Application of a scintillation gamma spectrometer for determination of radon content in water

Experimental studies have been carried out to determine the sensitivity of a mobile scintillation gamma-spectrometer to radon-222 in mineral water samples for the selected measurement geometry and the minimum measurable activity of radon-222 in such samples. The measurement results of radon content...

Full description

Saved in:
Bibliographic Details
Published in:Вопросы атомной науки и техники
Date:2021
Main Authors: Hakimov, D.А., Zhuk, I.V., Kievets, M.K.
Format: Article
Language:English
Published: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2021
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/195807
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Application of a scintillation gamma spectrometer for determination of radon content in water / D.А. Hakimov, I.V. Zhuk, M.K. Kievets // Problems of Atomic Science and Technology. — 2021. — № 6. — С. 187-190. — Бібліогр.: 7 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-195807
record_format dspace
spelling Hakimov, D.А.
Zhuk, I.V.
Kievets, M.K.
2023-12-07T10:37:40Z
2023-12-07T10:37:40Z
2021
Application of a scintillation gamma spectrometer for determination of radon content in water / D.А. Hakimov, I.V. Zhuk, M.K. Kievets // Problems of Atomic Science and Technology. — 2021. — № 6. — С. 187-190. — Бібліогр.: 7 назв. — англ.
1562-6016
PACS: 87.55. N−, 29.30.Kv
DOI: https://doi.org/10.46813/2021-136-187
https://nasplib.isofts.kiev.ua/handle/123456789/195807
Experimental studies have been carried out to determine the sensitivity of a mobile scintillation gamma-spectrometer to radon-222 in mineral water samples for the selected measurement geometry and the minimum measurable activity of radon-222 in such samples. The measurement results of radon content in mineral water samples obtained using such gamma-spectrometer are presented too.
Проведено експериментальні дослідження з визначення чутливості мобільного сцинтиляційного гамма-спектрометра до радону-222 у пробах мінеральної води для обраної геометрії вимірювань і мінімальної вимірюваної активності радону-222 у таких пробах. Наведено результати вимірювання змісту радону в пробах мінеральної води, які отримані за допомогою такого гамма-спектрометра.
Проведены экспериментальные исследования по определению чувствительности мобильного сцинтилляционного гамма-спектрометра к радону-222 в пробах минеральной воды для выбранной геометрии измерений и минимальной измеряемой активности радона-222 в таких пробах. Приведены результаты измерения содержания радона в пробах минеральной воды, полученные с помощью такого гамма-спектрометра.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Application of nuclear methods
Application of a scintillation gamma spectrometer for determination of radon content in water
Застосування сцинтиляційного гамма-спектрометра для визначення змісту радону у воді
Применение сцинтилляционного гамма-спектрометра для определения содержания радона в воде
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Application of a scintillation gamma spectrometer for determination of radon content in water
spellingShingle Application of a scintillation gamma spectrometer for determination of radon content in water
Hakimov, D.А.
Zhuk, I.V.
Kievets, M.K.
Application of nuclear methods
title_short Application of a scintillation gamma spectrometer for determination of radon content in water
title_full Application of a scintillation gamma spectrometer for determination of radon content in water
title_fullStr Application of a scintillation gamma spectrometer for determination of radon content in water
title_full_unstemmed Application of a scintillation gamma spectrometer for determination of radon content in water
title_sort application of a scintillation gamma spectrometer for determination of radon content in water
author Hakimov, D.А.
Zhuk, I.V.
Kievets, M.K.
author_facet Hakimov, D.А.
Zhuk, I.V.
Kievets, M.K.
topic Application of nuclear methods
topic_facet Application of nuclear methods
publishDate 2021
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Застосування сцинтиляційного гамма-спектрометра для визначення змісту радону у воді
Применение сцинтилляционного гамма-спектрометра для определения содержания радона в воде
description Experimental studies have been carried out to determine the sensitivity of a mobile scintillation gamma-spectrometer to radon-222 in mineral water samples for the selected measurement geometry and the minimum measurable activity of radon-222 in such samples. The measurement results of radon content in mineral water samples obtained using such gamma-spectrometer are presented too. Проведено експериментальні дослідження з визначення чутливості мобільного сцинтиляційного гамма-спектрометра до радону-222 у пробах мінеральної води для обраної геометрії вимірювань і мінімальної вимірюваної активності радону-222 у таких пробах. Наведено результати вимірювання змісту радону в пробах мінеральної води, які отримані за допомогою такого гамма-спектрометра. Проведены экспериментальные исследования по определению чувствительности мобильного сцинтилляционного гамма-спектрометра к радону-222 в пробах минеральной воды для выбранной геометрии измерений и минимальной измеряемой активности радона-222 в таких пробах. Приведены результаты измерения содержания радона в пробах минеральной воды, полученные с помощью такого гамма-спектрометра.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/195807
citation_txt Application of a scintillation gamma spectrometer for determination of radon content in water / D.А. Hakimov, I.V. Zhuk, M.K. Kievets // Problems of Atomic Science and Technology. — 2021. — № 6. — С. 187-190. — Бібліогр.: 7 назв. — англ.
work_keys_str_mv AT hakimovda applicationofascintillationgammaspectrometerfordeterminationofradoncontentinwater
AT zhukiv applicationofascintillationgammaspectrometerfordeterminationofradoncontentinwater
AT kievetsmk applicationofascintillationgammaspectrometerfordeterminationofradoncontentinwater
AT hakimovda zastosuvannâscintilâcíinogogammaspektrometradlâviznačennâzmísturadonuuvodí
AT zhukiv zastosuvannâscintilâcíinogogammaspektrometradlâviznačennâzmísturadonuuvodí
AT kievetsmk zastosuvannâscintilâcíinogogammaspektrometradlâviznačennâzmísturadonuuvodí
AT hakimovda primeneniescintillâcionnogogammaspektrometradlâopredeleniâsoderžaniâradonavvode
AT zhukiv primeneniescintillâcionnogogammaspektrometradlâopredeleniâsoderžaniâradonavvode
AT kievetsmk primeneniescintillâcionnogogammaspektrometradlâopredeleniâsoderžaniâradonavvode
first_indexed 2025-11-24T05:09:03Z
last_indexed 2025-11-24T05:09:03Z
_version_ 1850842346892034048
fulltext ISSN 1562-6016. ВАНТ. 2021. № 6(136) 187 https://doi.org/10.46813/2021-136-187 APPLICATION OF A SCINTILLATION GAMMA-SPECTROMETER FOR DETERMINATION OF RADON CONTENT IN WATER D.А. Hakimov, I.V. Zhuk, M.K. Kievets State Scientific Institution “The Joint Institute for Power and Nuclear Research – Sosny” NAS of Belarus, Minsk, Belarus E-mail: hakimov.d@sosny.bas-net.by Experimental studies have been carried out to determine the sensitivity of a mobile scintillation gamma- spectrometer to radon-222 in mineral water samples for the selected measurement geometry and the minimum measurable activity of radon-222 in such samples. The measurement results of radon content in mineral water sam- ples obtained using such gamma-spectrometer are presented too. PACS: 87.55. N−, 29.30.Kv INTRODUCTION Natural concentrations of uranium and, consequent- ly, radium-226 in soils and rocks are sources of radon- 222. Radon can also be present in water as a result of its transfer from soils and rocks. In many countries, drink- ing water comes from underground sources such as springs, wells, and artesian wells. As a rule, the concen- tration of radon in water that comes from such sources is higher than in water from surface sources, like water reservoirs, lakes, rivers. Groundwater, the main thera- peutic factor of which is radon, is very popular all over the world [1]. Radon is a radioactive monoatomic inert gas, the heaviest of the noble gases: its density at 0°C is 9.81 kg/m 3 , which is almost 7.6 times more than the density of air. The solubility of radon in water is 460 ml/l. All radon isotopes are radioactive and have short half-lives: the half-life of 222 Rn is 3.82 days, 220 Rn (thoron) is 55.6 s, and 219 Rn is 3.96 s. Due to very short half-lives of radon isotopes 219 Rn and 220 Rn, the mineral water supplied for the procedures in sanatoriums con- tains only the 222nd isotope of radon  222 Rn [2]. Radon baths can be prepared both artificially from radium-226, which is available in the form of dissolved salts, or by using natural mineral radon water extracted from drilled wells. The radioactive radon gas is not de- tected by standard methods. If suspicions of radon pres- ence are not unfounded, measurements can only be car- ried out using special equipment [3]. The purpose of the work was to determine the sensi- tivity of a scintillation gamma-spectrometer MKS- AT6101C manufactured by SPE “ATOMTEX”, Minsk [4] to Rn-222 radionuclide for the selected measurement geometry, to assess the need for usage of shielding in order to reduce background radiation when measuring specific activity of this radionuclide in water samples, as well as to determine the lowest threshold of the min- imum measurable activity. Determination of the sensi- tivity parameter will form the basis for activity calibra- tion of this gamma-spectrometer for measuring radon- 222 content in water. 1. MATERIALS AND METHODS As a measuring container for water samples, a glass jar of 0.5 l volume with a metal lid, which is closed us- ing a seaming machine, was used. The choice of opti- mal containers and methods of their sealing is described in [1]. Collected water samples with various radon-222 content were placed in these measuring containers. As a gamma-ray detector, a scintillation detector with a NaI(Tl)-crystal, having 63×63 mm in size, which is part of a MKS-AT6101C gamma-spectrometer, was used. The processing of gamma-spectra was carried out using applied software “ATAS” (SPE “ATOMTEX”) [5]. In order to reduce the external background noise, lead shielding was additionally manufactured, and a special tripod was used to fix the detector in a vertical position. During measurements, lead shieldings with different thicknesses (50 and 15 mm) were used. Water samples were measured vertically with a metal lid facing down directly on the end surface of the detector. Measurement of radon-222 in water samples was carried out using its daughter decay product – Bi-214, which is in equilibrium with the parent radionuclide, with the registration of its photopeak with gamma-ray energy of 609.3 keV and a quantum yield of 0.461 photons/decay. The sensitivity S, (imp•kg)/(s•Bq) of the MKS- AT6101C gamma-spectrometer to water samples con- taining radon-222 was calculated according to [6] using the formula (1): УА ф NN S   , (1) where N – the integral count rate in the energy range from 510 to 720 keV when measuring a water sample containing radon-222, counts/s; Nф – the integral count rate in the energy range from 510 to 720 keV when measuring a background water sample, counts/s; УА – the specific activity of radon-222 in a water sample at the time of measurement, Bq/kg. Calculation of the specific activity of radon-222 in a sample was carried out for a MKS-AT6101C gamma-spectrometer according to the formula:   t sample Cs Rn st sample е m n A n RnУА                      137 222 222 , (2) where nsample – the count rate in the photopeak at energy of 609.3 keV for a given sample, counts/s; msample – the weight of a given sample, kg; st A n       – the coefficient ISSN 1562-6016. ВАНТ. 2021. № 6(136) 188 obtained using a reference radioactive solution contain- ing Cs-137 radionuclide; λ – the decay constant of ra- don-222, equal to 0.181 days-1; t – the sample aging time, days; tе – the correction coefficient due to the decay of radon-222; 222 137 Rn Cs         – the ratio of gamma-ray yields for energies 609.3 and 661.6 keV (46.1 and 85.1 %, respectively). Fig. 1,a,b show gamma-spectra for mineral radon water samples measured using a gamma-spectrometer based on a semiconductor Ge(Li)-detector DGDK-80B and a gamma-spectrometer MKS-AT6101C, respective- ly. Fig. 1. Gamma-spectrum of a sample of mineral radon water measured using a gamma-spectrometer based on a semiconductor Ge(Li)-detector DGDK-80B. The concentration of Rn-222 in the sample is 1.7 kBq/kg, measurement time – 1200 s (red arrow points on the peak with the energy of 609.3 keV) (a); gamma-spectrum of a sample of mineral radon water measured using a MKS-AT6101C/gamma-spectrometer with NaI(Tl)-scintillation detector. The concentration of Rn-222 in the sample is 1.7 kBq/kg, the measurement time is 1200 s (red arrow points on the peak with the energy of 609.3 keV) (b) The mean value of the sensitivity of a MKS- AT6101C gamma-spectrometer to water samples con- taining radon-222 for the selected geometry (0.5 l glass jar), determined by the formula (1), was ((0.0047± 10)%) counts∙kg/s∙Bq. Minimum measurable activity (MMA) is the small- est activity of a radionuclide in a measured sample, which with the help of a given measuring installation, using given method of analysis of instrumental radiation energy spectrum can be determined for a defined time so that the uncertainty of type A due to the count rate in the photopeak for the line with the energy of the region of interest doesn’t exceed a specified value. Depending on the conditions and parameters of the measurement, the MMA is essentially the lower dynamic level of the activity measurement range, for which the requirements for the permissible uncertainty of type A must be met. The MMA value for a given radionuclide under con- stant background conditions with expanded measure- ment uncertainty (k = 2) was calculated according to [7] using the formula (3): ii ItE N tA     0 ' 0min )( 200 )( , (3) where N  – the number of counts registred in the photopeak, counts/s; )( iE – the value of the effi- ciency of gamma-rays registration in the photopeak of the given energy Eγi for a given radionuclide and for the selected measurement geometry, Bqs -1 ; Iγi – the yield of gamma-rays ith energy Eγi for a given radionuclide, %; t0 – the measurement time, s. In order to determine the MMA value distilled wa- ter, samples in 0.5 l glass jar were measured using a MKS-AT6101C gamma-spectrometer during 600…7200 s in 3 measurement geometry options: 1st – with 50 mm thick lead shielding, 2nd – with 15 mm thick lead shielding, 3rd – without lead shielding. The measuring scheme for the water samples is shown in Fig. 2, and the MMA values are presented in Table 1. Fig. 2. Measuring scheme for water samples for the determination of the MMV value: a  without lead shielding and b  with lead shielding (50 and 15 mm of thick): 1  distilled water in a glass jar with the volume of 0.5 l; 2  detector of the scintillation gamma-spectrometer MKS-AT6101C; 3  lead From Table 1 one can draw a conclusion that the us- age of lead shielding leads to the decrease of MMA val- ues of radon-222 for the MKS-AT6101С gamma- spectrometer in water samples for the selected geometry (0.5 l glass jar) by 1.8…2.0 times when the thickness of the field shielding is equal to 50 mm and by 1.4…1.5 when it is equal to 15 mm. a b b a ISSN 1562-6016. ВАНТ. 2021. № 6(136) 189 Table 1 MMA values of radon-222 for the MKS-AT6101С gamma-spectrometer in water samples for the selected geometry (0.5 l glass jar) Measurement geometry MMA, Bq Measurement time, s 600 900 1200 1800 2700 3600 7200 with lead shielding (50 mm) 290 190 140 90 60 50 25 with lead shielding (15 mm) 370 250 190 120 80 60 30 without lead shielding 530 350 260 180 120 90 50 2. RESULTS AND DISCUSSION Radon water samples, when placed in every investi- gated container, were measured repeatedly at the specif- ic intervals of time in the term of 19 days, and the spe- cific activity of radon-222 at the time of measurement was determined. Logarithmic dependence of the meas- ured activity to the time, elapsed since sampling, as well as linear approximation of this dependence is shown in Fig. 3. Fig. 3. Logarithmic dependence of measured specific activity of radon-222 of the sample on sample aging time, as well as its linear approximation As it can be seen from Fig. 3, the data of the specific activity of radon-222 in the measured water sample is well approximated by a straight line, and the slope of this straight line (the first factor in the approximation equation) is close to the constant decay of radon-222 (0.181 day-1), which indicates the absence of radon leakage from a 0.5 l glass jar with a metal lid In order to confirm the correctness of the results ob- tained for the determination of radon-222 concentration in mineral radon water samples using a MKS-AT6101C gamma-spectrometer interlaboratory comparisons were performed. Measurements of 2 samples of mineral ra- don water for the selected geometry (0.5 l glass jar) were carried out in 5 various laboratories of 4 organiza- tions in Belarus. The results of the measurements of the samples in the laboratories of the following organizations in Bela- rus are presented in Table 2: 1. Educational institution “International Sakharov Environmental Institute of Belarusian State University”, Laboratory of nuclear spectrometry of the Chair of Nu- clear and Radiation Safety (Lab. № 1); type of measur- ing instrument (MI): a gamma-spectrometer based on a coaxial semiconductor detector GCD-100210 “BSI” and a digital multichannel analyzer (MCA) “HEXAGON”. 2. Scientific institution “JIPNR-Sosny”, Laboratory of experimental nuclear physics research and expert analyses of radioactive materials (Lab. № 2a); MI: a gamma-spectrometer based on a coaxial semiconductor Ge(Li)-detector DGDK-80B. 3. Scientific institution “JIPNR-Sosny”, Laboratory of experimental nuclear physics Research and expert analyses of radioactive materials (Lab. № 2b); MI: a scintillation gamma spectrometer MKS-AT6101C. 4. Scientific institution “JIPNR-Sosny”, Radiation safety department. (Lab. № 3); MI: a gamma spectrome- ter based on a coaxial semiconductor detector GEM- 30185 “ORTEC” and MCA “Davidson” 2056-4k, № 27-P49LA. 5. Joint Belarusian-Russian CJSC “Isotope Technol- ogies” (Lab. № 4); MI: a gamma spectrometer based on a coaxial semiconductor detector GMX40P4-76 “ORTEC”. 6. State institution “Republican center for hydrome- teorology, control of radioactive contamination and en- vironmental monitoring” (Lab № 5): MI: a gamma- spectrometer based on a coaxial semiconductor detector GEM-S8530 “ORTEC”. Table 2 Measurement results of water samples containing radon-222 in various laboratories of Belarusian organizations Sample number Specific activity of radon-222, Bq/kg Lab. № 1 Lab. № 2a Lab. № 2b Lab. № 3 Lab. № 4 Lab. № 5 Mean value 7 770±230 705±140 715±140 790±160 730±150 720±140 738 24 1040±305 870±170 840±170 890±180 870±170 850±170 893 As a result of the carried out research, experimental data was obtained, and the value of the sensitivity of a mobile scintillation gamma-spectrometer MKS- AT6101C to radon-222 in mineral water samples for the ISSN 1562-6016. ВАНТ. 2021. № 6(136) 190 selected measurement geometry was determined. Values of the minimum measurable activity of radon-222 in such samples were determined depending on the meas- urement time. The correctness of the results of radon- 222 concentration determination in mineral radon water samples obtained using this gamma spectrometer was confirmed during the interlaboratory comparison. There are several sanatoriums in Belarus where ei- ther natural mineral radon water extracted from wells or artificially prepared radon water is used for therapeutic purposes. The laboratory of experimental nuclear phys- ics research and expert analyses of radioactive materials of the scientific institution "JIPNR-Sosny" is accredited to carry out analyzes for the determination of radon-222 concentration, including in water, and since 2010, such analyzes have been regularly carried out using a gamma spectrometer based on a coaxial semiconductor detector [1, 2]. All collected water samples (there may be about hundreds of them) must be delivered to the scientific institution "JIPNR-Sosny" where they are measured at laboratory conditions. The measurement technique for the determination of radon-222 concentration in water has been developed using a mobile gamma-spectrometer MKS-AT6101C. It makes it possible to determine the specific activity of radon-222 in water samples in the range of 50…10000 Bq/kg with expanded uncertainty (k = 2) not exceeding 20%. The use of a mobile scintillation gamma spectrome- ter MKS-AT6101C for the determination of radon-222 concentration in water samples will allow to control the process of preparation of radon baths from radon waters extracted both from wells, and, especially, from radon waters obtained directly at sanatoriums’ locations by using radon generators based on radium-226 salts prepa- ration. It makes it possible to be more precise when de- termining radiation doses received by patients when taking radon baths, and consequently, it will improve the quality of their treatment. Mobility of the MKS-AT6101C scintillation gam- ma-spectrometer makes it possible to measure radon content in drinking water in wells directly at settlements where they are located, without transporting samples to specialized laboratories if such spectrometers are equipped with portable shielding. REFERENCES 1. I.V. Zhuk et al. Measurements of radon concentra- tion in mineral radon water samples in the wells of sanatorium “RADON” // Proceedings of XXVII In- ternational Seminar Nonlinear Phenomena in Com- plex Systems. Minsk, 19-22 May. 2020, p. 47-55. 2. M.K. Kievets et al. Research of radon content in underground mineral water of Spas of Belarus // Proceedings of XXVII International Workshop “Nonlinear Phenomena in Complex Systems”. Minsk, 25-27 Oct. 2016, p. 238-245. 3. Balneo-mud Clinic “Pyatigorsk”. Access mode: http://bfo.kurortkmv. ru/radon_n.html. 4. SPE “ATOMTEX”: Spectrometers MKSAT6101C, МКС-АТ6101CM. -Access mode: https://atomtex. com/ru/spektrometry-spektrometricheskie-radiacionnye- skanery/spektrometry-mks-at6101s-mks-at6101sm. 5. SPE “ATOMTEX”: Applied software “ATAS”/ “ATAS Lite”. Access mode: http://old.atomtex.com/ ru/software/prikladnoe-po-atas-atas-lite. 6. State Standard 17209-89. Tools for measuring the volume activity of radionuclides in liquid. General technical requirements and testing methods. 7. Standard of Belarus 8067-2017. System for ensuring the uniformity of measurements of the Republic of Belarus. Gamma-ray energy spectrometers. Verifica- tion method. Article received 05.10.2021 ПРИМЕНЕНИЕ СЦИНТИЛЛЯЦИОННОГО ГАММА-СПЕКТРОМЕТРА ДЛЯ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ РАДОНА В ВОДЕ Д.А. Хакимов, И.В. Жук, М.К. Киевец Проведены экспериментальные исследования по определению чувствительности мобильного сцинтилля- ционного гамма-спектрометра к радону-222 в пробах минеральной воды для выбранной геометрии измере- ний и минимальной измеряемой активности радона-222 в таких пробах. Приведены результаты измерения содержания радона в пробах минеральной воды, полученные с помощью такого гамма-спектрометра. ЗАСТОСУВАННЯ СЦИНТИЛЯЦІЙНОГО ГАММА-СПЕКТРОМЕТРА ДЛЯ ВИЗНАЧЕННЯ ЗМІСТУ РАДОНУ У ВОДІ Д.А. Хакимов, І.В. Жук, М.К. Києвец Проведено експериментальні дослідження з визначення чутливості мобільного сцинтиляційного гамма- спектрометра до радону-222 у пробах мінеральної води для обраної геометрії вимірювань і мінімальної ви- мірюваної активності радону-222 у таких пробах. Наведено результати вимірювання змісту радону в пробах мінеральної води, які отримані за допомогою такого гамма-спектрометра.