Study of wear of the building-up zone of martensite-austenitic and secondary hardening steels of the Cr-Mn-Ti system
The work deals with wear of the building-up zone of martensite-austenitic and secondary hardening steels of the Cr-Mn-Ti system (partially alloyed with Mo, B, and V). Additional alloying of the studied steels with titanium in the amount of 2…5% supported avoiding cleavages along the building-up zone...
Збережено в:
| Опубліковано в: : | Problems of Atomic Science and Technology |
|---|---|
| Дата: | 2023 |
| Автори: | , , , , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2023
|
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/196088 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Study of wear of the building-up zone of martensite-austenitic and secondary hardening steels of the Cr-Mn-Ti system / D.B. Hlushkova, V.A. Bagrov, V.A. Saenko, V.M. Volchuk, A.V. Kalinin, N.E. Kalinina // Problems of Atomic Science and Technology. — 2023. — № 2. — С. 105-109. — Бібліогр.: 14 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-196088 |
|---|---|
| record_format |
dspace |
| spelling |
Hlushkova, D.B. Bagrov, V.A. Saenko, V.A. Volchuk, V.M. Kalinin, A.V. Kalinina, N.E. 2023-12-10T12:43:25Z 2023-12-10T12:43:25Z 2023 Study of wear of the building-up zone of martensite-austenitic and secondary hardening steels of the Cr-Mn-Ti system / D.B. Hlushkova, V.A. Bagrov, V.A. Saenko, V.M. Volchuk, A.V. Kalinin, N.E. Kalinina // Problems of Atomic Science and Technology. — 2023. — № 2. — С. 105-109. — Бібліогр.: 14 назв. — англ. 1562-6016 DOI: https://doi.org/10.46813/2023-144-105 https://nasplib.isofts.kiev.ua/handle/123456789/196088 621.891 The work deals with wear of the building-up zone of martensite-austenitic and secondary hardening steels of the Cr-Mn-Ti system (partially alloyed with Mo, B, and V). Additional alloying of the studied steels with titanium in the amount of 2…5% supported avoiding cleavages along the building-up zone. It was determined that there is a 7…15 μm wide parent metal zone next to the weld line. The influence of temperature on the weld toughness of the building-up zone was assessed according to the criterion of Malkin and Tetelman. The microhardness of the surface layers of built-up layers and the range of its dispersion are close to the results of laboratory tests, where Тcₜ ∼ 823 K. This approves the formation of structure of metal of contact volumes with the collective effect of heating, plastic deformation and diffusion. It was experimentally approved that the change of microhardness in the sub-surface layers at the wear stage is justified simultaneously with the processes of mutual diffusion of friction pair materials, selective oxidation and thermodiffusion redistribution of the hardening phase under the influence of temperatures and deformations. The diffusion coefficient in the deformed sub-surface layer, which is up to some dozen micrometers thick, is one of the values providing the kinetics of growing of nuclear cracks and development of destruction cracks. The received results provide an opportunity to use martensite-austenitic and secondary hardening steels of the Cr-Mn-Ti system with built-up surface for the hot forming tools. Досліджується зношування зони наплавлення мартенситно-аустенітних і вторинно-твердіючих сталей системи Cr-Mn-Ti (частково легованих Mo, B, V). Додаткове легування досліджуваних сталей титаном у кількості 2…5% сприяло запобіганню сколам по зоні сплавлення. Встановлено, що поблизу лінії сплаву знаходиться зона основного металу шириною 7…15 мкм. Вплив температури на в’язкість руйнування зони наплавлення оцінювався за критерієм Малкіна та Тетельмана. Мікротвердість поверхневих наплавлених шарів та діапазон її розкиду близькі результатам лабораторних випробувань при Тcₜ ∼ 823 К. Це свідчить про формування структури металу контактних об’ємів сукупною дією нагріву, пластичної деформації, дифузії. Експериментально підтверджено, що зміна мікротвердості в приповерхневих шарах на стадії зносу зумовлено паралельно процесами взаємної дифузії матеріалів пар тертя, виборчого окислення і термодифузійного перерозподілу зміцнюючої фази під дією температур і деформацій. Коефіцієнт дифузії в деформованому приповерхневому шарі товщиною до кількох десятків мікрометрів є однією з величин, що зумовлюють кінетику зростання зародкових тріщин та розвитку тріщин руйнування. Отримані результати дають можливість використовувати мартенситно-аустенітні та вторинно-твердіючі сталі системи Cr-Mn-Ti з наплавленою поверхнею для інструменту гарячого деформування. en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Problems of Atomic Science and Technology Physics of radiation and ion-plasma technologies Study of wear of the building-up zone of martensite-austenitic and secondary hardening steels of the Cr-Mn-Ti system Дослідження зношування зони наплавлення мартенситно-аустенітних і вторинно-твердіючих сталей системи Cr-Mn-Ti Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Study of wear of the building-up zone of martensite-austenitic and secondary hardening steels of the Cr-Mn-Ti system |
| spellingShingle |
Study of wear of the building-up zone of martensite-austenitic and secondary hardening steels of the Cr-Mn-Ti system Hlushkova, D.B. Bagrov, V.A. Saenko, V.A. Volchuk, V.M. Kalinin, A.V. Kalinina, N.E. Physics of radiation and ion-plasma technologies |
| title_short |
Study of wear of the building-up zone of martensite-austenitic and secondary hardening steels of the Cr-Mn-Ti system |
| title_full |
Study of wear of the building-up zone of martensite-austenitic and secondary hardening steels of the Cr-Mn-Ti system |
| title_fullStr |
Study of wear of the building-up zone of martensite-austenitic and secondary hardening steels of the Cr-Mn-Ti system |
| title_full_unstemmed |
Study of wear of the building-up zone of martensite-austenitic and secondary hardening steels of the Cr-Mn-Ti system |
| title_sort |
study of wear of the building-up zone of martensite-austenitic and secondary hardening steels of the cr-mn-ti system |
| author |
Hlushkova, D.B. Bagrov, V.A. Saenko, V.A. Volchuk, V.M. Kalinin, A.V. Kalinina, N.E. |
| author_facet |
Hlushkova, D.B. Bagrov, V.A. Saenko, V.A. Volchuk, V.M. Kalinin, A.V. Kalinina, N.E. |
| topic |
Physics of radiation and ion-plasma technologies |
| topic_facet |
Physics of radiation and ion-plasma technologies |
| publishDate |
2023 |
| language |
English |
| container_title |
Problems of Atomic Science and Technology |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Дослідження зношування зони наплавлення мартенситно-аустенітних і вторинно-твердіючих сталей системи Cr-Mn-Ti |
| description |
The work deals with wear of the building-up zone of martensite-austenitic and secondary hardening steels of the Cr-Mn-Ti system (partially alloyed with Mo, B, and V). Additional alloying of the studied steels with titanium in the amount of 2…5% supported avoiding cleavages along the building-up zone. It was determined that there is a 7…15 μm wide parent metal zone next to the weld line. The influence of temperature on the weld toughness of the building-up zone was assessed according to the criterion of Malkin and Tetelman. The microhardness of the surface layers of built-up layers and the range of its dispersion are close to the results of laboratory tests, where Тcₜ ∼ 823 K. This approves the formation of structure of metal of contact volumes with the collective effect of heating, plastic deformation and diffusion. It was experimentally approved that the change of microhardness in the sub-surface layers at the wear stage is justified simultaneously with the processes of mutual diffusion of friction pair materials, selective oxidation and thermodiffusion redistribution of the hardening phase under the influence of temperatures and deformations. The diffusion coefficient in the deformed sub-surface layer, which is up to some dozen micrometers thick, is one of the values providing the kinetics of growing of nuclear cracks and development of destruction cracks. The received results provide an opportunity to use martensite-austenitic and secondary hardening steels of the Cr-Mn-Ti system with built-up surface for the hot forming tools.
Досліджується зношування зони наплавлення мартенситно-аустенітних і вторинно-твердіючих сталей системи Cr-Mn-Ti (частково легованих Mo, B, V). Додаткове легування досліджуваних сталей титаном у кількості 2…5% сприяло запобіганню сколам по зоні сплавлення. Встановлено, що поблизу лінії сплаву знаходиться зона основного металу шириною 7…15 мкм. Вплив температури на в’язкість руйнування зони наплавлення оцінювався за критерієм Малкіна та Тетельмана. Мікротвердість поверхневих наплавлених шарів та діапазон її розкиду близькі результатам лабораторних випробувань при Тcₜ ∼ 823 К. Це свідчить про формування структури металу контактних об’ємів сукупною дією нагріву, пластичної деформації, дифузії. Експериментально підтверджено, що зміна мікротвердості в приповерхневих шарах на стадії зносу зумовлено паралельно процесами взаємної дифузії матеріалів пар тертя, виборчого окислення і термодифузійного перерозподілу зміцнюючої фази під дією температур і деформацій. Коефіцієнт дифузії в деформованому приповерхневому шарі товщиною до кількох десятків мікрометрів є однією з величин, що зумовлюють кінетику зростання зародкових тріщин та розвитку тріщин руйнування. Отримані результати дають можливість використовувати мартенситно-аустенітні та вторинно-твердіючі сталі системи Cr-Mn-Ti з наплавленою поверхнею для інструменту гарячого деформування.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/196088 |
| citation_txt |
Study of wear of the building-up zone of martensite-austenitic and secondary hardening steels of the Cr-Mn-Ti system / D.B. Hlushkova, V.A. Bagrov, V.A. Saenko, V.M. Volchuk, A.V. Kalinin, N.E. Kalinina // Problems of Atomic Science and Technology. — 2023. — № 2. — С. 105-109. — Бібліогр.: 14 назв. — англ. |
| work_keys_str_mv |
AT hlushkovadb studyofwearofthebuildingupzoneofmartensiteausteniticandsecondaryhardeningsteelsofthecrmntisystem AT bagrovva studyofwearofthebuildingupzoneofmartensiteausteniticandsecondaryhardeningsteelsofthecrmntisystem AT saenkova studyofwearofthebuildingupzoneofmartensiteausteniticandsecondaryhardeningsteelsofthecrmntisystem AT volchukvm studyofwearofthebuildingupzoneofmartensiteausteniticandsecondaryhardeningsteelsofthecrmntisystem AT kalininav studyofwearofthebuildingupzoneofmartensiteausteniticandsecondaryhardeningsteelsofthecrmntisystem AT kalininane studyofwearofthebuildingupzoneofmartensiteausteniticandsecondaryhardeningsteelsofthecrmntisystem AT hlushkovadb doslídžennâznošuvannâzoninaplavlennâmartensitnoaustenítnihívtorinnotverdíûčihstaleisistemicrmnti AT bagrovva doslídžennâznošuvannâzoninaplavlennâmartensitnoaustenítnihívtorinnotverdíûčihstaleisistemicrmnti AT saenkova doslídžennâznošuvannâzoninaplavlennâmartensitnoaustenítnihívtorinnotverdíûčihstaleisistemicrmnti AT volchukvm doslídžennâznošuvannâzoninaplavlennâmartensitnoaustenítnihívtorinnotverdíûčihstaleisistemicrmnti AT kalininav doslídžennâznošuvannâzoninaplavlennâmartensitnoaustenítnihívtorinnotverdíûčihstaleisistemicrmnti AT kalininane doslídžennâznošuvannâzoninaplavlennâmartensitnoaustenítnihívtorinnotverdíûčihstaleisistemicrmnti |
| first_indexed |
2025-11-24T19:09:17Z |
| last_indexed |
2025-11-24T19:09:17Z |
| _version_ |
1850493566666670080 |
| fulltext |
ISSN 1562-6016. Problems of Atomic Science and Technology. 2023. №2(144) 105
https://doi.org/10.46813/2023-144-105
UDC 621.891
STUDY OF WEAR OF THE BUILDING-UP ZONE OF MARTENSITE-
AUSTENITIC AND SECONDARY HARDENING STEELS
OF THE Cr-Mn-Ti SYSTEM
D.B. Hlushkova1, V.A. Bagrov1, V.A. Saenko1,
V.M. Volchuk2, A.V. Kalinin2, N.E. Kalinina3
1Kharkiv National Automobile and Highway University, Kharkiv, Ukraine
E-mail: diana@khadi.kharkov.ua;
2Prydnіprovska State Academy of Civil Engineering and Architecture, Dnipro, Ukraine;
3Oles Honchar Dnipro National University, Dnipro, Ukraine
E-mail: diana.borisovna@gmail.com
The work deals with wear of the building-up zone of martensite-austenitic and secondary hardening steels of the
Cr-Mn-Ti system (partially alloyed with Mo, B, and V). Additional alloying of the studied steels with titanium in the
amount of 2…5% supported avoiding cleavages along the building-up zone. It was determined that there is a
7…15 µm wide parent metal zone next to the weld line. The influence of temperature on the weld toughness of the
building-up zone was assessed according to the criterion of Malkin and Tetelman. The microhardness of the surface
layers of built-up layers and the range of its dispersion are close to the results of laboratory tests, where ТСт ~ 823 K.
This approves the formation of structure of metal of contact volumes with the collective effect of heating, plastic
deformation and diffusion. It was experimentally approved that the change of microhardness in the sub-surface
layers at the wear stage is justified simultaneously with the processes of mutual diffusion of friction pair materials,
selective oxidation and thermodiffusion redistribution of the hardening phase under the influence of temperatures
and deformations. The diffusion coefficient in the deformed sub-surface layer, which is up to some dozen
micrometers thick, is one of the values providing the kinetics of growing of nuclear cracks and development of
destruction cracks. The received results provide an opportunity to use martensite-austenitic and secondary hardening
steels of the Cr-Mn-Ti system with built-up surface for the hot forming tools.
INTRODUCTION
Quality of the surface layers of metal greatly
determines its durability and wear resistance [1, 2]. For
this purpose, various methods are used. For instance,
such methods include detonation sputtering [3];
reinforcement of layers of steam turbine blades [4];
obtaining gas-plasma coatings [5, 6]; laser treatment [7];
modes of thermal treatment for the purpose of getting
the required level of mechanical properties of details [8,
9]; nanomodification treatment [10], etc.
One of potentially productive approaches to
improving the service characteristics of metal materials
is depositing of their surface [11, 12]. In order to
implement this process of depositing, observing the set
technology parameters in the operating space is
required. The operating space of the parameters of the
technology of acquiring deposited surface is determined
by many factors (material make, processing modes, etc.)
that influence its durability.
One of the factors influencing the durability of the
hot forming tools is temperature. The influence of
temperature is related to the following events taking
place in the surface and sub-surface layers:
– change of indicators of mechanical properties after
temperature rising;
– tempering and structural transformation;
– manifestation of secondary deformations and
stresses caused by the inequality of temperature
distribution.
Therefore, the task of studying wear of the building-
up zone is current. Research of wear of the building-up
zone of martensite-austenitic and secondary hardening
steels of the Cr-Mn-Ti system was performed in the
work. At the same time, the diffusion coefficient in the
deformed sub-surface layer, which supports the
development of its destruction cracks, was considered.
MATERIAL AND METHODS
OF THE STUDY
For building-up of the studied materials, copper
moulds were used. Cooling of the metastable steels of
the Cr-Mn-Ti system (partially alloyed with Mo, B, and
V) was performed forcefully according to the 30480-97
standard of product wear resistance.
The wear resistance of the material was determined
using the 2070 CT-1 installation, using the board-disc
methodic. At the same time, the disc was rotating at the
speed of 0.5 m/s, the load on the sample being 25 and
50 N. The board was made of the 45X steel, the HRC of
which is within the range of 47–49 units.
Measurement of the temperature of samples and rods
was also performed during back-and-forth movement,
using the chromel-alumel thermocouple of 0.1 mm
radius. The speed of the temperature change recording
ribbon was 2.160 mm/min.
The study of the primary structure of metallographic
specimens of built-up steels showed the presence of
white interfacial layers that are hardly pickled, and their
width is insignificantly different (Figs. 1 and 2).
mailto:diana@khadi.kharkov.ua
106 ISSN 1562-6016. Problems of Atomic Science and Technology. 2023. №2(144)
20Х3Г9М5Т2С 40Х4Г9Т2С
Fig. 1. Structure of the alloying zone. Transverse template, ×100
20Х3Г9М5Т2С 40Х4Г9Т2С
Fig. 2. Structure of the alloy zone. Transverse template, ×100
The metallographic analysis of the interfacial layers
showed that in most cases their location copies the front
of crystallization of the built-up metal.
RESULTS AND DISCUSSION
Additional alloying of these steels with titanium in
the amount of 2…5% supported avoiding cleavages
along the building-up zone. There is a parent metal
zone, which is 7…15 µm wide, next to the weld line,
the microhardness of which is slightly lower than the
microhardness of the parent metal, which provides
evidence of diffuse processes [12]. The microstructure
of built-up chrome-manganese metal with up to 4% of
titanium is shown on Fig. 3.
The comparison of calculated and experimental
values of wear intensity showed that the calculated
values of wear intensity may be used for rough estimate
of wear resistance of alloys of various chemical
composition, but of similar structural classes. According
to the fatigue wear theory, the destruction of surface
layers during external friction is due to alternating load
[13]. In some cases, during normal stress corresponding
to elastic deformations, plastic deformation along the
surface layers is caused by shear stress. In case of
plastic contact load leading to plastic flow, it
significantly depends on the molecular component of
the friction coefficient.
1.07% С, ×600
1.31% С, ×600
a
×200
×600
b
Fig. 3. Microstructure of built-up chrome-managanese metal with up to 4% content of titanium:
a – Cr: 9.51; Mn: 8.86; Si: 1.87%; b – Cr: 8.20; Mn: 7.54; Si: 1.87%
ISSN 1562-6016. Problems of Atomic Science and Technology. 2023. №2(144) 107
A characteristic feature of all the studied alloys is
graduate reduction of spread of microhardness values
regarding the depth of the friction zone.
The change of microhardness in the sub-surface
layers at the wear stage is due to simultaneous processes
of mutual diffusion of materials of friction pairs,
selective oxidation and thermodiffuse re-distribution of
the hardening phase under the influence of temperature
and deformations. The listed changes have various
influences on the intensity of wear of the studied
materials.
The microhardness of the surface layers of built-up
layers and the range of its dispersion are close to the
results of laboratory tests, where ТСт ~ 823 K (Fig. 4),
which means that the formation of structure of metal of
contact volumes takes place due to collective effect of
heating, plastic deformation and diffusion.
The diffusion coefficient in the deformed sub-
surface layer, which is up to some dozen micron thick,
is one of the values providing the kinetics of growing of
nuclear cracks and development of destruction cracks.
Indeed, the critical length of the nuclear crack on the
background of influence of its normal stress area is
determined by the (1) equation:
( ) 221
2
−
е
л
E
l , ( )
0.5
к Пl D , (1)
where γе=γ0+γр is the effective surface energy.
0 100 300 500 700 900 Z, мм
3000
4000
5000
6000
7000
8000
Нμ,
МПа
50Х5Г2СТ
50Х4В1ФСТ
Р=2Н
Fig. 4. Microhardness of surface layers of the built-up
rolls after operation
The minimum thickness of the wear layers (h (2))
and the minimum distance between the cracks (Smin (3))
are correspondingly determined as follows:
( ) f
вG
h
−
=
14
, (2)
2
22
min 2
r
f
V
lс
вS
= , (3)
where G and b are the shear modulus and the Burgers
vector of the destroyed metal; σf is the dislocation
friction stress; ρ is the dislocation density; С is the
speed of distribution of elastic transverse waves in the
material; lf is the length of the Frank-Read source; Vr is
the speed of crack growth; and μ is the Poisson ratio.
Considering for low sliding speeds (4):
( )
G
СlV
f
fr
−
=
12
2 . (4)
From (1); time of crack formation (5):
( ) ПD
Е
4222
2
1
2
1
4
−
. (5)
The h value was determined, considering assessment
calculations, and the crack is formed as a result of cyclic
deformation in case of combination of shear and tear,
which are the conditions different from those considered
by the (1) equation.
The wear intensity I ~ f(A, E, √ρ), where A, E, and ρ
are correspondingly the friction effort, the elastic
module and the dislocation density. The friction effort
may be considered as a value depending on the change
of dislocation density on the friction surfaces, on an
assumption of its correspondence to the internal work of
change of the dislocation structure. Upon the mentioned
precognition, the friction force may be expressed using
the following formula (6):
0
1
G
РF Т
Тр
, (6)
where ρ0 and ρ1 are the initial dislocation density and
that which appeared due to friction; and P is the normal
load.
Friction is accompanied with a complex aggregate of
physical and chemical processes; energy dissipation
may not be narrowed down to dislocation processes
even approximately, but their role in the metal
destruction is approved by many studies of national and
foreign scientists.
0 10 20 30 Z, мм
1,7
2,1
2,5
2,9
Δа/а·10
3
1,0
2,0
3,0
4,0
5,0
ρ·10
-11
,
см
-2
3
2
2
1
1
Плотность
дислокаций
Величина
микроискажений
Fig. 5. Dislocation density (ρ) and microdistortions
(Δа/а) of the built-up metals with carbide and
intermetallidic strengthening after the wear test
(τ=1 h, Р = 20 MPA, VВ.П.П.=18.8 cm/s,
ТСМ ~ 923 К).
1 – 0Х3М5В8К10Ф; 2 – 0Х3М5В8К15Ф;
3 – 70Х4М3ВФ
Dislocation
density
Microdistortions
value
H,
MPa
Z, mm
Z, mm
∙10-11,
cm-2
108 ISSN 1562-6016. Problems of Atomic Science and Technology. 2023. №2(144)
The type of ρ = f(Z) dependences is close to all the
alloys mentioned on Fig. 5; therefore, one of the reasons
of formation of the zone with reduced dislocation
density is backstock. Recrystallization is made more
difficult with the dispersion particles slowing down the
strengthening phases and relatively low temperature.
The influence of temperature on the weld toughness
was assessed according to the criterion of J. Malkin and
A.S. Tetelman [14]. As far as for the conditions of
molecular and mechanical wear the wear resistance
coefficient КІ~КС [14], the KC increase shall change
the correlation (7):
KI j2 (1 − 1B)-2, (7)
where j is the crack resistance limit; σ1 and σ2 are
correspondingly the maximum main stress in the stress
concentration area and the hardness limit.
In case of similar values of contact pressure in the
friction pair, the time of formation of a critically long
crack increases together with the increase of efficient
surface energy (γе), which includes the plastic
deformation energy.
The influence of temperature on the weld toughness
is shown on Fig. 6.
0 1,4 1,8 2,2 2,6 3,0 LgT
2.0
2.2
2.4
2.6
2.8
K1C/√Eσ
20Х3Г9М5Т2С
40Х4Г8Т2С
Fig. 6. Dependence of the calculation experimental
destruction criterion (К1С=√АЕGTεαβ)
on the temperature
Therefore, the crack resistance indicators (КС,
j-integral and δС), which means wear resistance as well,
of martensite-ageing steels is higher than those of
metastable and instrument steels.
CONCLUSIONS
1. The diffusion coefficient in the deformed sub-
surface layer, which is up to some dozen micron thick,
is one of the values providing the kinetics of growing of
nuclear cracks and development of destruction crack.
2. The crack resistance indicators (КС, j-integral and
δС), which means wear resistance as well, of martensite-
ageing steels is higher than those of metastable and
instrument steel.
REFERENCES
1. V.N. Kalyanov. Structure and characteristics of
wear-resistant sparingly alloyed deposited metal //
Welding production. 1997, N 4, p. 13-17.
2. V.P. Ovcharov. Improving the wear resistance of
parts of a cylinder-piston group of CT compressors by
treatment in a steam atmosphere // Bulletin of
mechanical engineering. Kiev, 1980, N 4, p. 31-32.
3. D.B. Hlushkova, I.H. Kyrychenko, V.A. Bahrov,
N.Ye. Kalinina, T.V. Nosova. Use of detonation
sputtering to increase the durability of hydraulic
hammer critical parts // Problems of Atomic Science and
Technology. 2021, N 5(135), p. 139-145.
4. D.B. Hlushkova, V.A. Bahrov, O.D. Hrinchenko,
A.A. Hnatiuk, N.E. Kalinina, V.T. Kalinin. Corrosion
Resistance of Reinforced Layers of 15Х11МФ Steel
Steam Turbine Blades // Problems of Atomic Science
and Technology. 2021, N 2(132), p. 136-141.
5. V.D. Parkhomenko, P.N. Tsybulev, Yu.I. Kras-
nokutsky. Technology of plasma chemical production.
Kiev: “Visha school”, 2001, 255 p.
6. D.B. Hlushkova, V.A. Bagrov, S.V. Demchenko,
V.M. Volchuk, O.V. Kalinin, N.E. Kalinina. Structure
and properties of powder gas-plasma coatings based on
nickel // Problems of Atomic Science and Technology.
2022, N 4(140), p. 125-130.
7. C. Paul, P. Ganesh, S. Mishra. Investigating laser
rapid manufacturing for Inconel-625 components //
Optics and Laser Technology. 2007, N 39(4), p. 800-805.
8. D.B. Hlushkova, V.A. Bagrov, V.M. Volchuk,
U.A. Murzakhmetova. Influence of structure and phase
composition on wear resistance of sparingly alloyed
alloys // Functional Materials. 2023, N 1(30), p. 74-78.
9. V.S. Vahrusheva, D.B. Hlushkova, V.M. Vol-
chuk, T.V. Nosova, S.I. Mamhur, N.I. Tsokur,
V.A. Bagrov, S.V. Demchenko, Yu.V. Ryzhkov,
V.O. Scrypnikov. Increasing the corrosion resistance of
heat-resistant alloys for parts of power equipment //
Problems of Atomic Science and Technology. 2022,
N 4(140), p. 137-140.
10. N.E. Kalinina, D.B. Glushkova, A.I. Voronkov,
V.T. Kalinin. Influence of nanomodification on
structure formation of multicomponent nickel alloys //
Functional Materials. 2019, N 3(26), p. 514-518.
11. А.А. Holyakevych, L.M. Orlov, H.V. Pokhmur-
s’ka, М.М. Student, N.R. Chervins’ka. O.V. Khyl’ko.
Influence of the Phase Composition of the Layers
Deposited on the Rods of Hydraulic Cylinders on Their
Local Corrosion // Materials Science. 2015, N 5(50),
p. 740-747.
12. D.N. Garkunov. Tribotechnics, Design, manu-
facture and operation of machines. M.: MSHA, 2002,
632 p.
13. Fracture mechanics and strength of materials:
Ref. allowance: In 4 volumes / Under the general
editorship of Panasyuk V.V. Vol. 1: Fundamentals of
Fracture Mechanics. K.: “Nauk. Dumka”, 1998, 448 p.
14. S.D. Kolotienko, A.P. Kolotiev. Analysis of the
process of contact destruction of surfacing materials
during setting // The Third Republican Scientific and
Technical Conference Modern methods of surfacing and
surfacing materials. Kharkiv, 1981, p. 106-108.
Article received 07.03.2023
https://www.scopus.com/authid/detail.uri?authorId=36842974100#disabled
https://www.scopus.com/authid/detail.uri?authorId=36842974100#disabled
https://www.scopus.com/authid/detail.uri?authorId=36842974100#disabled
https://www.scopus.com/authid/detail.uri?authorId=36842974100#disabled
https://link.springer.com/article/10.1007/s11003-015-9780-5#auth-_____-Student
https://link.springer.com/article/10.1007/s11003-015-9780-5#auth-N__R_-Chervins_ka
https://link.springer.com/article/10.1007/s11003-015-9780-5#auth-O__V_-Khyl_ko
ISSN 1562-6016. Problems of Atomic Science and Technology. 2023. №2(144) 109
ДОСЛІДЖЕННЯ ЗНОШУВАННЯ ЗОНИ НАПЛАВЛЕННЯ МАРТЕНСИТНО-
АУСТЕНІТНИХ І ВТОРИННО-ТВЕРДІЮЧИХ СТАЛЕЙ СИСТЕМИ Cr-Mn-Ti
Д.Б. Глушкова, В.А. Багров, В.О. Саєнко, В.М. Волчук, О.В. Калінін, Н.Є. Калініна
Досліджується зношування зони наплавлення мартенситно-аустенітних і вторинно-твердіючих сталей
системи Cr-Mn-Ti (частково легованих Mo, B, V). Додаткове легування досліджуваних сталей титаном у
кількості 2…5% сприяло запобіганню сколам по зоні сплавлення. Встановлено, що поблизу лінії сплаву
знаходиться зона основного металу шириною 7...15 мкм. Вплив температури на в’язкість руйнування зони
наплавлення оцінювався за критерієм Малкіна та Тетельмана. Мікротвердість поверхневих наплавлених
шарів та діапазон її розкиду близькі результатам лабораторних випробувань при ТСт ~ 823 К. Це свідчить
про формування структури металу контактних об’ємів сукупною дією нагріву, пластичної деформації,
дифузії. Експериментально підтверджено, що зміна мікротвердості в приповерхневих шарах на стадії зносу
зумовлено паралельно процесами взаємної дифузії матеріалів пар тертя, виборчого окислення і
термодифузійного перерозподілу зміцнюючої фази під дією температур і деформацій. Коефіцієнт дифузії в
деформованому приповерхневому шарі товщиною до кількох десятків мікрометрів є однією з величин, що
зумовлюють кінетику зростання зародкових тріщин та розвитку тріщин руйнування. Отримані результати
дають можливість використовувати мартенситно-аустенітні та вторинно-твердіючі сталі системи Cr-Mn-Ti з
наплавленою поверхнею для інструменту гарячого деформування.
|