To the issue of the ultimate purification of metals

The paper considers issues related to the ultimate content of impurity elements in metals in the processes of their refining by evaporation and distillation in vacuum, zone recrystallization and electromigration. It is shown that at all refining methods, with an increase in the number of refining cy...

Full description

Saved in:
Bibliographic Details
Date:2022
Main Authors: Kovtun, G.P., Solopikhin, D.A., Shcherban, A.P.
Format: Article
Language:English
Published: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2022
Series:Вопросы атомной науки и техники
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/195822
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:To the issue of the ultimate purification of metals / G.P. Kovtun, D.A. Solopikhin, A.P. Shcherban // Problems of Atomic Science and Technology. — 2022. — № 1. — С. 3-5. — Бібліогр.: 9 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-195822
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-1958222025-02-09T21:21:31Z To the issue of the ultimate purification of metals До питання про гранічне очищення металів К вопросу о предельной очистке металлов Kovtun, G.P. Solopikhin, D.A. Shcherban, A.P. Pure materials and vacuum technologies The paper considers issues related to the ultimate content of impurity elements in metals in the processes of their refining by evaporation and distillation in vacuum, zone recrystallization and electromigration. It is shown that at all refining methods, with an increase in the number of refining cycles and the duration of the process, a “saturation effect” arises, associated with the achievement of the ultimate concentrations of impurity elements in refined metals. The reasons for the impossibility to produce absolutely pure metals have been discussed. Розглянуті питання, пов'язані з граничним вмістом домішкових елементів у металах у процесах їх рафінування, методами випаровування та дистиляції у вакуумі, зонної перекристалізації та електроперенесення. Показано, що при всіх методах рафінування зі збільшенням числа циклів рафінування та тривалості процесу виникає «ефект насичення», пов'язаний з досягненням граничних концентрацій домішкових елементів у рафінованих металах. Обговорено причини неможливості одержання абсолютно чистих металів. Рассмотрены вопросы, связанные с предельным содержанием примесных элементов в металлах в процессах их рафинирования, методами испарения и дистилляции в вакууме, зонной перекристаллизации и электропереноса. Показано, что при всех методах рафинирования с увеличением числа циклов рафинирования и длительности процесса возникает «эффект насыщения», связанный с достижением предельных концентраций примесных элементов в рафинированных металлах. Обсуждены причины невозможности получения абсолютно чистых металлов. 2022 Article To the issue of the ultimate purification of metals / G.P. Kovtun, D.A. Solopikhin, A.P. Shcherban // Problems of Atomic Science and Technology. — 2022. — № 1. — С. 3-5. — Бібліогр.: 9 назв. — англ. 1562-6016 DOI: https://doi.org/10.46813/2022-137-003 https://nasplib.isofts.kiev.ua/handle/123456789/195822 546.47:669.054 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Pure materials and vacuum technologies
Pure materials and vacuum technologies
spellingShingle Pure materials and vacuum technologies
Pure materials and vacuum technologies
Kovtun, G.P.
Solopikhin, D.A.
Shcherban, A.P.
To the issue of the ultimate purification of metals
Вопросы атомной науки и техники
description The paper considers issues related to the ultimate content of impurity elements in metals in the processes of their refining by evaporation and distillation in vacuum, zone recrystallization and electromigration. It is shown that at all refining methods, with an increase in the number of refining cycles and the duration of the process, a “saturation effect” arises, associated with the achievement of the ultimate concentrations of impurity elements in refined metals. The reasons for the impossibility to produce absolutely pure metals have been discussed.
format Article
author Kovtun, G.P.
Solopikhin, D.A.
Shcherban, A.P.
author_facet Kovtun, G.P.
Solopikhin, D.A.
Shcherban, A.P.
author_sort Kovtun, G.P.
title To the issue of the ultimate purification of metals
title_short To the issue of the ultimate purification of metals
title_full To the issue of the ultimate purification of metals
title_fullStr To the issue of the ultimate purification of metals
title_full_unstemmed To the issue of the ultimate purification of metals
title_sort to the issue of the ultimate purification of metals
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2022
topic_facet Pure materials and vacuum technologies
url https://nasplib.isofts.kiev.ua/handle/123456789/195822
citation_txt To the issue of the ultimate purification of metals / G.P. Kovtun, D.A. Solopikhin, A.P. Shcherban // Problems of Atomic Science and Technology. — 2022. — № 1. — С. 3-5. — Бібліогр.: 9 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT kovtungp totheissueoftheultimatepurificationofmetals
AT solopikhinda totheissueoftheultimatepurificationofmetals
AT shcherbanap totheissueoftheultimatepurificationofmetals
AT kovtungp dopitannâprograníčneočiŝennâmetalív
AT solopikhinda dopitannâprograníčneočiŝennâmetalív
AT shcherbanap dopitannâprograníčneočiŝennâmetalív
AT kovtungp kvoprosuopredelʹnoiočistkemetallov
AT solopikhinda kvoprosuopredelʹnoiočistkemetallov
AT shcherbanap kvoprosuopredelʹnoiočistkemetallov
first_indexed 2025-11-30T23:23:25Z
last_indexed 2025-11-30T23:23:25Z
_version_ 1850259545869254656
fulltext ISSN 1562-6016. ВАНТ. 2022. №1(137) 3 SECTION 1 PURE MATERIALS AND VACUUM TECHNOLOGIES https://doi.org/10.46813/2022-137-003 UDC 546.47:669.054 TO THE ISSUE OF THE ULTIMATE PURIFICATION OF METALS G.P. Kovtun 1,2 , D.A. Solopikhin 1 , A.P. Shcherban 1 1 National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine; 2 V.N. Karazin Kharkiv National University, Kharkiv, Ukraine E-mail: gkovtun@kipt.kharkov.ua The paper considers issues related to the ultimate content of impurity elements in metals in the processes of their refining by evaporation and distillation in vacuum, zone recrystallization and electromigration. It is shown that at all refining methods, with an increase in the number of refining cycles and the duration of the process, a “saturation effect” arises, associated with the achievement of the ultimate concentrations of impurity elements in refined metals. The reasons for the impossibility to produce absolutely pure metals have been discussed. In a high-purity state, metals acquire qualitatively new, previously unknown properties, what cause their widespread use both for fundamental research and for practical purposes. There are various methods for deep refining of metals, which are continuously being expanded and improved [1–5, 8, 9]. In the purest chemical elements (silicon, germanium, gallium, mercury), the content of the total impurity elements is around the 10 -6 at.%, and a number of individual impurities – 10 -7 …10 -9 at.% [6]. An increase in purity is associated with an increase in material costs which grow nonlinearly in the area of ultimate cleaning [7]. Therefore, issues almost always arise, which related to the determination of the ultimate content of impurity elements in the processes of metal refining, the possibility of assessing this content, and the establishment of external factors affecting the content of impurities. These and other issues are considered in the article concerned refining metals by the methods of evaporation and distillation in vacuum, directed crystallization and electromigration. The simple way to remove volatile impurities from a metal is to evaporate them in a vacuum. The time dependence of the distillation rate of highly volatile impurities in a binary alloy was considered in [1]. The main conclusions from this consideration are as follows. First, the content of the volatile component during vacuum distillation decreases exponentially with time, and, second, the complete distillation of the volatile impurity in a finite time (t → ∞) from the alloy is impossible. With an increase in the number of refining cycles or the duration of the process, the purity of metals, as a rule, increases, but at the same time, for all methods, the so-called “saturation effect” is observed, that is, the achievement of the ultimate content of an impurity element. The issue remains undecided, namely can the concentration of the volatile component reach an ultimate value during evaporation and will not change further with an increase in the distillation time? In the case of a binary alloy consisting of the main nonvolatile component A and an impurity volatile component B, the total equilibrium pressure of the melt (Ptot) according to Dalton's law will be equal to the sum of the partial pressures of components A and B. Рtot = РA+ РB, where РА and РВ – are the equilibrium partial pressures of components A and B. According to Raoult's law, the equilibrium partial pressures for real systems are expressed by the ratios: AAАA Npp 0 and ВВВВ Npp 0 , where γА and γВ are the activity coefficients; 0 Ap and 0 Вp are equilibrium vapor pressures of pure components A and B; NA and NB are mole fractions, respectively, for components A and B. As the distillation proceeds, the mole fractions of components A and B will change, and the mole fraction of the volatile component (NB) will change faster. With a change in the molar fractions of components A and B, their equilibrium partial vapors pressures will also change, which, upon reaching certain (final) concentrations of the components, will be equal to each other, that is, PA = PB. In this case: К АAАA Npp 0 and К ВВВВ Npp 0 , where К АN and К ВN are equilibrium mole fractions of components A and B, the ratio of which will not be changed with increasing sublimation time. Achieving equality of the partial vapor pressures of the main and impurity components makes it possible to estimate the final (ultimate) content of the volatile component in the process of distilling the melt. A number of assumptions can be made for estimated calculations. Let us assume that during the evaporation of a highly volatile impurity, the mass of the main component does not change. In this case, from the equality condition AAАA Npp 0 and К ВВВВ Npp 0 , the final value of the molar fraction of the volatile component has the form: mailto:gkovtun@kipt.kharkov.ua 4 ISSN 1562-6016. ВАНТ. 2022. №1(137) 0 0 BB AAAK B P NP N    . For dilute solutions (γА→1) and taking into account that К В A N-1N  , then 00 0 ABB AK B PP P N    . For the case of an ideal system (γВ → 1), the final (ultimate) content of the molar fraction of the volatile component will be determined by the expression 00 0 AB AK B PP P N   . In the process of multiple distillation, there will be occur also a change in the partial pressures of the impurity element and the main component. When equality between them is reached, the content of the volatile component will not change either in the melt or in the condensate. The process is more complex where during the evaporation of a highly volatile component, partial evaporation of the main component also occurs. In this case, we can use the expression to calculate the change in the concentration of alloy components during evaporation [8]. 0 0 0 lg 1 lg .В В В A В B Bi A C p M W C p M W         (1) Here 0 ВC and ВC are the concentration of a highly volatile impurity, respectively, before and after evaporation, МА and МВ are molecular weights of components A and B, 0 AW and AW are the masses of the main component before and after evaporation. The expression (1) makes it possible to estimate the content of volatile impurity in the melt taking into account the mass loss of the main component. In the case of directional crystallization of metals, a “saturation effect” is also observed. After multiple passes of the liquid zone, the distribution of impurities along the length of the ingot approaches the steady-state final state which characterizes the maximum attainable separation of impurities [9]. Fig. 1 shows an approximate distribution of the concentration of impurity C with a distribution coefficient K < 1 after one pass and multiple passes. Fig. 1. Distribution of impurity concentration C, with the distribution coefficient K < 1 along the length of the ingot L, after one pass (1) and multiple passes (2). C0 is the concentration of impurities in the charge. The zone moves from left to right Additional passes make the start section deeper, heighten the end section and shorten the length of the horizontal part of the curve. As a result, all three areas are encompassed by a single, relatively smooth curve. After multiple passes through the zone, the distribution of the impurity approaches to the steady state which characterizes the final, maximum attainable separation of the impurity. In this case, the convection flow of the impurity, caused by the crystallization action of the zone, meets the equal opposition of the reverse flow due to the accumulation of the impurity in the final section. A similar (final) distribution of impurities is observed in the process of refining metals using the method of electromigration – the movement of ions of impurity elements in solid or liquid metals under the applied a constant electric field [5]. The movement of the impurity ion is carried out under the action of the force F = Zeff·E, where Zeff is the effective charge of the ion; E is the electric field strength. The quantitative characteristic of the refining process during electromigration follows from the relationship between the speed of movement of the impurity under the applied electric field and its reverse movement in consequence of diffusion caused by the appearance of a concentration gradient. To describe this process, one uses the equation of the matter flow (I) generated by an electric field [5]. ,UCE dx dC DI  (2) where С is the impurity concentration at a distance x from the beginning of the sample; D is a self-diffusion coefficient of impurity ion; U – ion mobility; E is the electric field strength. For a sufficiently long time of electric field application, the first term of the flux, characterizing the reverse diffusion, and the second term, due to the action of the electric field, balance each other, giving zero flux and, consequently, the maximum achievable degree of purification (Fig. 2). Fig. 2. Distribution of impurities along the length of the sample L under the influence of a direct current for different periods of time t The “saturation effect” is inherent in other methods of deep cleaning of metals. In this regard, the question is natural – is it possible to obtain an absolutely pure substance? In our opinion, it is impossible. The “saturation effect” at the refining of metals is conditioned by the mechanisms of separation of length of the ingot ISSN 1562-6016. ВАНТ. 2022. №1(137) 5 impurity elements, or rather, their limiting ability in deep refining of metals. On the other hand, the impossibility to obtain an absolutely pure substance is associated with technical difficulties due to contamination of the substance to be purified by construction materials and the environment. The impossibility to obtain an absolutely pure substance is, apparently, of a fundamental nature. The realization of any process in the system is associated with a decrease in the Gibbs energy. The basic Gibbs energy equation is G = H – T∙S, where H – enthalpy; S – entropy, T – temperature. The process in the system is possible at ∆G < 0. The achievement of absolutely pure substance in the process of refining metals can be considered as an approximation to the state of matter with zero entropy, which is impossible in principle. REFERENCES 1. V.A. Pazukhin, A.Ya. Fisher. Separation and refining of metals in a vacuum. M.: “Metallurgy”, 1969, 204 p. 2. A.I. Belyaev. Physicochemical basics of purification of metals and semiconductor materials. M.: “Metallurgy”, 1973, 224 p. 3. G.G. Devyatykh, Yu.E. Elliev. Introduction to the theory of deep purification of substances. M.: “Nauka”, 1981, 320 p. 4. G.F. Tikhinsky, G.P. Kovtun, V.M. Azhazha. Obtaining ultrapure rare metals. M.: ”Metallurgy”, 1986, 160 p. 5. High pure substances. M.: “Nauchny Mir”, 2018, 996 p. 6. G.G. Devyatykh, Yu.A. Karpov, A.I. Osipova. Exhibition-collection of substances of special purity. M.: “Nauka”, 2003, 236 p. 7. L.A. Niselson, C.V. Kopecky. The problem of purity of materials in electronics. // Vysokochystyje veshchestva. 1988, N 2, p. 20-30 (in Russian). 8. G.F. Zaboronok, T.I. Zelentsov, A.S. Ronzhin, B.G. Sokolov. Electronic melting of metals. M.: “Metallurgy”, 1972, p. 251-260. 9. V. Pfan. Zone melting. M.: ”Mir”, 1970, 366 p. Article received 08.10.2021 К ВОПРОСУ О ПРЕДЕЛЬНОЙ ОЧИСТКЕ МЕТАЛЛОВ Г.П. Ковтун, Д.А. Солопихин, А.П. Щербань Рассмотрены вопросы, связанные с предельным содержанием примесных элементов в металлах в процессах их рафинирования, методами испарения и дистилляции в вакууме, зонной перекристаллизации и электропереноса. Показано, что при всех методах рафинирования с увеличением числа циклов рафинирования и длительности процесса возникает «эффект насыщения», связанный с достижением предельных концентраций примесных элементов в рафинированных металлах. Обсуждены причины невозможности получения абсолютно чистых металлов. ДО ПИТАННЯ ПРО ГРАНИЧНЕ ОЧИЩЕННЯ МЕТАЛІВ Г.П. Ковтун, Д.О. Солопіхін, О.П. Щербань Розглянуті питання, пов'язані з граничним вмістом домішкових елементів у металах у процесах їх рафінування, методами випаровування та дистиляції у вакуумі, зонної перекристалізації та електроперенесення. Показано, що при всіх методах рафінування зі збільшенням числа циклів рафінування та тривалості процесу виникає «ефект насичення», пов'язаний з досягненням граничних концентрацій домішкових елементів у рафінованих металах. Обговорено причини неможливості одержання абсолютно чистих металів.