Modulation of negatively charged particle flux from penning discharge with metal hydride cathode

The features of modulation of negatively charged particle flux extracted along the magnetic field from Penning discharge with metal hydride cathode have been investigated. The separation of negative ions from coextracted electrons was performed by an electromagnetic filter with efficiency not worse...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Problems of Atomic Science and Technology
Datum:2023
Hauptverfasser: Sereda, I., Hrechko, Ya., Azarenkov, M.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2023
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/196032
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Modulation of negatively charged particle flux from penning discharge with metal hydride cathode / I. Sereda, Ya. Hrechko, M. Azarenkov // Problems of Atomic Science and Technology. — 2023. — № 1. — С. 71-73. — Бібліогр.: 9 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-196032
record_format dspace
spelling Sereda, I.
Hrechko, Ya.
Azarenkov, M.
2023-12-09T10:02:37Z
2023-12-09T10:02:37Z
2023
Modulation of negatively charged particle flux from penning discharge with metal hydride cathode / I. Sereda, Ya. Hrechko, M. Azarenkov // Problems of Atomic Science and Technology. — 2023. — № 1. — С. 71-73. — Бібліогр.: 9 назв. — англ.
1562-6016
PACS: 52.80.Sm
DOI: https://doi.org/10.46813/2023-143-071
https://nasplib.isofts.kiev.ua/handle/123456789/196032
The features of modulation of negatively charged particle flux extracted along the magnetic field from Penning discharge with metal hydride cathode have been investigated. The separation of negative ions from coextracted electrons was performed by an electromagnetic filter with efficiency not worse than 90%. It is shown that electrons in the extracted flow are deeply modulated with the frequency of the diocotron instability of the anode layer, while negative ions are not. An increase in the interelectrode distance and anode length resulted in a more pronounced expression of this effect due to the minimization of the influence of the magnetic field of the filter on the discharge.
Досліджено особливості модуляції потоку негативно заряджених частинок, витягнутих уздовж магнітного поля з розряду Пенінга з металогідридним катодом. Відділення негативних іонів від спільно витягнутих електронів проводилося електромагнітним фільтром з ефективністю не гірше, ніж 90%. Показано, що електрони у вилученому потоці глибоко модулюються на частоті діокотронної нестабільності анодного шару, а негативні іони − ні. Збільшення міжелектродної відстані та довжини анода призвело до більшого вираження цього ефекту за рахунок мінімізації впливу електромагнітного фільтра на розряд.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Problems of Atomic Science and Technology
Low temperature plasma and plasma technologies
Modulation of negatively charged particle flux from penning discharge with metal hydride cathode
Модуляція потоку негативно заряджених частинок з розряду пенинга з металогідридним катодом
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Modulation of negatively charged particle flux from penning discharge with metal hydride cathode
spellingShingle Modulation of negatively charged particle flux from penning discharge with metal hydride cathode
Sereda, I.
Hrechko, Ya.
Azarenkov, M.
Low temperature plasma and plasma technologies
title_short Modulation of negatively charged particle flux from penning discharge with metal hydride cathode
title_full Modulation of negatively charged particle flux from penning discharge with metal hydride cathode
title_fullStr Modulation of negatively charged particle flux from penning discharge with metal hydride cathode
title_full_unstemmed Modulation of negatively charged particle flux from penning discharge with metal hydride cathode
title_sort modulation of negatively charged particle flux from penning discharge with metal hydride cathode
author Sereda, I.
Hrechko, Ya.
Azarenkov, M.
author_facet Sereda, I.
Hrechko, Ya.
Azarenkov, M.
topic Low temperature plasma and plasma technologies
topic_facet Low temperature plasma and plasma technologies
publishDate 2023
language English
container_title Problems of Atomic Science and Technology
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Модуляція потоку негативно заряджених частинок з розряду пенинга з металогідридним катодом
description The features of modulation of negatively charged particle flux extracted along the magnetic field from Penning discharge with metal hydride cathode have been investigated. The separation of negative ions from coextracted electrons was performed by an electromagnetic filter with efficiency not worse than 90%. It is shown that electrons in the extracted flow are deeply modulated with the frequency of the diocotron instability of the anode layer, while negative ions are not. An increase in the interelectrode distance and anode length resulted in a more pronounced expression of this effect due to the minimization of the influence of the magnetic field of the filter on the discharge. Досліджено особливості модуляції потоку негативно заряджених частинок, витягнутих уздовж магнітного поля з розряду Пенінга з металогідридним катодом. Відділення негативних іонів від спільно витягнутих електронів проводилося електромагнітним фільтром з ефективністю не гірше, ніж 90%. Показано, що електрони у вилученому потоці глибоко модулюються на частоті діокотронної нестабільності анодного шару, а негативні іони − ні. Збільшення міжелектродної відстані та довжини анода призвело до більшого вираження цього ефекту за рахунок мінімізації впливу електромагнітного фільтра на розряд.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/196032
citation_txt Modulation of negatively charged particle flux from penning discharge with metal hydride cathode / I. Sereda, Ya. Hrechko, M. Azarenkov // Problems of Atomic Science and Technology. — 2023. — № 1. — С. 71-73. — Бібліогр.: 9 назв. — англ.
work_keys_str_mv AT seredai modulationofnegativelychargedparticlefluxfrompenningdischargewithmetalhydridecathode
AT hrechkoya modulationofnegativelychargedparticlefluxfrompenningdischargewithmetalhydridecathode
AT azarenkovm modulationofnegativelychargedparticlefluxfrompenningdischargewithmetalhydridecathode
AT seredai modulâcíâpotokunegativnozarâdženihčastinokzrozrâdupeningazmetalogídridnimkatodom
AT hrechkoya modulâcíâpotokunegativnozarâdženihčastinokzrozrâdupeningazmetalogídridnimkatodom
AT azarenkovm modulâcíâpotokunegativnozarâdženihčastinokzrozrâdupeningazmetalogídridnimkatodom
first_indexed 2025-11-24T16:51:35Z
last_indexed 2025-11-24T16:51:35Z
_version_ 1850489357875544064
fulltext ISSN 1562-6016. Problems of Atomic Science and Technology. 2023. №1(143). Series: Plasma Physics (29), p. 71-73. 71 https://doi.org/10.46813/2023-143-071 MODULATION OF NEGATIVELY CHARGED PARTICLE FLUX FROM PENNING DISCHARGE WITH METAL HYDRIDE CATHODE I. Sereda1, Ya. Hrechko1, M. Azarenkov1,2 1V.N. Karazin Kharkiv National University, Kharkiv, Ukraine; 2National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine E-mail: igorsereda@karazin.ua The features of modulation of negatively charged particle flux extracted along the magnetic field from Penning discharge with metal hydride cathode have been investigated. The separation of negative ions from coextracted electrons was performed by an electromagnetic filter with efficiency not worse than 90 %. It is shown that electrons in the extracted flow are deeply modulated with the frequency of the diocotron instability of the anode layer, while negative ions are not. An increase in the interelectrode distance and anode length resulted in a more pronounced expression of this effect due to the minimization of the influence of the magnetic field of the filter on the discharge. PACS: 52.80.Sm INTRODUCTION Due to the neutralization efficiency, that remains acceptable at higher kinetic energy, negative hydrogen (H–) ions are widely used for injection into high power proton accelerator facilities for fusion [1], and for production of medical radionuclides [2]. The initial beam of negative ions is usually produced by two well- known mechanisms: the process at the plasma surface boundary and the process in the plasma volume [3]. Cesium deposition on the plasma electrode surface is usually used in surface plasma sources that significant intensify the H– beam [4]. But it causes cesium leakage to the acceleration zone leading to operational risks. In the second case, H– ions are formed directly in the plasma volume by the mechanism of dissociative attachment of low-energy electrons to rovibrationally excited molecules of hydrogen. The current of H– beam from volume sources keeps much low intensity, then from surface plasma sources, but they are more reliable and environmentally friendly (cesium free). Source operation with metal hydride cathode is known to increase the production of H– ions [5]. The stored hydrogen is chemically bounded and released in an atomic state at the required rate under the discharge current impact. Highly rovibrationally excited molecules H2* are formed by the recombination of H- atoms at the metal hydride surface, which then can be easily converted to H– by dissociative electron attachment [6]. Previously we reported about successful application of metal hydride cathode in Penning negative ion source [5]. The extraction of negatively charged particles are performed along the magnetic field followed by the separation of H– ions by electromagnetic filter. But there are about 10% electrons in the registered H– current despite the successful separation in general [7]. These are axial electrons, which are weakly affected the transverse component of magnetic field of the filter. The purpose of this paper is to study the modulation of extracted current of negatively charged particles in order to find the way to improve separation performance. 1. EXPERIMENTAL SETUP A schematic illustration of the experimental apparatus is shown in Fig. 1. The discharge cell consists of a water-cooled metal hydride cathode 1, a tubular anode 4 and a copper cathode 5, which are placed in an external uniform longitudinal magnetic field Hzo0 = 0…0.1 T. The metal hydride cathode was produced from hydride-forming alloy Zr50V50 using the standard method of metal hydride preparation includes its melting, activation and filling with hydrogen. The hydrogen amount which is absorbed by hydride material was ~ 190 cm3/g at atmospheric pressure and room temperature. Since the process of the alloy uptake with hydrogen is accompanied by the crystal lattice destruction, the obtained hydride powder was mixed with a cooper binder and then pressed in a disk 2 cm in diameter with the thickness of 0.4 cm. IAC +Ugrid 1 4 5 6 7 8 9 Icol z Hz0 Hzo0 z,cm 0 1 2 3 4 5 6 7 8 9 Hcoil water 2 3 + − 100 pF Ud UAC 16 µF 4.7 pF 4.7 nF 20 MΩ 20 kΩ 12 Ω 10 kΩ 1 kΩ Fig. 1. The schematic illustration of the Penning type H– ion source: 1 – metal hydride cathode; 2 – cathode-holder with water-cool; 3 – thermocouple; 4 – anode; 5 – copper cathode with an aperture; 6 – reflecting grid; 7 – electrons collector; 8 – filter magnetic coil; 9 – H– ion collector; Hzo0 – main axial Penning magnetic field (Hzo0 = 0…0.1 T); Hcoil – reverse magnetic field of the filter Due to the water-cool of metal hydride its temperature was not exceed 20 0С, that much lower than the temperature of thermal destruction of hydride phases. Therefore, H2* desorption is determined only by 72 ISSN 1562-6016. Problems of Atomic Science and Technology. 2023. №1(143) a discharge current and is provided mainly by ion- stimulated processes from the surface of metal hydride. A flow of negatively charged particles including negative ions and electrons along with positive ions was registered along the external magnetic field through an aperture in the cathode 5. The separation of H– ions was performed by electromagnetic filter. It includes a grid 6 for positive ions retarding, a magnetic coil 8 to divert electrons, a collector of diverted electrons 7 and a collector of extracted axial beam of H– ions 9. The coil 8 creates a reverse magnetic field Hcoil between the cathode 5 and the collector 9, so that the resulting field Hz0 in the gap is enough to divert electrons on the collector 7. The required values of the field Hz0 and grid potential in the filter were calculated from the analysis of electrons and H– ions trajectories by numerical solution of a motion equation in axially symmetric electric and magnetic fields [7]. The discharge operation is ensured by positive potential Ud application to the anode. The cathodes have ground potential. All studies were carried out only on hydrogen desorbed from metal hydride cathode under the ion current impact from discharge plasma without external gas injection at residual pressure of 210-6 Torr. 2. RESULTS AND DISCUSSION A voltage applied to the anode is concentrated in anode layer region of negative space charge, forming approximately radial component of electric field. The central plasma is almost field-free, where the electrons oscillate between cathode layers. The creation of H– ions takes place near the metal hydride cathode followed by the ejection in longitudinal direction. Previously we analyzed the behavior of H– current depending on plasma electron temperature Te [8]. The main conclusion was the more Te, the closer electron reflects from the metal hydride cathode. But revealed in [9] existence of electrons groups with different energy leads to a discrepancy between the experimental data and the calculated ones. The groups of electrons with different energies appear due to heating on the instability of the anode layer. The characteristic dependence of the oscillation frequency, measured on the anode with spectrum analyzer, on the magnetic field 1/f ~ H indicates on a diocotron type instability (Fig. 2). Oscillation amplitude A (in relative units) behaves non-linearly and is characterized by large values in the range of magnetic fields from 0.06 to 0.083 T. The region to 0.05 T was not considered, since no sufficient yield of negative ions was observed here [5]. The study of H– ion beam modulation was performed with an oscilloscope, connected to the H– ion collector 9 (see Fig. 1) of the electromagnetic filter. The spectra were taken with oscilloscope in the spectrum analyser mode using Hanning method (Figs. 3, 4). The figures represent the obtained results, where the change in the main harmonic of the signal was evaluated. The screenshots of the oscilloscope screen are given for the magnetic field, where the modulation suppression effect is the most efficient. 0,04 0,06 0,08 0,10 0,010 0,015 0,020 0,025 1 /f , M H z-1 Hzo0 , T 0 20 40 60 80 A , re la ti v e u n it s Fig. 2. The dependence of frequency and arbitrary amplitude of oscillation in anode layer on magnetic field at Ud = 5 kV, Id = 0.8 mA, P = 510-6 Torr 0,0 0,2 0,4 0,6 0,8 1,0 1,2 0 5 10 15 20 25 30 35 40 45 50 55 60 65 A , m V Hzo0 / Hz0 Hzo0 = 0.07 T Hzo0 = 0.08 T Hzo0 = 0.09 T Hzo0 = 0.1 T Hzo0 = 0.07 T P = 2*10-6 Torr, Ud = 5 kV, Short cell Fig. 3. The oscillograms and the dependence of arbitrary amplitude of oscillation of extracted negative current on Hzo0/Hz0 in case of short cell When resulting magnetic field Hz0 in the gap of electromagnetic filter is equal to the main axial Penning magnetic field Hzo0, the axial electrons are diverted and do not fall on H– ion collector [5]. So, a decrease of the oscillation amplitude in Fig. 3 can be associated with the modulation of the electron flow. Incomplete suppression of oscillations is due to the fact that a part of the near-axis electrons, which is weakly sensitive to the action of the transverse component of the magnetic field, passes to the H– ion collector. According to [5], their part is about 10 % of the total number of electrons. However, the effects associated with the diffusion of electrons across the magnetic field, as well as possible electromagnetic pickups, are not taken into account here. Nonetheless, one can also see the correlation between the intensity of oscillations in the anode layer and the suppression efficiency. The oscillation amplitude in the anode layer is non-linear (see Fig. 2) and possess large values for magnetic fields from 0.06 P = 2∙10-6 Torr, ISSN 1562-6016. Problems of Atomic Science and Technology. 2023. №1(143) 73 to 0.083 T. It is in this range the most pronounced effect of suppression of the intensity of oscillations is appeared. 0,0 0,2 0,4 0,6 0,8 1,0 1,2 0 5 10 15 20 25 30 35 40 45 50 55 60 65 A , m V Hzo0 / Hz0 Hzo0 = 0.07 T Hzo0 = 0.08 T Hzo0 = 0.09 T Hzo0 = 0.1 T Hzo0 = 0.08 T P = 2*10-6 Torr, Ud = 5 kV, Long cell Fig. 4. The oscillograms and the dependence of arbitrary amplitude of oscillation of extracted negative current on Hzo0 / Hz0 in case of long cell Increasing the distance between cathodes and anode from 0.4 to 1 cm makes the suppression effect clearer, obviously, due to the decrease of the influence of the filter on the discharge plasma. CONCLUSIONS Hydrogen desorption in activated state from metal hydride cathode, caused by ion bombardment of the surface, leads to intensification of H– ions formation and ejection them in longitudinal direction together with electrons, which have got different energies due to heating on the instability of the anode layer. Thereby electrons in the extracted flow of negative particles are deeply modulated with the frequency of the diocotron instability of the anode layer, while negative ions are not. An increase in the interelectrode distance and anode length resulted in a more pronounced expression of this effect due to the minimization of the influence of the magnetic field of the filter on the discharge. The effect of the modulation of extracted electron current can open the way for improving the separation performance. REFERENCES 1. V. Antoni, D. Aprile, M. Cavenago, G. Chitarin, et al. Physics design of the injector source for ITER neutral beam injector (invited) // Rev. Sci. Instr. 2014, v. 85, p. 02B128. 2. P.W. Schmor. Review of Cyclotrons for the Production of Radioactive Isotopes for Medical and Industrial Applications // Rev. of Accelerator Sci. Technol. 2011, v. 4, p. 103-116. 3. M. Bacal, M. Wada. Negative hydrogen ion production mechanisms // Appl. Phys. Rev. 2015, v. 2, p. 021305. 4. V. Dudnikov. Thirty years of surface plasma sources for efficient negative ion production // Rev. Sci. Instr. 2002, v. 73, p. 992-994. 5. I. Sereda, A. Tseluyko, N. Azarenkov, D. Ryab- chikov, Ya. Hrechko. Effect of metal-hydride hydrogen activation on longitudinal yield of negative ions from PIG // Int. J. Hydrogen Energy. 2017, v. 42, p. 21866- 21870. 6. C. Schermann, F. Pichou, M. Landau, I. C̆adez̆, R.I. Hall. Highly excited hydrogen molecules desorbed from a surface: Experimental results // J. Chem. Phys. 1994, v. 101, p. 8152-8158. 7. I. Sereda, Ya. Hrechko, Ie. Babenko, A. Kashaba. Peculiarities of electromagnetic filter operation in penning source with metal hydride cathode // Problems of Atomic Science and Technology. Series “Plasma Physics” (26). 2020, № 6, p. 111-114. 8. I. Sereda, A. Tseluyko, D. Ryabchikov, Ya. Hrechko, N. Azarenkov. The increasing of H– current from Penning ion source with electrically biased metal hydride cathode // Vacuum. 2019, v. 162, p. 163-167. 9. I. Sereda, Y. Hrechko, Ie. Babenko. The plasma parameters of penning discharge with negatively biased metal hydride cathode at longitudinal emission of H– ions // East. Eur. J. Phys. 2021, v. 3, p. 81-86. Article received 21.11.2022 МОДУЛЯЦІЯ ПОТОКУ НЕГАТИВНО ЗАРЯДЖЕНИХ ЧАСТИНОК З РОЗРЯДУ ПЕНИНГА З МЕТАЛОГІДРИДНИМ КАТОДОМ І. Середа, Я. Гречко, М. Азарєнков Досліджено особливості модуляції потоку негативно заряджених частинок, витягнутих уздовж магнітного поля з розряду Пенінга з металогідридним катодом. Відділення негативних іонів від спільно витягнутих електронів проводилося електромагнітним фільтром з ефективністю не гірше, ніж 90 %. Показано, що електрони у вилученому потоці глибоко модулюються на частоті діокотронної нестабільності анодного шару, а негативні іони − ні. Збільшення міжелектродної відстані та довжини анода призвело до більшого вираження цього ефекту за рахунок мінімізації впливу електромагнітного фільтра на розряд. P = 2∙10-6 Torr,