Computational dosimetry and post-irradiation studies of the electron beam irradiation-assisted corrosion and stress corrosion cracking of statically strained steel samples in a supercritical water coolant

New experimental data on the corrosion behavior of the 12X18H10T austenitic steel elastically strained cou-pons after 500 h long exposure in situ the NSC KIPT “Electron Irradiation Test Facility” supercritical water circulation loop are presented and discussed. The γ-activation analysis based comput...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Вопросы атомной науки и техники
Datum:2022
Hauptverfasser: Bakai, O.S., Boriskin, V.M., Bratchenko, M.I., Dyuldya, S.V.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2022
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/195828
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Computational dosimetry and post-irradiation studies of the electron beam irradiation-assisted corrosion and stress corrosion cracking of statically strained steel samples in a supercritical water coolant / O.S. Bakai, V.M. Boriskin, M.I. Bratchenko, S.V. Dyuldya // Problems of Atomic Science and Technology. — 2022. — № 1. — С. 55-63. — Бібліогр.: 12 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-195828
record_format dspace
spelling Bakai, O.S.
Boriskin, V.M.
Bratchenko, M.I.
Dyuldya, S.V.
2023-12-07T10:53:03Z
2023-12-07T10:53:03Z
2022
Computational dosimetry and post-irradiation studies of the electron beam irradiation-assisted corrosion and stress corrosion cracking of statically strained steel samples in a supercritical water coolant / O.S. Bakai, V.M. Boriskin, M.I. Bratchenko, S.V. Dyuldya // Problems of Atomic Science and Technology. — 2022. — № 1. — С. 55-63. — Бібліогр.: 12 назв. — англ.
1562-6016
PACS: 82.33.De;07.35.+k;29.20.Ej; 81.70.-q;61.82.Bg;81.65.Mq;68.37.-d;62.20.mt
DOI: https://doi.org/10.46813/2022-137-055
https://nasplib.isofts.kiev.ua/handle/123456789/195828
New experimental data on the corrosion behavior of the 12X18H10T austenitic steel elastically strained cou-pons after 500 h long exposure in situ the NSC KIPT “Electron Irradiation Test Facility” supercritical water circulation loop are presented and discussed. The γ-activation analysis based computational dosimetry of samples is correlated to their weight gain/loss measurement data. The absorbed dose and stress effect on their irradiation assisted general corrosion is revealed. The corrosion surface/layer chemistry/microstructure are discussed with special emphasis of the irradiation/stress impact on the protective coating stability, intergranular corrosion and precursors of cracking.
Наведені та обговорюються нові експериментальні дані щодо корозійної поведінки пружно деформованих купонів аустенітної сталі 12X18H10T після 500-годинної експозиції in situ надкритичної водної конвекційної петлі установки «Electron Irradiation Test Facility» ННЦ ХФТІ. Засновані на γ-активаційному аналізі дані обчислювальної дозиметрії зразків зіставлені з даними вимірів набуття або втрати їх маси. Виявлений вплив поглиненої дози та напруги на їх стимульовану опроміненням загальну корозію. Склад та мікроструктура корозійної поверхні та шару обговорюються з особливою увагою до впливу опромінення й напруги на стабільність захисного покриття, міжзеренну корозію та передвісники розтріскування.
Приведены и обсуждаются новые экспериментальные данные по коррозионному поведению упруго-деформированных купонов аустенитной стали 12X18H10T после 500-часовой экспозиции in situ сверхкритической водной конвекционной петли установки «Electron Irradiation Test Facility» ННЦ ХФТИ. Основанные на γ-активационном анализе данные вычислительной дозиметрии образцов сопоставлены с данными измерений набора или потери ими массы. Выявлено влияние поглощенной дозы и напряжения на их стимулированную облучением общую коррозию. Состав и микроструктура коррозионной поверхности и слоя обсуждаются с особым вниманием к влиянию облучения и напряжения на стабильность защитного покрытия, межзеренную коррозию и предвестники растрескивания.
This work was carried out at the expense of the budget program “Support for the Development of Priority Areas of Scientific Research” (КПКВК 6541230).
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Physics and technology of structural materials
Computational dosimetry and post-irradiation studies of the electron beam irradiation-assisted corrosion and stress corrosion cracking of statically strained steel samples in a supercritical water coolant
Обчислювальна дозиметрія та післяопромінювальні дослідження стимульованих електронним опроміненням корозії та корозійного розтріскування під напругою статично деформованих зразків сталі в надкритичному водному теплоносії
Вычислительная дозиметрия и послеоблучательные исследования стимулированных электронным облучением коррозии и коррозионного раскрошивания под напряжением статически деформированных образцов стали в сверхкритическом водном теплоносителе
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Computational dosimetry and post-irradiation studies of the electron beam irradiation-assisted corrosion and stress corrosion cracking of statically strained steel samples in a supercritical water coolant
spellingShingle Computational dosimetry and post-irradiation studies of the electron beam irradiation-assisted corrosion and stress corrosion cracking of statically strained steel samples in a supercritical water coolant
Bakai, O.S.
Boriskin, V.M.
Bratchenko, M.I.
Dyuldya, S.V.
Physics and technology of structural materials
title_short Computational dosimetry and post-irradiation studies of the electron beam irradiation-assisted corrosion and stress corrosion cracking of statically strained steel samples in a supercritical water coolant
title_full Computational dosimetry and post-irradiation studies of the electron beam irradiation-assisted corrosion and stress corrosion cracking of statically strained steel samples in a supercritical water coolant
title_fullStr Computational dosimetry and post-irradiation studies of the electron beam irradiation-assisted corrosion and stress corrosion cracking of statically strained steel samples in a supercritical water coolant
title_full_unstemmed Computational dosimetry and post-irradiation studies of the electron beam irradiation-assisted corrosion and stress corrosion cracking of statically strained steel samples in a supercritical water coolant
title_sort computational dosimetry and post-irradiation studies of the electron beam irradiation-assisted corrosion and stress corrosion cracking of statically strained steel samples in a supercritical water coolant
author Bakai, O.S.
Boriskin, V.M.
Bratchenko, M.I.
Dyuldya, S.V.
author_facet Bakai, O.S.
Boriskin, V.M.
Bratchenko, M.I.
Dyuldya, S.V.
topic Physics and technology of structural materials
topic_facet Physics and technology of structural materials
publishDate 2022
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Обчислювальна дозиметрія та післяопромінювальні дослідження стимульованих електронним опроміненням корозії та корозійного розтріскування під напругою статично деформованих зразків сталі в надкритичному водному теплоносії
Вычислительная дозиметрия и послеоблучательные исследования стимулированных электронным облучением коррозии и коррозионного раскрошивания под напряжением статически деформированных образцов стали в сверхкритическом водном теплоносителе
description New experimental data on the corrosion behavior of the 12X18H10T austenitic steel elastically strained cou-pons after 500 h long exposure in situ the NSC KIPT “Electron Irradiation Test Facility” supercritical water circulation loop are presented and discussed. The γ-activation analysis based computational dosimetry of samples is correlated to their weight gain/loss measurement data. The absorbed dose and stress effect on their irradiation assisted general corrosion is revealed. The corrosion surface/layer chemistry/microstructure are discussed with special emphasis of the irradiation/stress impact on the protective coating stability, intergranular corrosion and precursors of cracking. Наведені та обговорюються нові експериментальні дані щодо корозійної поведінки пружно деформованих купонів аустенітної сталі 12X18H10T після 500-годинної експозиції in situ надкритичної водної конвекційної петлі установки «Electron Irradiation Test Facility» ННЦ ХФТІ. Засновані на γ-активаційному аналізі дані обчислювальної дозиметрії зразків зіставлені з даними вимірів набуття або втрати їх маси. Виявлений вплив поглиненої дози та напруги на їх стимульовану опроміненням загальну корозію. Склад та мікроструктура корозійної поверхні та шару обговорюються з особливою увагою до впливу опромінення й напруги на стабільність захисного покриття, міжзеренну корозію та передвісники розтріскування. Приведены и обсуждаются новые экспериментальные данные по коррозионному поведению упруго-деформированных купонов аустенитной стали 12X18H10T после 500-часовой экспозиции in situ сверхкритической водной конвекционной петли установки «Electron Irradiation Test Facility» ННЦ ХФТИ. Основанные на γ-активационном анализе данные вычислительной дозиметрии образцов сопоставлены с данными измерений набора или потери ими массы. Выявлено влияние поглощенной дозы и напряжения на их стимулированную облучением общую коррозию. Состав и микроструктура коррозионной поверхности и слоя обсуждаются с особым вниманием к влиянию облучения и напряжения на стабильность защитного покрытия, межзеренную коррозию и предвестники растрескивания.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/195828
citation_txt Computational dosimetry and post-irradiation studies of the electron beam irradiation-assisted corrosion and stress corrosion cracking of statically strained steel samples in a supercritical water coolant / O.S. Bakai, V.M. Boriskin, M.I. Bratchenko, S.V. Dyuldya // Problems of Atomic Science and Technology. — 2022. — № 1. — С. 55-63. — Бібліогр.: 12 назв. — англ.
work_keys_str_mv AT bakaios computationaldosimetryandpostirradiationstudiesoftheelectronbeamirradiationassistedcorrosionandstresscorrosioncrackingofstaticallystrainedsteelsamplesinasupercriticalwatercoolant
AT boriskinvm computationaldosimetryandpostirradiationstudiesoftheelectronbeamirradiationassistedcorrosionandstresscorrosioncrackingofstaticallystrainedsteelsamplesinasupercriticalwatercoolant
AT bratchenkomi computationaldosimetryandpostirradiationstudiesoftheelectronbeamirradiationassistedcorrosionandstresscorrosioncrackingofstaticallystrainedsteelsamplesinasupercriticalwatercoolant
AT dyuldyasv computationaldosimetryandpostirradiationstudiesoftheelectronbeamirradiationassistedcorrosionandstresscorrosioncrackingofstaticallystrainedsteelsamplesinasupercriticalwatercoolant
AT bakaios občislûvalʹnadozimetríâtapíslâopromínûvalʹnídoslídžennâstimulʹovanihelektronnimopromínennâmkorozíítakorozíinogoroztrískuvannâpídnaprugoûstatičnodeformovanihzrazkívstalívnadkritičnomuvodnomuteplonosíí
AT boriskinvm občislûvalʹnadozimetríâtapíslâopromínûvalʹnídoslídžennâstimulʹovanihelektronnimopromínennâmkorozíítakorozíinogoroztrískuvannâpídnaprugoûstatičnodeformovanihzrazkívstalívnadkritičnomuvodnomuteplonosíí
AT bratchenkomi občislûvalʹnadozimetríâtapíslâopromínûvalʹnídoslídžennâstimulʹovanihelektronnimopromínennâmkorozíítakorozíinogoroztrískuvannâpídnaprugoûstatičnodeformovanihzrazkívstalívnadkritičnomuvodnomuteplonosíí
AT dyuldyasv občislûvalʹnadozimetríâtapíslâopromínûvalʹnídoslídžennâstimulʹovanihelektronnimopromínennâmkorozíítakorozíinogoroztrískuvannâpídnaprugoûstatičnodeformovanihzrazkívstalívnadkritičnomuvodnomuteplonosíí
AT bakaios vyčislitelʹnaâdozimetriâiposleoblučatelʹnyeissledovaniâstimulirovannyhélektronnymoblučeniemkorroziiikorrozionnogoraskrošivaniâpodnaprâženiemstatičeskideformirovannyhobrazcovstalivsverhkritičeskomvodnomteplonositele
AT boriskinvm vyčislitelʹnaâdozimetriâiposleoblučatelʹnyeissledovaniâstimulirovannyhélektronnymoblučeniemkorroziiikorrozionnogoraskrošivaniâpodnaprâženiemstatičeskideformirovannyhobrazcovstalivsverhkritičeskomvodnomteplonositele
AT bratchenkomi vyčislitelʹnaâdozimetriâiposleoblučatelʹnyeissledovaniâstimulirovannyhélektronnymoblučeniemkorroziiikorrozionnogoraskrošivaniâpodnaprâženiemstatičeskideformirovannyhobrazcovstalivsverhkritičeskomvodnomteplonositele
AT dyuldyasv vyčislitelʹnaâdozimetriâiposleoblučatelʹnyeissledovaniâstimulirovannyhélektronnymoblučeniemkorroziiikorrozionnogoraskrošivaniâpodnaprâženiemstatičeskideformirovannyhobrazcovstalivsverhkritičeskomvodnomteplonositele
first_indexed 2025-11-24T15:54:12Z
last_indexed 2025-11-24T15:54:12Z
_version_ 1850849324749029376
fulltext ISSN 1562-6016. ВАНТ. 2022. №1(137) 55 https://doi.org/10.46813/2022-137-055 COMPUTATIONAL DOSIMETRY AND POST-IRRADIATION STUDIES OF THE ELECTRON BEAM IRRADIATION ASSISTED CORROSION AND STRESS CORROSION CRACKING OF STATICALLY STRAINED STEEL SAMPLES IN A SUPERCRITICAL WATER COOLANT O.S. Bakai, V.M. Boriskin, M.I. Bratchenko, S.V. Dyuldya National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine E-mail: bakai@kipt.kharkov.ua New experimental data on the corrosion behavior of the 12X18H10T austenitic steel elastically strained coupons after 500 h long exposure in situ the NSC KIPT “Electron Irradiation Test Facility” supercritical water circulation loop are presented and discussed. The -activation analysis based computational dosimetry of samples is correlated to their weight gain/loss measurement data. The absorbed dose and stress effect on their irradiation assisted general corrosion is revealed. The corrosion surface/layer chemistry/microstructure are discussed with special emphasis of the irradiation/stress impact on the protective coating stability, intergranular corrosion and precursors of cracking. PACS: 82.33.De;07.35.+k;29.20.Ej; 81.70.-q;61.82.Bg;81.65.Mq;68.37.-d;62.20.mt INTRODUCTION The Super-critical Water-Cooled Reactor (SCWR) is the next Generation IV nuclear power reactor featuring a water coolant in the state above the critical point (Tc, Pc) = (374 °C, 22.1 MPa) of water. Supercritical water (SCW) is a highly corrosive environment [1] for the SCWR structural materials. The database of their performance in SCW is systematically developing [2, 3] but is far from completion having in mind complex in- terplay of various driving forces of corrosion. Some of them (water chemistry, pH and dissolved oxygen, tem- perature) can be studied at out-of-pile autoclave tests. The rest (coupled (n, )-irradiation, coolant flow and radiolysis, thermal gradients and stress) are specific to the reactor environment and are harder to understand because of the lack and high costs of large-scale in-pile tests. The laboratory simulation experiments at dedicat- ed facilities are thus of great value to fill this gap in knowledge of the SCWR relevant corrosion phenomena. The NSC KIPT sited Electron Irradiation Test Fa- cility (E.I.T.F.) contributed to this programme over the past two decades. The core of the Facility is the LEA-10 electron linac (10 MeV/10 kWe). The E.I.T.F. features several target assemblies and techniques for corrosion tests under electron beam (EB) irradiation in situ high- temperature molten salt and aqueous corrodents. For the SCWR related tasks, the E.I.T.F. natural convection principle based Super-Сritical Water Circulation Loop (SCWCL, Fig. 1) was put into operation in 2012 [4]. The pilot (2012) experiment [4, 5] dealt with oxida- tion and corrosion of high-purity Zr-1%Nb and Inco- nel™ grade alloy 690 coupons irradiated in the vicinity of the SCWCL coolant supercritical transition. Drastic increase of the corrosion rate under irradiation (the phe- nomenon of Irradiation Assisted Corrosion, IAC) was first revealed for these alloys. Besides, severe Irradiati- on Assisted Stress Corrosion Cracking (IASCC), crev- ice corrosion, spallation and exfoliation were found in the highly irradiated, overheated to 460 °C and embrit- tled part of the austenitic stainless steel (SS) 12X1H10T made Irradiation Cell (IC) piping of the facility [5]. Sporadic Inter-Granular SCC (IGSCC) was also obser- ved in certain Inconel™ alloy coupons in the vicinity of the base alloy 690 joint with the In52MSS weldup. Fig. 1. The E.I.T.F. SCWCL ‘Loop1b’ mounted in the LEA-10 linac shelter room. The photo had been taken before the kick-start of the 2019 irradiation experiment The phenomenological models were proposed [6] to interpret quantitatively the observed effects by thorough calculations and multi-scale computer simulation. Par- ticularly, SCC was attributed to the impact of residual and thermal-elastic stress. This motivated the main- stream direction of further E.I.T.F./SCWCL R&D spe- cifically focused on investigations of the mechanical stress impact on materials corrosion under irradiation. An appropriate upgrade of the SCWCL IC design (see ref. 7) has resulted in the completion (2019) of the next irradiation experiment specifically devoted to the evaluation of IAC and IASCC of SS 12X18H10T coupons in SCW under controlled static mechanical load. In this paper, we report first results of the post- irradiation analysis of the obtained irradiated specimens. The paper is organized as follows. The experimental setup, the material samples preparation and the e – -irradi- mailto:bakai@kipt.kharkov.ua 56 ISSN 1562-6016. ВАНТ. 2022. №1(137) ation mode details are described in Sec. 1. Novel me- thod of the radiation field reconstruction and evaluation of the samples obtained doses is presented in Sec. 2 and applied, in Sec. 3.1, to uncover the regularities in their post-irradiation General Corrosion Test (GCT) data. The results of the corroded samples microstructure in- vestigation are presented and discussed in Sec. 3.2. 1. EXPERIMENTAL Twenty thin (280 m) rectilinear (409.6 mm) coupons of the heatproof SS 12X18H10T (AISI 321), Fe68Cr18Ni10Mn2Ti0.7Si0.8Cu0.3P0.035S0.02 wt.%, were placed (5 per each) inside four 10 mm tubes IIV of the E.I.T.F. SCWCL 4-channels IC [4–6], Fig. 2. Fig. 2. The 4-channel IC before (a) and after (c) 500 h long EB irradiation in the SCWCL. The coupons at- tachment scheme is shown in (b, d) Except of the coupons #22 and 23 which were cov- ered with 9 m thick CrN coatings vacuum-arc depos- ited from the BX1 Chromium alloy [8], all samples were equal in dimensions and composition but substan- tially differed in the intentionally applied static elastic stress which sprung up from the strain produced by the adjustter bolt imposed to a sample mid-span x = 0 (for details, see ref. 7). Coupons of length l and thickness h are freely edge-supported in the IC tube sample holding cassette notches (Fig. 3). This results in a triangular distribution of tensile stress xx(x) = max·(1 – 2·|x| / l) [7], where max = 6E·h·d / l 2 , E is the Young modulus, and d is the bolt controlled maximal deflection. Accord- ing to the IC loading plan of Fig. 2,b, different values of d < 0.8 mm were used to spread max  (60…140) MPa of coupons in the SS elasticity domain below its ther- mally reduced yield stress 0.2 = 174 MPa (400 °C). In addition, to seek for the base stress discontinuity effects, six (3 per side at x  0, ±10 mm) 80 m wide 10 m deep transversal scratches were diamond cutter plotted on both convex (tensile stress xx > 0) and con- cave (compressive xx < 0) surfaces of each coupon. Fig. 3. The strained coupon mounted inside the IC internal sample holder with the bend adjusting screw Finite Element Method (FEM) calculations had pre- dicted [7] the stress concentration at a scratch bottom and close to its shoulders. It was found that the bottom located highest stress scales well with the base one: scratch  kamp·xx(x), where kamp is the scratch shape de- pendent amplification factor. The high-resolution opti- cal metallography cross-section digitalization of the ge- ometry of all the scratches on samples to be irradiated was followed by a set of FEM calculations (Fig. 4). In rather good agreement with the earlier [7] predicted value of kamp  1.57, they resulted in kamp = 1.556±0.006 for the prepared set of specimens. Fig. 4 data show that |scratch| augments to 220…240 MPa for middle scrat- ches of the most strained coupons (see in Fig. 2,b, this occurs for samples ##1, 4, 6, 9, 10, 15, 16, 19, 20, 22, 23), and, therefore, it is expected to exceed 0.2. -150 -100 -50 0 50 100 150 -300 -200 -100 0 100 200 300  sc ra tc h ( M P a)  xx (MPa)  scratch =1.556 xx FreeFEM++ Fig. 4. The FEM calculation based estimates of the ten- sile/compressive stress concentration in the vicinity of the scratches plotted on the investigated coupons: the maximal scratch as a function of the base xx The experiment was carried out in Aug.–Sep. 2019 and lasted 500 h of a scanning EB irradiation (in toto, incl. transients, strained coupons were exposed to a cor- rodent coolant for 532 h). The LEA-10 linac operated at pulse duration 3.5 s, pulse frequency 250 Hz, mean energy 10 MeV, mean current 0.71 mA and mean power of 7.3 kWe. The linac scanning magnet (saw-tooth pul- ses of scanning frequency 3.7 Hz) shaped the vertically oblong (6  19) cm EB span on the SCWCL IC. The total fluence of e-irradiation amounted to 2∙10 20 e – /cm 2 . The per-day digital records of the linac and loop param- eters were stored by the facility control system to serve as raw data for further post-irradiation analysis (Fig. 5 for representative examples of these records). c d a b M P a ϭxx, MPa ISSN 1562-6016. ВАНТ. 2022. №1(137) 57 The deoxygenated distilled coolant was pressurized to P = 23.5 MPa and freely circulated in the SCWCL driven by thermal power Q inputs from both the bottom- leg electrical heater and the EB power deposited in the IC tubes and internals, incl. coupons. In the experiment designing stage, System Thermal Hydraulics (STH) cal- culations [7] assumed the reference natural circulation scenario with Qheater = 1 kWth and Qbeam = 4 kWth owing to 64% efficiency  of the EB electric power utiliza- tion to water heating in the IC. The coolant steady-state mass-flow rate W  48 g/s has been predicted in ref. 7. At actual irradiation schedule, the applied mean Qheater was raised to 2.62 kWth while  has been lowered down to 55% cause of the lateral drift of the irradiation field (see Fig. 2,d and below in Sec. 2). For such inputs, STH calculations result in W = 54.3 g/s in a reasonable (10%) agreement with the planned scenario. Fig. 5. Per-day records of the EB mean energy (a), electron fluence (a) and the vertical position and length of the EB scanning area wrt. the SCWCL IC (b) From the mass continuity considerations at the STH predicted W, the water coolant speed v increases from 420 to 450 cm/s along a segment between the IC inlet and outlet. However, for the samples loaded IC the open hydraulic section area reduces and the characteristic speed of coupons flow becomes about twice as large, v  1 m/s, that is well comparable with the SCWR pri- mary-coolant circuit SCW current velocity. This is con- firmed by the Computational Fluid Dynamics (CFD) si- mulations of the velocity field (see Fig. 9 of ref. 7) which also made evident the twofold difference in v near convex and concave sides of strained coupons. In a steady-state circulation mode, the loop of the nominal (at 20 °C) capacity of 3.81 L accommodated 2.45 kg of water of the turnover-averaged mean density   0.64 g/cm 3 . Coupled STH/Equation of State (EoS) calculations point to lower  = 0.58…0.54 g/cm 3 at a coolant pass-through the IC. This is due to the EB indu- ced heating and, mainly, the heat transfer from the hot- test IC tubes and internals. The prescribed and the facili- ty control system and operators sustained characteristic temperature of the coolant circulation, Tin = 360 °C was deliberately set smaller than both critical Tc = 374 °C and pseudocritical Tpc(P) = 379.5 °C temperatures of water. It was measured by an array of thermocouples placed outside the irradiation zone (direct thermometry is problematical inside it). The STH calculations reveal the cross-section averaged temperature growth to 368 °C before the IC outlet, and the subsequent cooling. The readings of the post-outlet thermocouples at the IC outer surface were 364 °C for the IC channels II and III (see Fig. 2,d) and 350 °C for tubes I and IV. By and large, this agrees well with the STH prediction which also well describes possible gradual cooling of a flow by the end of weakly irradiated channels (see Fig. 9 of ref. 6). Generally, coolant circulated in a narrow lower vici- nity of supercritical transition. However, under e – -irradi- ation, the remote optical pyrometry measurements reve- aled temperatures of 400420 °C >> Tpc at the air- cooled external surface of the IC. In ref. 6, it was shown that massive IC internals also can be about 10…15 K hotter then the STH predicted reference tem- perature of a coolant. Thus, the supercritical transition occurs just inside the IC in the vicinity of coupons, and their corrosion phenomena are determined just by the SCW flow. The loop feedwater was of neutral pH = 7, 1.1 mg/L of dissolved oxygen (DO), and conductivity 20 S/cm. The coolant chemistry was routinely analyzed with the WTW Multi 350i device at a batcher water sampling ra- te 5 mL/min. Rather scattered values of (rather acidic) pH  (5.6 ± 0.7) and DO  (2.9 ± 1.4) mg/L were detect- ing. The conductivity grew systematically to 40 S/cm and higher at a rate of 0.1 S/h. This argued for the increase of ionic salts content. The coolant’s impurities, dirt and crud were identified using the Shimadzu ICRP- 9000 optical emission spectrometer. The growth of (ini- tially absent) Chromium content to 31 g/L at a rate of 0.2 g/L per hour was revealed just as it had been ob- served in previous SCWCL runs [5]. Other elements (Fe, Mn, K, Ni, S, Ca, Mg, Si, Ti, Cu) were also found in discharged water samples. Evidently, this indicates an intense pollution of a coolant with corrosion products of both the same SS 12X18H10T made SCWCL internal surface and the coupons under investigation. 2. COMPUTATIONAL DOSIMETRY The E.I.T.F. experiment attempted to reproduce the SCWR operation mode when a subcritical water coolant experiences the repeated periodical transition to SCW just inside the reactor core. The SCWCL IC serves as a core ‘mock-up’. Its self-consistent description requires extensive coupled irradiation dosimetry, radiolysis, STH/CFD and FEM calculations [6] and is far beyond the scope of the current paper. Here we address only the first, dosimetry, step of this agenda’s roadmap. Its goal is the consistent calculation of the absorbed dose D (Gy = 100 rad) and primary radiation damage Ndpa (in the number of displacements per atom, dpa) of the investigated material on a per-coupon basis. The complications arose from the uncertainty of the EB ra- diation field on an IC. We attempted to obtain its recon- struction using the computational dosimetry methods by means of the GEANT4.10.6 Toolkit based Monte Carlo (MC) radiation transport (RT) code RaT 3.1 which was already used by us, for similar purposes, in refs. 4–6. The experimental bases of the MC simulation efforts were the preliminary glass photometry data (the conven- tional method of the LEA-10 linac beam targeting befo- re irradiation, Fig. 6) and their a posteriori refinement wrt. the actual irradiation scenario based on the post- irradiation measurements of the residual activity of irra- diated coupons, the method we first propose here. The RaT 3.1 code applied the G4EmStandard_opt3 model for simulation of electrons and bremsstrahlung a b 58 ISSN 1562-6016. ВАНТ. 2022. №1(137) -quanta transport in a realistic (Fig. 7) 3D model of the coupons loaded IC target assembly, the processes eRecoil and CoulombElastic for simulation of point de- fect production in atomic collisions cascades, the LLNL ENDF/B VII LEND nuclear data library for simulation of the activation induced by electro- and protonuclear reactions, the G4Radioactivation process to simulate the activity decay with time, and the MC Variance Reducti- on Technique (VRT) to force rare photonuclear events. The GEANT4 G4FieldManager class was used to si- mulate the LEA-10 linac scanning system (see Fig. 7) for a routinely measuring EB energy spectrum having a peak at 9.3 MeV, mean energy E = 10.27 MeV and a long tail up to 17 MeV. The model took into account the scanning horn geometry, the input pencil beam size of Rbeam = 1 cm and its energy dependent angular divergen- ce beam(E) = 25  (E / E) 2 mrad. The deflection of pri- mary electrons by the magnetic field |Bx|  0.35 T was sampled based on the pulse saw-tooth shape at a 3.7 Hz scanning frequency. The EB scattering by the 40 m thick linac output Titanium foil was simulated as well. 0 2 4 6 8 10 12 14 16 18 20 22 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 E B v er ti ca l se ct io n ( re l. u n .) z (cm) experiment simulation x = 6.5 mm -5 -4 -3 -2 -1 0 1 2 3 4 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 E B h o ri zo n ta l se ct io n ( re l. u n .) x (cm) experiment simulation z = 12 cm Fig. 6. The LEA-10 linac EB phase space preliminary characterization based on the glass photometry data (a) and its reproduction by the RaT 3.1 MC RT code: the absorbed dose derived glass optical density map (b) and its vertical (c) and horizontal (d) sections In Fig. 6,a, it is clearly seen that the vertical sym- metry axis of a beam scan is shifted, by xbeam, to the left of that of the IC (see also Fig. 2,d). This allows to decrease dose rates (and also -activation) in tubes I and IV and to obtain an array of low-irradiated ‘witness’ samples. The preliminary simulation (see Fig. 6,b–d) pointed to xbeam  6.5 mm as a best fit of the (see Fig. 6,a) glass photometry data. However, to characterize the most probable irradiation field, required is not so much the initial xbeam as its mean value averaged over the entire 500 h long irradiation session. To obtain it, we proposed to use the results of activation analysis of all the cou- pons. It was carried out about one month after the end of irradiation session by means of the HPGe -spect- rometer Canberra GC-2018 with fine energy resolution: FWHM = 0.8 keV at Еγ = 122.1 keV, the most intensive decay gamma line of the 57 Co radionuclide (half-life T½ = 271.6 days) which is produced in SS via two chan- nels of threshold (E  Eth) photonuclear reactions: the direct one, 58 Ni(, p)(Eth  8.2 MeV) 57 Co, and indirect 58 Ni(, n)(Eth  12.2 MeV) 57 Ni(T½ = 35.6 h) 57 Co. Fig. 7. The computer models of the linac scanning horn, irradiation cell and its loading with strained coupons The raw data for coupons 57 Co partial activities were obtained in units relative to that of the coupon IV3 (the 3 rd one counting from the bottom of the tube IV) in a series of about two-week separated measurements. In Fig. 8, they are plotted (as ) after applying proper timeshift corrections and a normalization to the utmost values of coupons III2, 3. Other markers depict the best fit output of MC modeling obtained in a series of calculations with various xbeam the activation was found to be very sensitive to. The best fit xbeam = 15 mm value differs notably from the pre-irradiation glass photometry estimate, 6.5 mm. This is probably due to both the EB drift instabilities at the linac power control maneuvering of the SCWCL coolant circulation and the thermal-elas- tic distortion of the IC channels (see Fig. 2,c). 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 0.0 0.2 0.4 0.6 0.8 1.0 1.2 tube IVtube IIItube II 5 7 C o a ct iv it y ( re l. u n .) Sample number (bottom-to-top) tube I x = 15 mm experiment EXFOR Geant4 (LEND) Fig. 8. The measured () 57 Co relative activities of 20 irradiated coupons and their best fit reproduction by the RaT 3.1 MC code modeling for xbeam = 15 mm. Direct simulation of activation () and its validation using the OECD EXFOR photonuclear data () c d a b x, cm z, cm x, cm ISSN 1562-6016. ВАНТ. 2022. №1(137) 59 The obtained optimal parameters of an experimental irradiation field were applied to computational dosime- try MC calculations resulted in the Fig. 9 data. The re- quested variability of dosimetric quantities is clearly se- en there. The irradiation load is gradually increasing in the IC channels I to III. In the tube IV, it is marginal, except of activation. Thus, the tube IV held coupons can be regarded as ‘witness’ samples wrt. the irradiation im- pact on corrosion. To a lesser extent, this also applies to the topmost samples #5 of the generally highly irradia- ted tubes I–III, where the energy spectra of electrons are peaked at 6 MeV but still have long spectral tails up to 15 MeV. Only low (< 1 MeV) energy secondary Comp- ton electrons are found in tube IV while the bremsstrah- lung gamma flux remains significant there and is appar- ent in considerable activation of ‘witness’ samples. The well-conditioned linear D  Ndpa   cross cor- relations are found in Fig. 9,b–d data. For a subsequent analysis of corrosion responses, such correlations are important to reduce the number of control variables [6]. Fig. 9. The MC simulation data on the per coupon 57 Co activities A (a), electron fluences  (b) absorbed doses D (c) and the primary radiation damage dpa (d) No linear correlation of the uncovered electron flu- ence  and absorbed dose D to the coupons’ activity A was found. Instead, the scaling dependency D  A  was revealed (Fig. 10) with the scaling parameter   0.4 in the EB irradiated tubes I–III and   ½ for the second- ary bremsstrahlung gammas activated tube IV. 0.01 0.1 1 0.1 1 10 D A 0.5 tubes I, II , III A b so rb ed d o se D ( G G y ) 57Co activity A (105 Bq) tube IV DA 0.4 Fig. 10. The revealed power law scaling dependencies (dashed lines) of the absorbed dose D and -activation activity A of the irradiated coupons (markers) Dose D is determined by the EB energy deposition in a target. It is the 1 st order process since gamma heat- ing is negligible wrt. the primary electrons one. In this sense, -activation is the 2 nd order process which is pre- dominantly due to hard secondary photons born in the 1 st order above-threshold bremsstrahlung events (the 1 st order electronuclear reactions give only a small correc- tion to the -flux induced photonuclear reactions rate due to much smaller cross-sections). The relationship between the 1 st and 2 nd order processes rates is complex and spectrally dependent. Though a simple reason for such a pronounced D  A  scaling is still unclear, it seems to follow from the specifics of the E.I.T.F. expe- rimental setup where that same target, the IC, is operat- ing both as the EB power absorber (D) and the e – -to- converter for a self-consistent -activation (A) of its own internals, coupons. The somewhat unexpectedly obtai- ned computational dosimetry based rule-of-thumb, “the dose in a sample is nearly proportional to the square root of the induced activity”, is a valuable empirical correlation which makes it possible to evaluate the ab- sorbed dose distribution in irradiated coupons by means of direct measurements of their residual activities. In the upshot, it was revealed that the coupons were irradiated to 7…22 GGy (0.7…2.2 Trad) at a rather low (~ 6·10 –4 dpa) degree of their radiation damage. These data are juxtaposed below with those of the post-irradia- tion measurements of their corrosion and oxidation. 3. POST-IRRADIATION EXAMINATION After completing the irradiation, coupons have been extracted from the IC channels holders, photographed (Fig. 11), and immediately weighed. All the strained coupons have retained their structural integrity without any kind of residual deformation. Thus, as predicted, the base static stress  under irradiation did not escape the SS domain of elasticity. Sample# 1 2 3 4 5 Fig. 11. Photos of the rear and front (wrt. the e – -beam) sides of the SS 12X18H10T strained coupons after 500 h exposure to SCW under e – -irradiation. The coolant flowed from left to right Visually, all coupons look rusty and almost do not differ in color. Scratches on both sides have not been smoothed, albeit they are marked less clear than in the initial state. On the rear, primarily concave, sides of the samples, one can see the round spot traces of the presser bolts and the parabolic trails of the waterflow past them. It is very likely that the shapes of trails can provide data on the flow speed in close proximity to the samples. a b d c 60 ISSN 1562-6016. ВАНТ. 2022. №1(137) 3.1. IRRADIATION ASSISTED CORROSION The General Corrosion Test (GCT) data of Fig. 12 were obtained using the Class 2 (±0.025 mg) equal-arm analytical laboratory balance VLR-20 by the thrice-re- peated measurements of the specific (per unit area) weight gain/loss (WG/WL) m/S = (m – m0)/S of each coupon having masses m0 and m before and after irradi- ation, respectively, and a surface area S of 7.154 cm 2 . It was found that, in average, m0 = (728.17 ± 0.74) mg, m = (728.35 ± 0.76) mg except of the much heavier CrN coated coupons III1 (m0 = 765.77 mg, m = 731.22 mg) and III4 (m0 = 764.86 mg, m = 731.26 mg). The GCT data of Fig. 12 look rather scattered in the lump. First, let’s notice three conspicuous outliers. Two of them concern the coated coupons III1, 4 which exhibit the extraordinary weight losses m/S of –484 mg/dm 2 and –472 mg/dm 2 (m = –34.5 mg and –33.6 mg), respectively. Their post-exposure masses m (731.22 and 731.26 mg) are close to those of uncoated, coupons, (728.35 ± 0.76) mg. It suggests that all the ~ 10 m thick CrN coating was almost completely re- moved (dissolved and/or broken and delaminated) under co-operative impact of a coolant flow, e – -irradiation to D  18 GGy, and static stress up to max  145 MPa. 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 -490 -480 -470 -8 -6 -4 -2 0 2 4 6 8 50 55 60  m /S ( m g /d m 2 ) Sample number tube I tube II tube III tube IV Fig. 12. The GCT measured specific weight gain (>0) or loss (<0) m/S of the irradiated coupons In surface engineering, CrN, though being prone to aging, was proven to perform as a wear-proof rust-inhi- biting coating not only in normal conditions but also in SCW (625 °C, 25 MPa) 1000 h static autoclave test [10]. However, its performance in the E.I.T.F. SCWCL cannot be rated as any reasonable. It is questionable whether this is due to a certain particular drawback of the applied vacuum-arc deposition process or points to this coating limited usability in the SCWR relevant en- vironments. Extra R&D are definitely required. An another outlier, the positive WG of 56.1 mg/dm 2 (m  4 mg) was measured for the poorly irradiated (D < 0.06 GGy) coupon IV–5, the topmost sample in the ‘witness’ channel IV of the IC. Its particular reason is still unknown. Weight gains are generally attributed to oxidation [1–3] and appearance of pronounced (flat or rough) layers of oxides (as we observed earlier [5, 6] for Zr and Ni–Cr based alloys as well as for a highly irradi- ated thermally stressed SS 12X18H10T). However, at T < 400 °C (see, e.g., [9, 11]), Fe–Cr austenitic steels ty- pically show only thin volatile oxide layers and fre- quently tend to the weight-loss corrosion kinetics [9]. The e – -irradiation enhanced oxidation suggests itself as the most probable reason of the WG prevalence in the Fig. 12 m/S data. Another one can be related to the mass deposition from the corrosion products saturated SCW coolant flow (including the CRUD [12] phenome- non at the SCWCL transients). Thereupon it is worth noting that the observed irregularities of the Fig. 13 m/S data mainly occur for the edge samples ##1, 5 of the low-irradiated IC channels I and IV and are thus expected to correlate with the specialties of the water coolant hydrodynamics at the IC inlet and outlet. Except of the above-mentioned outliers, the master array of the Fig. 12 m/S data ranges from –3 mg/dm 2 to  8 mg/dm 2 (WG of this range and  0.25 m thin oxide layers are characteristic for SS 304 and 316L at 575 h exposure to 400 °C SCW deaerated to 10 ppb DO [11]). These data exhibit certain empirical ordering trends wrt. the sample number increase with the coupon’s inlet-to- outlet position in the IC tube (see Fig. 11). They can be qualitatively correlated to those of the STH calculated coolant temperature [5–7] which is expected to increase in the EB heated channels II and III and, probably in a lesser extent, in tube I, but decreases in the ‘witness’ channel IV. The ‘main sequence’ coupons’ m/S gradu- ally decreases with the sample number in the irradiated channels I–III while shows an opposite growing trend in a low-irradiated tube IV. Both these regularities can be consolidated in the united trend of the GCT m/S de- crease with the STH temperature of a coolant. In average, m/S = +(2.58 ± 0.78) mg/dm 2 for 17 coupons of the master array exposed, for 500 h, to the SCWCL coolant (pH  5.6 ± 0.7) under irradiation. This is well comparable with the hydrostatic autoclave GCT data [9] on the same SS at a close (but entirely subcriti- cal) water environment, 350 °C, 16.5 MPa without irra- diation. The authors of ref. 9 have built kinetic curves of m/S gradual decrease for the much longer exposure of 14000 h. The corrosion rate was shown to be drasti- cally affected by the coolant pH (5.0, 7.2, and 10). Opposite to Fig. 12, no weight gain was observed in ref. 9. Despite, we ventured to compare the magnitude |m/S| as an indicator of the corrosion damage driving forces in both experiments. At a closest pH = 5, Fig. 1,a of ref. 9 reports |m/S|  2.5 since 7500 h of expo- sure (and it is only weakly changed till 14000 h). In the same figure, this characteristic threshold time falls to 4000 h at pH = 7.2 and, at least, to well comparable 750 h at a highly alkaline pH = 10. One can conclude that the effective corrosion rate is 15 to 8 times greater in our experiment than in the static autoclave test [9] at comparable pH’s without irradiation. The enhancement can be attributed to the IAC phenomenon we had al- ready observed [5, 6] for other materials. An auxiliary gain also results from the impact of the coolant Flow Accelerated Corrosion (FAC) [2] in the SCWCL. The particular purpose of our current experiment is the evaluation of the impact of the statically applied stress on the material corrosion under irradiation. In Fig. 13, the GCT master data array of m/S is plotted vs. the calculated (in Sec. 2) values of the total ionization ISSN 1562-6016. ВАНТ. 2022. №1(137) 61 dose D absorbed in coupons. We grouped these data by the characteristic value max of their tensile stress. Three lines of Fig. 13 indicate the trends discovered in the stress grouped data using the linear Least-Square Fit procedure. The linear dose D dependency of m/S is evident for the low-stress (60 MPa) samples; the similar (while less conditioned) one is found for the mediate stress 100 MPa. The coupons which obey each of such a linear correlation are located at the same level (3 or 2) in different e – -irradiated tubes I–III; so, the coolant tem- perature is nearly the same for each group. Therefore, at sufficiently low stress, one observes here the isothermal linear correlation of GCT data and absorbed dose. 0 5 10 15 20 25 -4 -2 0 2 4 6 8 IV-3 I-3 III-3 II-3 I-2 IV-2 II-2 III-2 I-4 II-1 I-1 II-4 I-5 II-5 IV-1 IV-5 III-1 III-5 IV-4 III-4  m /S ( m g /d m 2 ) Absorbed dose D (GGy) ~60 MPa ~100 MPa ~140 MPa Fig. 13. The measured GCT data for coupons with dif- ferent ranks of the applied stress and absorbed dose This correlation was first revealed, for Zr–1%Nb and alloy 690 oxidation, in the ref. [6] phenomenologi- cal data analysis of the previous E.I.T.F. experiment [5]. However, it is broken for a group of highly (~140 MPa) stressed coupons. For this group, Fig. 13 m/S data scat- ter and do not follow any smooth dose dependency. This allows to make a conjecture that the applied static stress produces its own effect on a general corrosion which… (i) …extends further the well studied impact of the IGSCC fracture [2, 3] and (ii) …is comparable by magnitude with the ef- fects of IAC and temperature. It is still too early to make final judgments about the specific nature of this effect of stress. However, sugges- tive considerations can go after the analytical results on the corroded samples microstructure we proceed to. 3.2. MICROSTRUCTURAL CHANGES Scanning electron microscopy (SEM) imaging of corrosion surfaces (CS, Fig. 14) and cross sections was obtained using the JEOL JSM-7001F and ZEISS EVO- 50XVP microscopes with Oxford Instr. INCA-450 energy-dispersive spectroscopy (EDS) X-ray analyzer. Up to date, 5 of 20 coupons from the IC channels II and III were studied: the CrN coated samples ##22, 23 (III1, 4) and ordinary (uncoated) samples ##7, 9, 10 (II2, 4, 5) (for nomenclature, refer to Fig. 2,b and Fig. 11). Initially (see Fig. 14,a), the steel exhibits ~ 1 m grains with boundaries decorated by < 0.1 m inclu- sions, probably carbides and oxides since the EDS de- rived chemistry points to 3 at.% of surface oxygen. The rest is conformant to the SS 12X18H10T nominal stoichiometry. The post-irradiation micrographs of Fig. 14,b–d dis- play a very developed ~ 1…2 m thick layer of oxidati- on and corrosion damage. It looks extremely rough and granular. The occasionally flat areas are scarce and lim- ited, by size, to several microns. It is worth noting that the representative 3000 SEM micrographs of the same material’s CS after the 360 °C autoclave test (see [9], Fig. 4) look similar but less disordered. Flat areas are common in ref. 9 (esp. for pH = 5, 7.2) despite of the much longer (14000 h) exposure time. This agrees with the enhanced IAC in much harder conditions of the coupons’ oxidation and corrosion in the SCWCL IC. Fig. 14. SEM (5000, 1 m scale bar) of a steel in an initial state (a), the post-irradiation 4000 SEM 3D view of the sample II2 slice (b) and the samples II4 (c) and II5 (d) corrosion surfaces (5000, 1 m bar) The SEM/EDS evaluated CS chemistry points to 45 at.% of oxygen and identifies the depletion of Cr (down to 10 at.% cf. the initial 18.6 at.%), Ni (9  6 at.%) and Fe (67  38 at.%). The deposit- like columnar CS morphology consists of ~ 0.2…2 m sized and frequently faceted grains, flakes and granules of metal oxides (magnetite, hematite, spinel and corun- dum-type structures) along with ferric oxyhydroxides FeO(OH) and carbides. This is peculiar to high- temperature oxidation of austenitic Fe–Cr alloys in SCW [2, 3, 11] and is close to that observed at the earli- er E.I.T.F. experiment [5]. Fig. 15. SEM of the initially coated sample III1: the 2500, 10 m scale bar CS overview (a) and the high- resolution (10000, 1 m bar) micrograph of a pit (b) The characteristic post-irradiation morphology of the a b c d a b Absorbed dose D, GGy 62 ISSN 1562-6016. ВАНТ. 2022. №1(137) CrN coating is shown in Fig. 15. Generally, it looks as random as that of uncoated coupons (see Fig. 14,c,d) but is less covered with smaller particles. Flat regions are larger. Besides, the apparent pitting (see Fig. 15,b) of a CS results in clearly outlined ~ 1 m deep pits occasion- ally filled with small (< 0.2 m) granules. The CS is only slightly less (38 at.%) oxidized than that of un- coated coupons but shows the substantial (9 at.%) con- tent of nitrogen. On the X-ray EDS maps, it is spatially localized in agglomerates (the same is valid for oxygen) and in elongated ‘strips’. This allows to identify the agglomerated particles as the oxynitrides MeOxNy of metals (Cr, Ni, Fe) and confirms the Sec. 3.1 GCT data based conclusion that we deal only with the residues of the initial-ly dense thick (9 m) coating of Cr–N stoi- chiometry. Fig. 16. The post-irradiation x-sectional SEM of the coupon’s II2 convex frontal surface middle scratch Corrosion effects of the elastic tensile stress concen- tration on scratches were examined for the 16.3 GGy ir- radiated and strained to 105 MPa coupon II2 with a ra- ther high WG = +6.16 mg/dm 2 . The stress-raiser scratch is shown in low (800) magnification in Fig. 16. It is covered by the ~1…3 m thick rough layer of oxides which is notably thinner on the scratch shoulders. The CS morphology outside the scratch and near its bottom (where the raised tensile stress xx  177.5 MPa  0.2, see Fig. 4) is presented in Fig. 17, respectively. Fig. 17. The coupon II2 CS SEM (5000, 1 m scale bar) 150 m away from the scratch (a) and inside it (b) The equal-area CS morphologies of Fig. 17 are gen- erally similar by structure (< 1 m sized particles) and chemistry (large grains are mainly of hematite Fe2O3). However, about twofold as large (~ 2 m) particles are observed more frequently near the scratch bottom. It can result from the stress enhanced intergranular oxidation and etching of grain boundaries followed by chemical transformation of etched grains into ferric oxide granu- les. An intergranular corrosion and sporadic appearance of the stress promoted crack nucleation are seen in Fig. 18. The characteristic distance between the oxygen decorated grain boundaries in Fig. 18,b is nearly the same as the size of largest particles in Fig. 17,b. Fig. 18. The compositional contrast (COMPO, 8000, 1 m scale bar) SEM of the scratch shoulder (a) and bottom (b) with the traces of intergranular oxidation (b) and crack nucleation (a) at stress risers Here we observe only a weak tendency of a material to IGSCC by the stress enhanced crack nucleation (see Fig. 18,a) while much more pronounced SCC precursors had been revealed in ref. 5 for the same material in more severe conditions of crevice corrosion, higher temperatures and differently distributed mechanical loading. To study the material tolerance to the IASCC within the currently developed controllable technique, supplementary factors are appropriate, e.g., the simula- tion of fatigue effects through the in situ application of cyclic mechanical treatment. The works are in progress. ACKNOWLEDGEMENTS This work was carried out at the expense of the budget program “Support for the Development of Pri- ority Areas of Scientific Research” (КПКВК 6541230). REFERENCES 1. P. Kritzer. Corrosion in high-temperature and supercritical water and aqueous solutions: a review // J. of Supercritical Fluids. 2004, v. 29, p. 1-29. 2. T.R. Allen, Y. Chen, X. Ren, K. Sridharan, L. Tan, G.S. Was, E. West, D. Guzonas. Material per- formance in supercritical water / R.J.M. Konings (Ed.) Comprehensive nuclear materials, v. 5. Elsevier Ltd. Amsterdam, Netherlands, 2012, p. 279-326. 3. D. Guzonas, R. Novotny, S. Penttila, A. Toivonen, W. Zheng. Materials and water chemistry for Supercritical Water-Cooled Reactors. Woodhead Publ. Ser. in Energy, Elsevier UK Ltd., Cambridge, 2018, 264 p. 4. A.S. Bakai, V.N. Boriskin, A.N. Dovbnya, S.V. Dyuldya, D. Guzonas. Supercritical Water Convec- tion Loop for SCWR materials corrosion tests under electron irradiation: First results and lessons learned // Proc. of the 6 th Int. Symp. on SCWR’s (ISSCWR-6), March 3–7, 2013, Shenzhen, Guangdong, China. Paper #ISSCWR6-13062, 14 p. 5. O.S. Bakai, V.M. Boriskin, A.M. Dovbnya, S.V. Dyuldya, D.A. Guzonas. Combined effect of irra- diation, temperature, and water coolant flow on corro- sion of Zr-, Ni-Cr, and Fe-Cr-based alloys // J. Nucl. Eng. Rad. Sci. 2016, v. 2, issue 1, 021007, 11 p. a b а b ISSN 1562-6016. ВАНТ. 2022. №1(137) 63 6. O.S. Bakai, V.M. Boriskin, M.I. Bratchenko, S.V. Dyuldya. e-Irradiation, temperature, and stress effect on corrosion of Zr-, Ni–Cr-, and Fe–Cr-based alloys near the water coolant supercritical transition // PAST. Series “Vacuum, Pure Materials, Superconduc- tors”. 2020, N 1(125), p. 68-77. 7. A.S. Bakai, V.N. Boriskin, M.I. Bratchenko, R.N. Dronov, S.V. Dyuldya, Yu.V. Gorenko, S.V. She- lepko. The cell for electron irradiation of stressed steel samples in a supercritical water flow for corrosion eval- uation // PAST. Series “Nucl. Phys. Investigations”. 2019, N 6(124), p. 172-180. 8. В.В. Кунченко, А.А. Андреев, Ю.В. Кун- ченко, Г.Н. Картмазов. CrNx-покрытия, полученные вакуумно-дуговым методом // ВАНТ. Серия «ФРП и РМ». 2004, № 3(85), с. 87-95. 9. В.С. Красноруцкий, И.А. Петельгузов, В.М. Грицина, В.А. Зуёк, М.В. Третьяков, Р.А. Рудь, Н.В. Свичкарь, Е.А. Слабоспицкая, Н.И. Ищенко. Коррозия нержавеющих сталей в условиях, имити- рующих теплоноситель первого контура реакторов ВВЭР-1000. Коррозионное поведение смешанных загрузок топлива // ВАНТ. Серия «ФРП и РМ». 2011, N 2(72), с. 80-87. 10. R. van Nieuwenhove, J. Balak, A. Toivonen, S. Penttila, U. Ehrnsten. Investigation of coatings, ap- plied by PVD, for the corrosion protection of materials in supercritical water // Proc. of the 6 th Int. Symp. on SCWR’s (ISSCWR-6), March 3–7, 2013, Shenzhen, Guangdong, China. Paper #ISSCWR6-13024, 12 p. 11. G.S. Was, S. Teysseyre, Z. Jiao. Corrosion of austenitic alloys in supercritical water // Corrosion. 2006, v. 62, issue 11, p. 989-1005. 12. S. Cassineri, J. Duff, M. Curioni, A. Banks, F. Scenini. CRUD deposition in accelerated high- temperature water: Investigation on the effect of sub- strate material and water chemistry // JNM. 2020, v. 529, p. 151915. Article received 21.10.2021 ВЫЧИСЛИТЕЛЬНАЯ ДОЗИМЕТРИЯ И ПОСЛЕОБЛУЧАТЕЛЬНЫЕ ИССЛЕДОВАНИЯ СТИМУЛИРОВАННЫХ ЭЛЕКТРОННЫМ ОБЛУЧЕНИЕМ КОРРОЗИИ И КОРРОЗИОННОГО РАСТРЕСКИВАНИЯ ПОД НАПРЯЖЕНИЕМ СТАТИЧЕСКИ ДЕФОРМИРОВАННЫХ ОБРАЗЦОВ СТАЛИ В СВЕРХКРИТИЧЕСКОМ ВОДНОМ ТЕПЛОНОСИТЕЛЕ А.С. Бакай, В.Н. Борискин, М.И. Братченко, С.В. Дюльдя Приведены и обсуждаются новые экспериментальные данные по коррозионному поведению упруго- деформированных купонов аустенитной стали 12X18H10T после 500-часовой экспозиции in situ сверхкри- тической водной конвекционной петли установки «Electron Irradiation Test Facility» ННЦ ХФТИ. Основан- ные на -активационном анализе данные вычислительной дозиметрии образцов сопоставлены с данными измерений набора или потери ими массы. Выявлено влияние поглощенной дозы и напряжения на их стиму- лированную облучением общую коррозию. Состав и микроструктура коррозионной поверхности и слоя об- суждаются с особым вниманием к влиянию облучения и напряжения на стабильность защитного покрытия, межзеренную коррозию и предвестники растрескивания. ОБЧИСЛЮВАЛЬНА ДОЗИМЕТРІЯ ТА ПІСЛЯОПРОМІНЮВАЛЬНІ ДОСЛІДЖЕННЯ СТИМУЛЬОВАНИХ ЕЛЕКТРОННИМ ОПРОМІНЕННЯМ КОРОЗІЇ ТА КОРОЗІЙНОГО РОЗТРІСКУВАННЯ ПІД НАПРУГОЮ СТАТИЧНО ДЕФОРМОВАНИХ ЗРАЗКІВ СТАЛІ В НАДКРИТИЧНОМУ ВОДНОМУ ТЕПЛОНОСІЇ О.С. Бакай, В.М. Борискін, М.І. Братченко, С.В. Дюльдя Наведені та обговорюються нові експериментальні дані щодо корозійної поведінки пружно деформова- них купонів аустенітної сталі 12X18H10T після 500-годинної експозиції in situ надкритичної водної конвек- ційної петлі установки «Electron Irradiation Test Facility» ННЦ ХФТІ. Засновані на -активаційному аналізі дані обчислювальної дозиметрії зразків зіставлені з даними вимірів набуття або втрати їх маси. Виявлений вплив поглиненої дози та напруги на їх стимульовану опроміненням загальну корозію. Склад та мікрострук- тура корозійної поверхні та шару обговорюються з особливою увагою до впливу опромінення й напруги на стабільність захисного покриття, міжзеренну корозію та передвісники розтріскування.