Microstructure and property modifications in surface layers of a AA6111 aluminum alloy induced by high-current pulsed relativistic electron beam
The processing of the AA6111-T4 aluminum alloy by the high-current relativistic electron beams affects the forming of the surface layer with a modified structure and phase state. The depth of the modified surface layer achieves 200 μm. The changes in microstructure occurring both in the near-surface...
Gespeichert in:
| Datum: | 2022 |
|---|---|
| Hauptverfasser: | , , , , , , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2022
|
| Schriftenreihe: | Вопросы атомной науки и техники |
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/195941 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Microstructure and property modifications in surface layers of a AA6111 aluminum alloy induced by high-current pulsed relativistic electron beam / D.E. Myla, V.V. Bryukhovetsky, V.V. Lytvynenko, S.I. Petrushenko, O.O. Nevgasimov, Yu.F. Lonin, A.G. Ponomarev, V.T. Uvarov // Problems of Atomic Science and Technology. — 2022. — № 2. — С. 25-31. — Бібліогр.: 24 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-195941 |
|---|---|
| record_format |
dspace |
| spelling |
nasplib_isofts_kiev_ua-123456789-1959412025-02-09T11:44:52Z Microstructure and property modifications in surface layers of a AA6111 aluminum alloy induced by high-current pulsed relativistic electron beam Модифікація мікроструктури і властивостей поверхневих шарів алюмінієвого сплаву AA6111 дією потужного імпульсного релятивістського електронного пучка Модификация микроструктуры и свойств поверхностных слоев алюминиевого сплава AA6111 действием сильноточного импульсного релятивистского электронного пучка Myla, D.E. Bryukhovetsky, V.V. Lytvynenko, V.V. Petrushenko, S.I. Nevgasimov, O.O. Lonin, Yu.F. Ponomarev, A.G. Uvarov, V.T. Physics of radiation damages and effects in solids The processing of the AA6111-T4 aluminum alloy by the high-current relativistic electron beams affects the forming of the surface layer with a modified structure and phase state. The depth of the modified surface layer achieves 200 μm. The changes in microstructure occurring both in the near-surface layer and in the modified layer can be distinguished with XDR, SEM, and EDS analyses. It is established that the aluminum-based supersaturated solid solution makes the main phase of the modified layer, whereas intermetallic phases that were present in the initial state of the alloy are not distinguished by the X-ray methods in the modified layer. There are some available microcracks and craters on the surface of the remelt layer. Discussion of the results of these observations gains a more sufficient understanding of the processes raised by the irradiation by a high-current relativistic electron beam. Обробка алюмінієвого сплаву АА6111-ТА інтенсивним імпульсним електронним пучком приводить до формування поверхневого шару з модифікованим структурно-фазовим станом. Глибина поверхневого модифікованого шару досягає 200 мкм. Зміни мікроструктури, шо відбуваються в поверхневому шарі і на молифікованій поверхні, були охарактеризовані за допомогою рентгенівської дифрактометрії, електронної мікроскопії та рентгенівського енергодисперсійного мікроаналізу. Встановлено, шо основною фазою модифікованого шару є пересичений твердий розчин на основі алюмінію, а інтерметалідні фази, які були присутні в початковому стані сплаву, рентгенографічними методами в модифікованому шарі не виявляються. На поверхні переплавленого шару присутні протяжні мікротріщини і кратери. Обговорюється значення цих спостережень для більш глибокого розуміння процесів, що відбуваються під час імпульсного електронного опромінення алюмінієвих сплавів. Обработка алюминиевого сплава АА6111-Т4 интенсивным импульсным электронным пучком приводит к формированию поверхностного слоя с модифицированным структурно-фазовым состоянием. Глубина поверхностного модифицированного слоя лостигает 200 мкм. Изменения микроструктуры, происходящие в приповерхностном слое и на модифицированной поверхности, были охарактеризованы с помощью рентгеновской дифрактометрии, электронной микроскопии и рентгеновского энергодисперсионного микроанализа. Установлено, что основной фазой модифицированного слоя является пересыщенный твердый раствор на основе алюминия, а интерметаллидные фазы, которые присутствовали в исходном состоянии сплава, рентгенографическими методами в модифицированном слое не обнаруживаются. На поверхности переплавленного слоя присутствуют протяженные микротрещины и кратеры. Обсуждается значение этих наблюдений для более глубокого понимания процессов, происходящих во время импульсного электронного облучения алюминиевых сплавов. 2022 Article Microstructure and property modifications in surface layers of a AA6111 aluminum alloy induced by high-current pulsed relativistic electron beam / D.E. Myla, V.V. Bryukhovetsky, V.V. Lytvynenko, S.I. Petrushenko, O.O. Nevgasimov, Yu.F. Lonin, A.G. Ponomarev, V.T. Uvarov // Problems of Atomic Science and Technology. — 2022. — № 2. — С. 25-31. — Бібліогр.: 24 назв. — англ. 1562-6016 PACS: 29.25.Bx, 61.80.Fe, 62.20.-x DOI: https://doi.org/10.46813/2022-138-025 https://nasplib.isofts.kiev.ua/handle/123456789/195941 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
English |
| topic |
Physics of radiation damages and effects in solids Physics of radiation damages and effects in solids |
| spellingShingle |
Physics of radiation damages and effects in solids Physics of radiation damages and effects in solids Myla, D.E. Bryukhovetsky, V.V. Lytvynenko, V.V. Petrushenko, S.I. Nevgasimov, O.O. Lonin, Yu.F. Ponomarev, A.G. Uvarov, V.T. Microstructure and property modifications in surface layers of a AA6111 aluminum alloy induced by high-current pulsed relativistic electron beam Вопросы атомной науки и техники |
| description |
The processing of the AA6111-T4 aluminum alloy by the high-current relativistic electron beams affects the forming of the surface layer with a modified structure and phase state. The depth of the modified surface layer achieves 200 μm. The changes in microstructure occurring both in the near-surface layer and in the modified layer can be distinguished with XDR, SEM, and EDS analyses. It is established that the aluminum-based supersaturated solid solution makes the main phase of the modified layer, whereas intermetallic phases that were present in the initial state of the alloy are not distinguished by the X-ray methods in the modified layer. There are some available microcracks and craters on the surface of the remelt layer. Discussion of the results of these observations gains a more sufficient understanding of the processes raised by the irradiation by a high-current relativistic electron beam. |
| format |
Article |
| author |
Myla, D.E. Bryukhovetsky, V.V. Lytvynenko, V.V. Petrushenko, S.I. Nevgasimov, O.O. Lonin, Yu.F. Ponomarev, A.G. Uvarov, V.T. |
| author_facet |
Myla, D.E. Bryukhovetsky, V.V. Lytvynenko, V.V. Petrushenko, S.I. Nevgasimov, O.O. Lonin, Yu.F. Ponomarev, A.G. Uvarov, V.T. |
| author_sort |
Myla, D.E. |
| title |
Microstructure and property modifications in surface layers of a AA6111 aluminum alloy induced by high-current pulsed relativistic electron beam |
| title_short |
Microstructure and property modifications in surface layers of a AA6111 aluminum alloy induced by high-current pulsed relativistic electron beam |
| title_full |
Microstructure and property modifications in surface layers of a AA6111 aluminum alloy induced by high-current pulsed relativistic electron beam |
| title_fullStr |
Microstructure and property modifications in surface layers of a AA6111 aluminum alloy induced by high-current pulsed relativistic electron beam |
| title_full_unstemmed |
Microstructure and property modifications in surface layers of a AA6111 aluminum alloy induced by high-current pulsed relativistic electron beam |
| title_sort |
microstructure and property modifications in surface layers of a aa6111 aluminum alloy induced by high-current pulsed relativistic electron beam |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| publishDate |
2022 |
| topic_facet |
Physics of radiation damages and effects in solids |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/195941 |
| citation_txt |
Microstructure and property modifications in surface layers of a AA6111 aluminum alloy induced by high-current pulsed relativistic electron beam / D.E. Myla, V.V. Bryukhovetsky, V.V. Lytvynenko, S.I. Petrushenko, O.O. Nevgasimov, Yu.F. Lonin, A.G. Ponomarev, V.T. Uvarov // Problems of Atomic Science and Technology. — 2022. — № 2. — С. 25-31. — Бібліогр.: 24 назв. — англ. |
| series |
Вопросы атомной науки и техники |
| work_keys_str_mv |
AT mylade microstructureandpropertymodificationsinsurfacelayersofaaa6111aluminumalloyinducedbyhighcurrentpulsedrelativisticelectronbeam AT bryukhovetskyvv microstructureandpropertymodificationsinsurfacelayersofaaa6111aluminumalloyinducedbyhighcurrentpulsedrelativisticelectronbeam AT lytvynenkovv microstructureandpropertymodificationsinsurfacelayersofaaa6111aluminumalloyinducedbyhighcurrentpulsedrelativisticelectronbeam AT petrushenkosi microstructureandpropertymodificationsinsurfacelayersofaaa6111aluminumalloyinducedbyhighcurrentpulsedrelativisticelectronbeam AT nevgasimovoo microstructureandpropertymodificationsinsurfacelayersofaaa6111aluminumalloyinducedbyhighcurrentpulsedrelativisticelectronbeam AT loninyuf microstructureandpropertymodificationsinsurfacelayersofaaa6111aluminumalloyinducedbyhighcurrentpulsedrelativisticelectronbeam AT ponomarevag microstructureandpropertymodificationsinsurfacelayersofaaa6111aluminumalloyinducedbyhighcurrentpulsedrelativisticelectronbeam AT uvarovvt microstructureandpropertymodificationsinsurfacelayersofaaa6111aluminumalloyinducedbyhighcurrentpulsedrelativisticelectronbeam AT mylade modifíkacíâmíkrostrukturiívlastivostejpoverhnevihšarívalûmíníêvogosplavuaa6111díêûpotužnogoímpulʹsnogorelâtivístsʹkogoelektronnogopučka AT bryukhovetskyvv modifíkacíâmíkrostrukturiívlastivostejpoverhnevihšarívalûmíníêvogosplavuaa6111díêûpotužnogoímpulʹsnogorelâtivístsʹkogoelektronnogopučka AT lytvynenkovv modifíkacíâmíkrostrukturiívlastivostejpoverhnevihšarívalûmíníêvogosplavuaa6111díêûpotužnogoímpulʹsnogorelâtivístsʹkogoelektronnogopučka AT petrushenkosi modifíkacíâmíkrostrukturiívlastivostejpoverhnevihšarívalûmíníêvogosplavuaa6111díêûpotužnogoímpulʹsnogorelâtivístsʹkogoelektronnogopučka AT nevgasimovoo modifíkacíâmíkrostrukturiívlastivostejpoverhnevihšarívalûmíníêvogosplavuaa6111díêûpotužnogoímpulʹsnogorelâtivístsʹkogoelektronnogopučka AT loninyuf modifíkacíâmíkrostrukturiívlastivostejpoverhnevihšarívalûmíníêvogosplavuaa6111díêûpotužnogoímpulʹsnogorelâtivístsʹkogoelektronnogopučka AT ponomarevag modifíkacíâmíkrostrukturiívlastivostejpoverhnevihšarívalûmíníêvogosplavuaa6111díêûpotužnogoímpulʹsnogorelâtivístsʹkogoelektronnogopučka AT uvarovvt modifíkacíâmíkrostrukturiívlastivostejpoverhnevihšarívalûmíníêvogosplavuaa6111díêûpotužnogoímpulʹsnogorelâtivístsʹkogoelektronnogopučka AT mylade modifikaciâmikrostrukturyisvojstvpoverhnostnyhsloevalûminievogosplavaaa6111dejstviemsilʹnotočnogoimpulʹsnogorelâtivistskogoélektronnogopučka AT bryukhovetskyvv modifikaciâmikrostrukturyisvojstvpoverhnostnyhsloevalûminievogosplavaaa6111dejstviemsilʹnotočnogoimpulʹsnogorelâtivistskogoélektronnogopučka AT lytvynenkovv modifikaciâmikrostrukturyisvojstvpoverhnostnyhsloevalûminievogosplavaaa6111dejstviemsilʹnotočnogoimpulʹsnogorelâtivistskogoélektronnogopučka AT petrushenkosi modifikaciâmikrostrukturyisvojstvpoverhnostnyhsloevalûminievogosplavaaa6111dejstviemsilʹnotočnogoimpulʹsnogorelâtivistskogoélektronnogopučka AT nevgasimovoo modifikaciâmikrostrukturyisvojstvpoverhnostnyhsloevalûminievogosplavaaa6111dejstviemsilʹnotočnogoimpulʹsnogorelâtivistskogoélektronnogopučka AT loninyuf modifikaciâmikrostrukturyisvojstvpoverhnostnyhsloevalûminievogosplavaaa6111dejstviemsilʹnotočnogoimpulʹsnogorelâtivistskogoélektronnogopučka AT ponomarevag modifikaciâmikrostrukturyisvojstvpoverhnostnyhsloevalûminievogosplavaaa6111dejstviemsilʹnotočnogoimpulʹsnogorelâtivistskogoélektronnogopučka AT uvarovvt modifikaciâmikrostrukturyisvojstvpoverhnostnyhsloevalûminievogosplavaaa6111dejstviemsilʹnotočnogoimpulʹsnogorelâtivistskogoélektronnogopučka |
| first_indexed |
2025-11-25T22:38:25Z |
| last_indexed |
2025-11-25T22:38:25Z |
| _version_ |
1849803730422071296 |
| fulltext |
ISSN 1562-6016. . 2022 2(138) 25
https://doi.org/10.46813/2022-138-025
MICROSTRUCTURE AND PROPERTY MODIFICATIONS IN SURFACE
LAYERS OF A AA6111 ALUMINUM ALLOY INDUCED BY HIGH-
CURRENT PULSED RELATIVISTIC ELECTRON BEAM
D.E. Myla1,2, V.V. Bryukhovetsky1, V.V. Lytvynenko1, S.I. Petrushenko2, O.O. Nevgasimov2,
Yu.F. Lonin3, A.G. Ponomarev3, V.T. Uvarov3
1Institute of Electrophysics and Radiating Technologies NAS of Ukraine,
Kharkiv, Ukraine
E-mail: ntcefo@yahoo.com;
2V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
E-mail: postmaster@univer.kharkov.ua;
3NSC Kharkov Institute of Physics and Technology , Kharkiv, Ukraine
E-mail: nsc@kipt.kharkov.ua
The processing of the AA6111-T4 aluminum alloy by the high-current relativistic electron beams affects the
forming of the surface layer with a modified structure and phase state. The depth of the modified surface layer
achieves 200 m. The changes in microstructure occurring both in the near-surface layer and in the modified layer
can be distinguished with XDR, SEM, and EDS analyses. It is established that the aluminum-based supersaturated
solid solution makes the main phase of the modified layer, whereas intermetallic phases that were present in the
initial state of the alloy are not distinguished by the X-ray methods in the modified layer. There are some available
microcracks and craters on the surface of the remelt layer. Discussion of the results of these observations gains a
more sufficient understanding of the processes raised by the irradiation by a high-current relativistic electron beam.
PACS: 29.25.Bx, 61.80.Fe,
INTRODUCTION
The trends to create new material with modified
surface layer properties meet the basic requirements of
modern science and technology. That is the reason for
conducting a great deal of research to study the
influence of the intense energy fluxes on the surface
properties of solid bodies. This method causes no
changes of the inner layers of the treated materials that
could change the surface properties i.e. structure,
microhardness, wear resistance, corrosion resistance in a
targeted manner. The intense energy fluxes employ
shock and electromagnetic waves, plasma jets, laser
radiation, as well as ionic fluxes, and electron beams.
The latest trend reveals that the intense pulsed electron
beam is gaining more and more attention in the field of
surface treatment employing various energy and time
beam parameters [1 10]. One of the main factors of
such influence is a heating effect connected with the
liquation of the surface layer of the metal. Whereas the
ultrarapid quenching of the liquid phase metal surface
allows forming of nonequilibrium structure and phase
states in the surface layer within unsteady temperature
fields and thermal stress. Analysis of the already
existing fundamentals and experimental materials shows
that in a short period of time under the effect of intense
pulsed electron beam radiation the material comes
through a lot of processes: ultrarapid heat gain, material
evaporation, phase transformations, irritation of acoustic
and shock waves, surface hardening, etc. However, the
physical essence of the above-mentioned processes is
understudied, preventing the complete understanding of
their mechanisms and behavior.
In this article, we investigate AA6111 aluminum
alloy launched by Alcan Company in 1983 [11]. This
alloy belongs to the wide range of the heat-treatable
aluminum alloys of the Al-Mg-Si ternary system. These
alloys come along with improved workability, corrosion
resistance, rather a high ductility so they are applied in
automotive, construction, as well as space, and aircraft
industries. The AA6111 sheets are widely used for the
production of vehicle bodies [12]. The properties of the
heat-treatable aluminum alloys sufficiently depend on
the cooling rate of the semi-finished product at the
quenching step establishing the structure and rate of the
residual stresses. Surface properties become excessively
important ones for this alloy as the vehicle bodies shall
meet improved hardness and extreme corrosion
resistance. The target of this research is to investigate
the structure and phase state, microhardness, and the
compound of the upper surface layer, and a near-surface
layer of the AA6111 aluminum alloy after its processing
by a highly-current relativistic electron beam.
EXPERIMENTAL PROCEDURE
Irradiation of alloy sheets was performed by a high-
current pulsed relativistic electron beam (HCPREB) at
the TEMP-A accelerator in the NSC KIPT of the NAS
of Ukraine [1, 5, 9]. The energy flux density at the W
target is approximately 109W/cm2 (beam energy is
E ~ 0.35 MeV, current is I ~ 2000 A, pulse duration is
i ~5 10-6 s, beam diameter is D ~ 3 cm). Irradiation was
produced by a single impulse in a vacuum at 1.3 10-3 Pa.
The microstructure was studied using a SEM Tescan
VEGA 3 LMH, a scanning electron microscope. The
Vickers microhardness was measured at room
temperature in air using the PMT-3 microhardness
tester. Microhardness tested with load of 50g and load
duration of 25 s. The qualitative and quantitative X-ray
2 ISSN 1562-6016. . 2022 2(138)
analyses were performed on a Shimadzu XRD-6100 X-
ray diffractometer. The energy dispersive X-ray
microanalysis of the local microvolumes of the
irradiated alloy layers was performed using a SEM
Tescan VEGA 3 LMH, a scanning electron microscope
with the Bruker XFlash 5010 SSD EDS detector.
The distribution of the alloying elements along the
polished specimen surface was distinguished in the
mapping mode with a SEM of Tescan VEGA 3 LMH
and the method of EDS analysis.
RESULTS AND DISCUSSION
The material investigated in this study was a
commercial AA6111-T4 aluminum alloy, with the
chemical composition listed in Table 1. T4 solution
heat-treated and naturally aged. Despite the basic
alloying elements (Si and Mg) providing with the order
and precipitation hardening the alloys of 6xxx grade can
be alloyed with copper (to improve the physical
characteristics), chromium (to compensate for the
negative impact of copper affecting the corrosion
resistance), and manganese, the last two elements
prevent the silicon segregation along the grain
boundaries [12].
Table 1
Chemical composition (wt.%)
of AA6111 aluminum alloy
Mg Si Cu Mn Fe Cr Al
0.5-0.9 0.7-1.1 0.5-0.7 0.1-0.4 0.1-0.4 0.1 Bal.
Fig. 1. Optical microscopy micrographs of initial
AA6111 alloy
Fig. 1 shows initial microstructure of the AA6111-
T4 aluminum alloy. The AA6111-T4 average grain size
was distinguished as one equal to 40 m. The grains
come in different sizes but there is no open
metallographic structure. Destructive testing of
AA6111-T4 alloy specimen at the room temperature
allowed finding out, that its tensile strength made
tensile = 340 MPa, while yield strength made
yield = 152 MPa. Ultimate tensile strength before
breaking of AA6111-T4 at room temperature
made 21%. Microhardness of AA6111-T4 alloy made
70HV0.50. The alloy showed superplastic behavior
despite its large grain sizes [13, 14]. At the temperature
equal to = 793 and the true deformation rate equal
to = 5,2 10-4 c-1 the alloy tensile strength before
breaking made 180%.
For further irradiation we cut a 100 100 mm
specimen out of AA6111-T4 sheet of 1.1 mm thickness.
The SEM micrographs in Fig. 2,a show the area of the
specimen surface of AA6111-T4 alloy irradiated by
HCPREB. The HCPREB irradiation (with the
established beam parameters in the paper) causes flash
heating rate up to 109 /s, achieving the high
temperature that dramatically exceeded the critical melt
temperature of the aluminum alloy [9]. Under the
HCPREB treatment the alloy heating rate is higher in
the deeper surface layers. The maximum energy
absorption occurs at a depth of approximately 1/3 of the
electron path in the alloy. It causes the explosion of
some remelted material with further rapid cooling and
the corresponding heat transfer to the host alloy. Such
cooling is accompanied by crystallization of the molten
material, causing structural and phase transformations.
Fig. 2. SEM image of the irradiated surface
of AA6111-T4 alloy (a); SEM image of the alloy cross-
section in the zone of electron beam irradiation (b)
The thickness of the molten layer (see Fig. 2,b)
makes 200 m. There are some microcracks and craters
on the surface (see Fig. 2,a). Fig. 2,b exhibits the
microcrack behavior propagating along the whole depth
of the remelt surface layer. The zig-zag pattern of the
microcrack distribution along the surface may be related
to the local inhomogeneity distribution of the alloying
elements in the solidified substance and with local
inhomogeneity of the strength and ductile properties of
the solidified substance in its various micro volumes.
ISSN 1562-6016. . 2022 2(138) 3
The availability of such surface microcracks is a typical
appearance of the aluminum alloys irradiated by
HCPREB [1, 3, 7, 9]. A lot of scientists [6] observe
craters and consider them as the most abundant feature
we can find on the surface of the metallic substances
irritated by HCPREB. The main assumptions explaining
the ways of crater propagating are: inhomogeneous
local melting in the near-surface layer of the host alloy
in the zones of low-melting point eutectic concentration;
projections on a rough surface, closing channels with
high current density; the presence of the beam
filamentary inclusions of high current density and the
consequent eruption of molten material towards the
beam effect [6].
Fig. 3. XRD patterns of AA6111- 4 aluminum alloy
before (a) and after (b) HCPREB irradiation
Fig. 4. A part of scaled-up XRD patterns of AA6111- 4
aluminum alloy before (a) and after (b) HCPREB
irradiation
Fig. 3 shows the XRD patterns of AA6111-T4
aluminum alloy before and after HCPEB irradiation.
Fig. 4 shows the part of the scaled-up XRD patterns of
AA6111 aluminum alloy before and after HCPEB
irradiation. Thus we can see that the highest XRD peaks
correspond to the solid aluminum-based solution phase
( Al-phase). The XRD pattern of the AA6111-T4 alloy
specimen before irradiation shows the typical phase
peaks of Al2Fe3Si4 (33.3 Fe, 44.4 Si, at.%), and
Al4Cu2Mg8Si7 (9.5 Cu, 38.1 Mg, 33.3 Si, at.%).
Whereas the XRD pattern of the AA6111-T4 alloy
specimen after irradiation comes without the Al2Fe3Si4
phase and without Al4Cu2Mg8Si7 phase. Thus, we can
come to the conclusion that either the above phases
have completely been dissolved in the aluminum matrix
at the irradiating by HCPREB or there are only their
insufficient traces. The comparison of Fig. 3,a,b XRD
patterns confirms that the irradiation affects the
redistribution of the crystal orientation of the aluminum-
based solid solution due to the change in the peak
intensity ratio in XRD patterns for Al-phase. Herewith
we can see a descending trend for Al-phase peak
intensity ratio in the irradiated layer. It makes [200] to
[111]. Moreover the irradiation by HCPREB shows the
trend to extend the Al-phase peak width. The obvious
widening trend of the Bragg reflection can be related to
the grain size reduction and the trace inner stress
increase. The Al-phase peaks of the irradiated layer in
Fig. 3 are dislocated towards the smaller angles
confirming the increase of the lattice parameter. It is
established that the lattice parameter in the irradiated
surface layer makes 0.405327 nm, whereas the as-cast
target AA6111-T4 alloy had the lattice parameter equal
to 0.404528 nm.
The SEM analysis shows the visible intermetallic
particles and their distribution along the as-cast, before
the irradiation sheet of the AA6111-T4 alloy (Fig. 5).
The specimen in Fig. 5,a has not been polished. We can
see the intermetallic particles of rough shape and that
they are distributed inhomogonicaly. The sizes of some
particles exceed 10 m. The SEM image (see Fig. 5,b)
shows the ground and polished surface of the AA611-
T4 alloy specimen. The dark spots in Fig. 5,b reveal
some cavities propagated at the specimen processing
(grinding and polishing): any mechanical treatment of
the specimen surface i.e. friction makes some solid
particles get separated out of the soft aluminum matrix
leaving the cavities on the surface.
Fig. 5,b shows the zones subjected to be tested by
EDS analyses. The zones were selected randomly. You
can check Table 2 for the as-cast chemical compound of
the selected zone of AA6111-T4 (before the irradiation
by HCPREB). Every single value in Table 2 is actually
an average value for the randomly selected zones.
Please note, that the provided T4 treatment of the as-
cast AA6111 alloy involved quenching in order to
obtain the best concentration of the alloying elements
(basically of Mg, Si and Cu) in the aluminum-based
solid solution and provide with extremely hardening
effect at the further ageing. The majority of the coarse
intermetallic particles was ground and polished away
off the surface (see Fig. 5,b). Therefore, we can
consider that the data in Table 2 shows the quantity of
the alloying elements available in the aluminum-based
solid solution of the initial AA6111-T4 alloy specimen
before irradiation step.
4 ISSN 1562-6016. . 2022 2(138)
Fig. 5. SEM image of intermetallic particles on the
surface of the AA6111 aluminum alloy: a surface
before grinding and polishing; b surface after
grinding and polishing. Zone 1 and 2 in Fig. 5,b are the
schematic dislocation of the zone to be tested by EDS
Table 2
EDS analysis results of zones 1 and 2 in Fig. 5,b
Spectrum Mg Al Si Mn Fe Cu
1 0.85 98.71 0.13 0.03 0.07 0.21
2 0.79 98.84 0.11 0.02 0.06 0.18
After studying the data in Table 2 we can confirm
that almost all magnesium and the considerate share of
copper are distributed in the aluminum-based solid
solution. Although silicon dissolution in aluminum at
room temperature is not high, some quantities of silicon
have moved into aluminum-based solid solution.
Fig. 6 shows EDS elemental maps for the specimen
alloy before irradiation by HCPREB. These images
reveal intentionally increased contrast levels in order to
better display the difference in chemical composition
between the different types of precipitates present in the
microstructure. We can see that the Si particle
availability is typical for the structure state of the
AA6111-T4 alloy. The coarse Si particle diameter can
achieve 30 m, the distribution of these particles along
the specimen treated surface is inhomogeneous. We can
explain the availability of the rather coarse Si particles
in the AA6111-T4 alloy: at room temperature the
dissolving ability of silicon in aluminum is rather high
(0.09% at 300 ). If the iron content in the alloy
exceeds the silicon content, the silicon performs ternary
compounds of AlxFexSix. The availability of magnesium
in Al-Si alloy leads to the propagating of the fine Mg2Si
particles. XRD analysis did not confirm the availability
of Mg2Si phase in the investigated alloy but it
confirmed the sufficient quantity of silicon exceeding
the iron quantity. Therefore, despite the existence of
Al2Fe3Si4 phase existence with its crystalline origin,
some quantities of silicon are present in the shape of
coarse particles that were distinguished in the EDS
elemental maps. We have to admit that XRD analyses
did not find the phase of the pure silicon. We can
explain this with the fact that the silicon particles in the
initial AA6111-T4 specimens (before irradiation) are
rather coarse ones and distributed inhomogeneously.
Fig. 6. EDS maps of the Si particles in the 6111 alloy
revealing the elemental distribution of Mg, Cu, Si, Al
Fig. 7 reveals the cross-section of the specimen in
the zone irradiated by the electron beam. Fig. 7,a shows
the zones of EDS investigations. These zones were
selected randomly both for the base metal and for the
surface layer remelted by electron beam. You can find
their chemical compounds in Table 3. Every single
value in Table 3 is an average value for the randomly
selected zones. The chemical compound is one of the
basic features of the metal structure after irradiation by
HCPREB. Table 3 data analyses and the data
comparison with the ones in Table 2 allow us to make
the following conclusions concerning the redistribution
of the alloying elements in the aluminum-based solid
solution after irradiation by HCPREB. First of all we
can notice the fact of the reduced quantities of Mg
atoms in the surface layer after irradiation. It might
occur due to the reason that the heated in vacuum alloy
surface is depleted with more volatile constituents
including Mg. But there is a reverse trend for the atoms
of Si, Cu, Fe, and Mn, their quantities are accumulating
in the irradiated by HCPREB zones. The reason for such
a behavior is the partial or complete dissolution or
melting, and further distribution in the molt of available
intermetallic phases in the initial alloy state. Thus, a
new aluminum-based solid solution propagates in the
remelted layer after irradiation by HCPREB. However
we should consider the fact of significant increase of Si
atom quantitates in the new solid solution. The reason
for such an increase can occur due to the melt of the
coarse silicon particles at the irradiation by HCPREB.
The melting temperature of silicon is 1688 K. It is rather
high temperature so there is a probability that silicon
ISSN 1562-6016. . 2022 2(138) 5
particles will not melt at the irradiation by HCPREB.
However the partial or even complete melting of silicon
particles (it depends on the particle size) can occur in
compliance with the contact melting method [15 17].
The effect of the impact fusion method occurs along
L Al + Si the boundary between the aluminum based
solid solution and silicon particle at the temperature of
850 K. At this temperature the maximal dissolutive
ability of silicon in aluminum makes 1.65% [18].
Fig. 7. The EDS elemental maps of the cross-section of
the remelted layer of AA6111-T4 alloy
Fig. 7,b d reveals the research results of the Al, Fe,
Mn, and Mg atom distribution along the cross-section of
the remelted layer performed in the mapping mode. We
can observe homogeneous behaviour of the distribution
of these atoms along the cross-section. This
homogeneous distribution of the alloying elements can
confirm the homogeneity of physical and mechanical
properties of the AA6111-T4 alloy remelted layer by
HCPREB irradiation.
Table 3
EDS analysis results of the zones selected in Fig. 7,a
Spectrum Mg Al Si Mn Fe Cu
1 0.61 98.53 0.37 0.07 0.11 0.31
2 0.57 98.56 0.41 0.05 0.13 0.28
The structure state and phase transformations in the
investigated alloy affected by the HCPREB irradiation
should lead to the changes of the alloy strength
properties i.e. mainly to microhardness. We established
the microhardness value of the layer after irradiation by
HCPEB- it was 101HV0.50. Based on the knowing
microhardness we can assume other mechanical
properties of the alloy. There are some methods to
identify the yield strength and tensile strength limits
based on the microhardness value. In compliance with
[19] the Vickers microhardness (HV) is an equivalent to
the true stress at the 8% deformation and could be found
in Equation 1:
. (1)
If to apply to the Al-Mg-Si ternary system we can
perform the conversion from yield strength (in MPa) to
hardness HV (in VPN) via a simple regression equation
[20]:
. (2)
According to Equation (2) the microhardness of the
modified layer equal to 101 V0.50 should correspond
to the 0.2 value approximately equal to 257 MPa. Thus,
we can stipulate that the yield strength of the modified
layer by the HCPREB irradiation increases over
100 MPa. It is known that precipitation age hardening is
the basic mechanism to improve the hardening of the
alloy of 6xxx grade [21]. The best mechanical
properties are achieved by employing T6 treatment
including quenching and consequent aging [22]. The
hardening of this system alloys is mostly related to
propagation of fine Mg2Si phase emission at the aging
step [21 23]. We assume that the irradiation by
HCPREB affects the hardening of AA6111-T4, by the
refining of the grain sizes, improving their dislocation
density as well as by the accumulation of the silicon and
copper quantities in the aluminum-based solid solution.
Please note, that the work [22] assures that the maximal
value of the yield strength of the AA6111 alloy equal to
340 MPa was achieved after 7 h of the aging process at
the temperature of 180
hardening of the alloy we should employ rather long
treatment whilst the the HCPEB irradiation leads to the
significant hardening in a short period of time with a
prospective probability of the further increase strengths
due to the propagating of Mg2Si particles or clusters of
the dissolved atoms [24] if the substance is operating in
high temperatures.
CONCLUSIONS
1. The irradiation by pulsed electron beam affecting
the AA6111-T4 alloy specimen leads to the melt of the
surface layer at the depth of 200 m. The surface of the
remalted layer reveals microcrack and crater patterns
propagating at the crystallization.
6 ISSN 1562-6016. . 2022 2(138)
2. XRD pattern of the AA6111-T4 alloy specimen
shows peaks of Al2Fe3Si4 phase and Al4Cu2Mg8Si7
phase, these peaks are typical for the surface before
irradiation by HCPREB, and they are not available in
the XRD pattern of the specimen after the irradiation by
HCPREB. We assume that either these phases were
completely dissolved in the aluminum matrix at the
HCPREB irradiation or there are available only their
insufficient traces in the irradiated layer. The irradiation
leads to the redistribution of the crystal orientation of
the aluminum-based solid solution.
3. After irradiation by HCPREB a new aluminum-
based solid solution is propagated in the remelted layer.
The quantities of the Mg atoms are reduced whereas the
Si, Ci, Fe, and Mn atom quantities have the reverse
trend they are accumulated in the aluminum-bases
solid solution layer after irradiation by HCPREB. These
transformations are performed due to the reason that the
heated in vacuum alloy surface is depleted with more
volatile constituents including Mg as well as the
available intermetallic phases in the initial alloy state
are partially or completely dissolved or melted, and then
distributed in the molt.
4. The structure state and phase transformations in
the alloy are caused by the HCPREB irradiation. It leads
to the hardening of the surface layer of the AA6111-T4
alloy with improving of the yield strength more than
100 MPa. The hardening of the irradiated layer is
performed due to the refining of the grain sizes,
dislocation density increase and accumulating of the
silicon and copper quantities in the aluminum-based
solid solution.
REFERENCES
1. V.V. Bryukhovetsky, V.F. Klepikov,
V.V. Lytvynenko, D.E. Myla, V.P. Poyda, A.V. Poyda,
V.T. Uvarov, Yu.F. Lonin, A.G. Ponomarev. The
features of the structural state and phase composition of
the surface layer of aluminum alloy Al-Mg-Cu-Zn-Zr
irradiated by the high current electron beam // Nuclear
Inst. and Methods in Physics Research B. 2021, v. 499,
p. 25-31.
2. Y. Hao, B. Gao, G.F. Tu , S.W. Li , C. Dong, Z.G.
Zhang / Improved wear resistance of Al 15Si alloy with
a high current pulsed electron beam treatment // Nuclear
Inst. and Methods in Physics Research B. 2011, v. 269,
p. 1499-1505.
3. D.E. Myla, V.V. Bryukhovetsky, V.V. Lytvy-
nenko, V.P. Poyda, A.V. Poyda, V.F. Klepikov,
V.T. Uvarov, Yu.F. Lonin, .G. Ponomarev // Analysis
of changes in the phase and structural state of the
surface layer of an aluminum alloy 1933, melted by a
pulsed electron beam // Problems of Atomic Science and
Technology. 2020, N 2(126), p. 33-38.
4. D.V. Zaguliaev, Yu.F. Ivanov, A.A. Klopotov,
A.M. Ustinov, V.V. Shlyarov, D.F. Yakupov. Evolution
of strength properties and defect sub-structure of the
hypoeutectic A319.0 alloy irradiated by a pulsed
electron beam and fractured under tensile stress //
Materialia. 2021, v. 20, p. 101223;
https://doi.org/10.1016/j.mtla.2021.101223
5. V.T. Uvarov, V.V. Uvarov, V.N. Robuk,
N.I. Bazaleev, A.G. Ponomarev, A.N. Nikitin,
Yu.F. Lonin, T.I. Ivankina, V.F. Klepikov,
V.V. Lytvynenko, S.Ye. Donets. Radiation acoustic
control over the thermal parameter of construction
materials irradiated by intense relativistic electron beam
// Phys. of Part. and Nucl. Latter. 2014, v. 11, N 3,
p. 274-281.
6. D.I. Proskurovsky, V.P. Rotshtein, G.E. Ozur,
Y.F. Ivanov, A.B. Markov. Physical foundations for
surface treatment of materials with low energy, high
current electron beams // Surface and Coatings
Technology. 2000, v. 125, N 1-3, p. 49-56.
7. V.V. Bryukhovetsky, A.V. Poyda, V.P. Poyda,
D.E. Milaya, Superplastic deformation of the AK4-1
alloy with a surface layer melted by electron pulse beam
// Problems of Atomic Science and Technology. 2019,
N 2(120), p. 67-73.
8. V.V. Bryukhovetskiy, N.I. Bazaleev, V.F. Klepi-
kov, V.V. Litvinenko, O.E. Bryukhovetskay, E.M. Pro-
khorenko, V.T. Uvarov, A.G. Ponomar'ov. Features of
gelation of surface of industrial aluminium alloy 6111 in
the area of influence of impulsive bunch of electrons in
the mode of pre-melting // Problems of Atomic Science
and Technology. 2011, N 2(72), p. 28-32.
9. A.G. Kobets, P.R. Horodek, Yu.F. Lonin,
V.V. Lytvynenko, A.G. Ponomarev, O.A. Startsev,
V.T. Uvarov. Melting effect on high current electron
beam on aluminum alloy 1933 // Surface Engineering
and Applied Electrochemistry. 2015, v. 51, N 5, p. 478-
482.
10 V.V. Bryukhovetskii, V.V. Litvinenko, V.F. Kle-
pikov, R.I. Kuznetsova, V.P. Poida, V.F. Kivshik, and
V.T. Uvarov. Effect of Pulse Electron Irradiation on the
Parameters of Duralumin Superplasticity // Fiz. Khim.
Obrab. Mater. 2002, N 4, p. 33-38 (in Russian).
11. P.E. Fortin, M.J. Bull, and D.M. Moore. SAE Int.
Congr. Exp., Detroit, MI, 1983, SAE Paper no. 830096.
12. P. Mukhopadhyay. Alloy Designation,
Processing, and Use of AA6XXX Series Aluminium
Alloys // ISRN Metallurgy. 2012, v. 2012, Article ID
165082, p. 1-15.
13. V.V. Bryukhovetskyy, V.P. Pojda, A.V. Poyda,
D.R. Avramets', R.I. Kuznetsova, O.P. Kryshtal',
O.L. Samsonnik, K.A. Mahmud. Mechanical properties
and structural changes during superplastic deformation
of 6111 aluminium alloy // Metallofiz. Noveishie
Tekhnol. 2009, v. 31, issue 9, p. 1289-1302 (in Russian).
14. V.V. Bryukhovetskij. On the origin of high-
temperature superplasticity of a coarse-grained avial-
type aluminum alloy // Fizika Metallov i
Metallovedenie. 2001, v. 92, issue 1, p. 107-111 (in
Russian)
15. V.V. Bryukhovetsky, R.I. Kuznetsova,
N.N. Zhukov, V.P. Poida, V.F. Klepikov. Liquid-phase
nucleation and evolution as a cause of superplasticity in
alloys of the Al-Ge system // Phys. Stat. Sol. (A). 2005,
v. 202, N 9, p. 1740-1750.
16. A.V. Pojda, V.V. Bryukhovets'ky, D.L. Voro-
nov, R.I. Kuznetsova, V.F. Klepikov. Superplastic
behaviour of an AlMg6 alloy at the high homological
temperatures // Metallofiz. Noveishie Tekhnol. 2005,
v. 27, issue 3, p. 317-330. (in Russian)
17.V.P. Poida, D.E. Pedun, V.V. Bryukhovetskii,
A.V. Poida, R.V. Sukhov, A.L. Samsonik, V.V. Lit-
ISSN 1562-6016. . 2022 2(138) 7
vinenko, Structural changes during superplastic
deformation of high-strength alloy 1933 of the Al-Mg-
Zn-Cu-Zr system // Phys. Met. Metallogr. 2013. v. 114,
N 9, p. 779-788.
18. L.F. Mondolfo. Aluminum Alloys: Structure and
Properties. London: Butterworths , 1979, 513 p.
19. D. abor. Indentation Hardness: Fifty Years on.
A Personal View // Phil. Mag. A. 1996, v. 74, N 5,
p. 1207-1212.
20. O.R. Myhr, Grong, S.J. Andersen. Modelling
of the age hardening behaviour of Al-Mg-Si alloys //
Acta Materialia. 2001, v. 49, issue 1, p. 65-75.
21. C.D. Marioara, S.J. Andersen, H.W. Zandber-
gen, R. Holmestad. The influence of alloy composition
on precipitates of the Al-Mg-Si system // Metallurgical
and Materials Transactions A. 2005, v. 36, p. 691-702.
22. S. Esmaeili, X. Wang, D.J. Lloyd, W.J. Poole.
On the precipitation-hardening behavior of the Al-Mg-
Si-Cu alloy AA6111 // Metall. Mater. Trans. A. 2003,
v. 34, p. 751-763.
23. X. Wang, S. Esmaeili, D.J. Lloyd. The sequence
of precipitation in the Al-Mg-Si-Cu alloy AA6111 //
Metallurgical and materials transactions A. 2006, v. 37,
p. 2691-2699.
24. R.K.W. Marceau, A. de Vaucorbeil, G. Sha,
S.P. Ringer, W.J. Poole. Analysis of strengthening in
AA6111 during the early stages of aging: Atom probe
tomography and yield stress modeling // Acta
Materialia. 2013, v. 61, p. 7285-7303.
Article received 20.10.2021
AA6111
. ,
,
-
-
, .
-
-
.
|