the target
(D=150 mm) and the target radius (d/2, mm). Photons
and electrons were summed in the selected energy range
and then normalized to the sum of particles for a target
of infinite size. Therefore, the value 1 corresponds to
the number of electrons (photons) emitted from the con-
verter forward at all angles (front hemisphere). The val-
ue 0.5 corresponds to half of the total particle flux and
can be used as an estimate of the angular distribution
(half-width at half-height of the distribution).
The angular characteristics of the bremsstrahlung
beam are shown in Fig. 10. The angular half-width of
175 mrad corresponds to quanta with energies above the
reaction threshold.
Fig. 10. Angular characteristics of the bremsstrahlung
beam for three energy ranges
Fig. 11. Angular characteristics of the electron
beam passed through the converter
The angular characteristics of the electron beam
passed through the converter are shown in Fig. 11. An-
gular half-width is different for different energy ranges.
As follows from Fig. 10, in order to use half of the
maximum possible flux of photons with an energy of
more than 18.8 MeV for activation purposes, the diame-
ter of the target located at a distance of 150 mm from
the converter must be at least 53 mm. Moreover, as fol-
lows from Fig. 11, an electron beam with energies from
28 MeV to the maximum must be deflected in a magnet-
ic field by an angle equal to the sum of the electron
beam divergence angles 323 mrad (18.5º) and the pho-
ton beam divergence angle 173 mrad (10º).
3. SELECTION OF DEFLECTING MAGNET
PARAMETERS
Since an electromagnet deflecting a 30 MeV beam at
the required angle with a distance between the poles of
50 mm will be large and will consume a fairly large
amount of electricity, we will consider the possibility of
creating such a device based on permanent magnets.
The largest fields can be obtained using magnets based
on Sm-Co and Nd-Fe-B alloys [18, 19]. When creating
real structures, it is necessary to take into account that
when these alloys are irradiated with electrons, a change
in the magnetic properties of materials occurs, which
can lead to a change in the field in magnets [20 - 24]. In
Sm-Co alloys irradiated with electrons with energies
above 10 MeV, a large number of long-lived radioactive
isotopes are formed, which limits the use of this materi-
al for devices operating at energies above this limit [25].
The largest field value in the gap of a dipole magnet
can be obtained by placing a magnetic material (Nd-Fe-B
alloy) on the magnet poles. However, the requirement
for long-term field stability in the magnet gap results in
the magnet design shown in Fig. 12. Magnetic blocks
made of Nd-Fe-B alloy are as far as possible from the
electron beam and are shielded by rather thick structural
elements.
The prototype of this magnet was manufactured and
the measured field in the gap is equal to 0.43 T. After
completing the design modification, a magnetic field of
0.51 T was obtained in the gap [18].
Fig. 12. Cross section of magnet
The presented results of the development of a mag-
net for the EPOS accelerator allow us to assert that the
manufacture of a magnet with a field of 0.5 T in a gap
of 25 mm with a pole size of 15060 mm, which is nec-
ISSN 1562-6016. ВАНТ. 2021. № 6(136) 179
essary to separate the photon and electron beams, is a
realizable task.
Fig. 13 shows an idealized picture of photon and
electron beams for the divergences shown in Fig. 10 and
Fig. 11. Blue and gray lines are the boundaries of the
photon and electron beams, red are the trajectories of
electrons with an energy of 30 MeV in a magnet with a
field of 0.5 T (the radius of the trajectory is 200 mm).
The left boundary of the electron trajectories crosses
the boundary of the magnet at a distance of 9.36 mm
from the axis of the photon beam. The beam of photons
will be collimated vertically by the poles of the magnet.
The electron beam will be partially absorbed in the ma-
terial of the poles, electrons emitted from the magnet
in a special dump.
Fig. 13. Particle trajectories in a magnet
4. CREATION OF ISOTOPE
11
C
IN A GLUCOSE TARGET
To assess the activity of irradiated glucose
(C6H12O6H2O, 198.16 g/mol, density 1.562 g/cm
3
),
placed in a homogeneous photon flux, the following
formula was used:
A(t) = NC Fσ(1-exp(-λTirr)),
where NC is the number of carbon atoms in the target, F
is the integral flux of bremsstrahlung quanta incident on
the target, σ is the average activation cross section, λ is
the decay constant, and Tirr is the irradiation time. The
flux of quanta and the activation cross section were cal-
culated using the codes GEANT 4.9.2 and TALYS 1.95.
Work [8] shows that
11
C isotope activity of
440 MBq was obtained in a glucose C6H12O6H2O sam-
ple weighing 4 g on LU-40 electron accelerator with
electron beam energy 36 MeV, electron beam current
6 μA using 4 mm thick tantalum converter and irradia-
tion time of 60 min.
The calculation carried out in the geometry of the
experiment [8] gives an activity of 140 MBq/g, which is
in agreement with the experimental data.
We have calculated activities for 2 mm thick tanta-
lum converter, electron energy of 35 MeV, converter-
target distance D = 150 mm and different target diame-
ters d = 12, 20, and 30 mm. The target activity for
d = 30 mm was 10 MBq/g. When the target diameter
decreases to d = 20 mm, the activity is 12 MBq/g, and
when d = 12 mm, the activity is 17 MBq/g. Thus, under
the proposed conditions, even at low electron beam cur-
rents (6 μA) in a volume of 10 ml (15.6 g), activity of
up to 265 MBq can be obtained.
CONCLUSIONS
The parameters of the bremsstrahlung and the elec-
tron beam scattered in the converter was investigated
and optimized. It is shown that a permanent magnet
fabricated using an Nd-Fe-B alloy will make it possible
to spatially separate the photon and electronic compo-
nents of the bremsstrahlung of an electron beam with an
energy of 35 MeV. The photon beam thus obtained,
purified from electrons, allows the production of the
pharmaceutical product "Glucose
11
C" with activity of
~ 500 MBq/g and electron beam current of 200 μA.
REFERENCES
1. Kristen M. Waterstram-Rich, David Gilmore. Nu-
clear Medicine and PET/CT. E-Book: Technology
and Techniques, eighth edition. 2017, 696 p.
2. Radioisotopes in Medicine, https://www.world-
nuclear.org/information-library/non-power-nuclear-
applications/radioisotopes-research/radioisotopes-in-
medicine.aspx, Updated May 2020.
3. F.T. Tárkányi, A.V. Ignatyuk, et al. Recommended
nuclear data for medical radioisotope production di-
agnostic positron emitters // Journal of
Radioanalytical and Nuclear Chemistry. 2019,
v. 319, p. 533-666.
4. A.P. Chernyaeva, P.Yu. Borschegovskaya,
A.A. Nikolaeva, S.M. Varzar, V.T. Samosadniy,
G.A. Krusanov. Radiation technology in medicine:
Part 2. Using isotopes in nuclear medicine // Mos-
cow University Physics Bulletin. 2016, v. 71, p. 339-
348.
5. Medical Radioisotopes Production, https://www-
nds.iaea.org/relnsd/vcharthtml/MEDVChart.html
6. V. Voronko, R. Dronov, B. Shramenko,
I. Beloziorov, I. Girka. Possibilities of obtaining ra-
diopharmaceuticals “Glucose,
11
C” and “Etha-
nol,
11
C” for pet tomography on accelerators of NSC
KIPT // Ukrainian Radiological Journal. 2019,
t. ХХVII, v. 1.
7. A.M. Dovbnya, B.I. Shramenko. Method of obtain-
ing radiopharmaceutical "Glucose,
11
C" for PET to-
mography: Patent of Ukraine № 28463 / 3A / 18
from 27.11.2018.
8. А.N. Dovbnya, R.N. Dronov, et al. Production of
11
C and
18
F isotopes. Getting the “Glucose,
11
C” ra-
diopharmaceutical // East European Journal of
Physics (EEJP). 2018, v. 5, № 4, p. 77-86.
9. B.C. Cook, J.E.E. Baglin, J.N. Bradford, and
J.E. Griffin. C
12
(γ,n)C
11
Cross Section to 65 MeV //
Phys. Rev. 1966, v. 143, p. 724-729.
10. S.C. Fultz, J.T. Caldwell, B. Berman, R. Bralett and
R. Harvey. Photoneutron Cross Sections for C
12
and
Al
27
// Phys. Rev. 1966, v. 143, p. 790-796.
11. A.V. Varlamov, V.V. Varlamov, D.S. Rudenko,
M.E. Stepanov // Atlas of Giant Dipole Resonances.
January 1999, 321 p.
12. Ahmed Abdul-Razzaq Selman. Systematics of
(Gamma-N) Reaction with Light Nuclei-Part I // In-
ternational Journal of Scientific and Engineering
Research, December-2013, v. 4, issue 12, p. 2021-
2028.
ISSN 1562-6016. ВАНТ. 2021. № 6(136) 180
13. A. Koning and D. Rochman, Nucl. Data Sheets 113
(2012) 2841, TALYS – based evaluated nuclear data
library.
https://tendl.web.psi.ch/tendl2019/tendl2019.html.
14. L.M. Young. Photoneutron Cross Sections and
Spectra from Monoenergetic Photons on Yttrium,
Praseodimium, Lead, and Bismuth in the Giant Res-
onance. Ph.D. Thesis, University of Illinois, USA,
1972.
15. L.S. Cardman. Photon Tagging. Present Practice
and Future Prospects: Preprint P/83/12/168, Uni-
versity of Illinois at Urbana-Champaign, 1983.
16. D. Burdeinyi, J. Brudvik, V. Ganenko, et al. Meas-
urement of (γ, p) reactions with ∆E-E telescope at
MAX-LAB facility // Problems of Atomic Science
and Technology. Series “Nuclear Physics Investiga-
tions”. 2015, № 3, p. 49-64.
17. S. Agostinelli et al. Geant4 a simulation toolkit //
Nuclear Instruments and Methods in Physics Re-
search Section A: Accelerators, Spectrometers, De-
tectors and Associated Equipment. 1 July 2003,
v. 506, issue 3, p. 250-303.
18. https://en.wikipedia.org/wiki/Neodymium_magnet.
19. https://en.wikipedia.org/wiki/Samarium%E2%80%9
3cobalt_magnet.
20. V.A. Bovda, A.M. Bovda, I.S. Guk, A.N. Dovdnya,
A.Yu. Zelinsky, S.G. Kononenko, V.N. Lyashchenko,
A.O. Mytsykov, L.V. Onishchenko. Dipole magnets
for the technological electron accelerators // Pro-
ceedings of IPAC2018. Vancouver, BC, Canada,
THPAL043.
21. А.М. Bovda et al. Magnetic properties of Sm2Co17
magnets under 10 MeV electron beam // Problems of
Atomic Science and Technology. Series “Nuclear
Physics Investigations”. 2017, № 6, p. 162-166.
22. V.A. Bovda et al. Magnetic field losses in Nd-Fe-B
magnets under 10mev electron irradiation // Prob-
lems of Atomic Science and Technology. Series
“Nuclear Physics Investigations”. 2017, № 3, p. 90-
94.
23. N. Simos et al. Demagnetization of Nd2Fe14B,
Pr2Fe14B, and Sm2Co17 Permanent Magnets in Spall-
ation Irradiation Fields // IEEE Transactions on
Magnetics. 2018, v. 54, p. 1-10.
24. V.A. Bovda et al. Magnetic properties of Nd-Fe-B
magnets under electron beam irradiation with the
energy 23 MeV // Problems of Atomic Science and
Technology. 2020, № 3, p. 23-27.
25. А.М. Bovda, I.S. Guk, A.N. Dovbnya, S.G. Kononenko,
V.N. Lyashchenko, A.O. Mytsykov. Dipole magnet
with a constant field for the accelerator “EPOS” //
Problems of Atomic Science and Technology. Series
“Nuclear Physics Investigations”. 2015, № 6, p. 13-
17.
Article received 04.10.2021
ОПТИМИЗАЦИЯ НАРАБОТКИ ФАРМПРЕПАРАТА “ГЛЮКОЗА
11
С”
НА ПУЧКЕ УСКОРИТЕЛЯ ЭЛЕКТРОНОВ
И.С. Гук, Р.Н. Дронов, А.С. Деев, Б.И. Шраменко
Рассмотрен процесс получения фармпрепарата “Глюкоза
11
С” с помощью фотоядерной реакции
12
C(γ, n)
11
C.
Исследованы и оптимизированы параметры тормозного излучения и рассеянного в конверторе электронного
пучка. Для очистки фотонного пучка от электронов предлагается использовать магнит с постоянным полем.
Предложена конструкция магнита, позволяющая получить поле 0,5 Тл в зазоре 25 мм. Проведена оценка
наработки изотопа
11
С в мишени из глюкозы.
ОПТИМІЗАЦІЯ НАПРАЦЮВАННЯ ФАРМПРЕПАРАТУ “ГЛЮКОЗА
11
С”
НА ПУЧКУ ПРИСКОРЮВАЧА ЕЛЕКТРОНІВ
І.С. Гук, Р.М. Дронов, О.С. Деєв, Б.І. Шраменко
Розглянуто процес одержання фармпрепарату “Глюкоза
11
С” за допомогою фотоядерної реакції
12
C(γ, n)
11
C.
Досліджені і оптимізовані параметри гальмового випромінювання і розсіяного в конверторі електронного
пучка. Для очищення фотонного пучка від електронів пропонується використовувати магніт з постійним
полем. Запропоновано конструкцію магніту, що дозволяє одержати поле 0,5 Тл у зазорі 25 мм. Проведено
оцінку напрацювання ізотопу
11
С у мішені з глюкози.
|