Study of wear of the building-up zone of martensite-austenitic and secondary hardening steels of the Cr-Mn-Ti system

The work deals with wear of the building-up zone of martensite-austenitic and secondary hardening steels of the Cr-Mn-Ti system (partially alloyed with Mo, B, and V). Additional alloying of the studied steels with titanium in the amount of 2…5% supported avoiding cleavages along the building-up zone...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Problems of Atomic Science and Technology
Дата:2023
Автори: Hlushkova, D.B., Bagrov, V.A., Saenko, V.A., Volchuk, V.M., Kalinin, A.V., Kalinina, N.E.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2023
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/196088
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Study of wear of the building-up zone of martensite-austenitic and secondary hardening steels of the Cr-Mn-Ti system / D.B. Hlushkova, V.A. Bagrov, V.A. Saenko, V.M. Volchuk, A.V. Kalinin, N.E. Kalinina // Problems of Atomic Science and Technology. — 2023. — № 2. — С. 105-109. — Бібліогр.: 14 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-196088
record_format dspace
spelling Hlushkova, D.B.
Bagrov, V.A.
Saenko, V.A.
Volchuk, V.M.
Kalinin, A.V.
Kalinina, N.E.
2023-12-10T12:43:25Z
2023-12-10T12:43:25Z
2023
Study of wear of the building-up zone of martensite-austenitic and secondary hardening steels of the Cr-Mn-Ti system / D.B. Hlushkova, V.A. Bagrov, V.A. Saenko, V.M. Volchuk, A.V. Kalinin, N.E. Kalinina // Problems of Atomic Science and Technology. — 2023. — № 2. — С. 105-109. — Бібліогр.: 14 назв. — англ.
1562-6016
DOI: https://doi.org/10.46813/2023-144-105
https://nasplib.isofts.kiev.ua/handle/123456789/196088
621.891
The work deals with wear of the building-up zone of martensite-austenitic and secondary hardening steels of the Cr-Mn-Ti system (partially alloyed with Mo, B, and V). Additional alloying of the studied steels with titanium in the amount of 2…5% supported avoiding cleavages along the building-up zone. It was determined that there is a 7…15 μm wide parent metal zone next to the weld line. The influence of temperature on the weld toughness of the building-up zone was assessed according to the criterion of Malkin and Tetelman. The microhardness of the surface layers of built-up layers and the range of its dispersion are close to the results of laboratory tests, where Тcₜ ∼ 823 K. This approves the formation of structure of metal of contact volumes with the collective effect of heating, plastic deformation and diffusion. It was experimentally approved that the change of microhardness in the sub-surface layers at the wear stage is justified simultaneously with the processes of mutual diffusion of friction pair materials, selective oxidation and thermodiffusion redistribution of the hardening phase under the influence of temperatures and deformations. The diffusion coefficient in the deformed sub-surface layer, which is up to some dozen micrometers thick, is one of the values providing the kinetics of growing of nuclear cracks and development of destruction cracks. The received results provide an opportunity to use martensite-austenitic and secondary hardening steels of the Cr-Mn-Ti system with built-up surface for the hot forming tools.
Досліджується зношування зони наплавлення мартенситно-аустенітних і вторинно-твердіючих сталей системи Cr-Mn-Ti (частково легованих Mo, B, V). Додаткове легування досліджуваних сталей титаном у кількості 2…5% сприяло запобіганню сколам по зоні сплавлення. Встановлено, що поблизу лінії сплаву знаходиться зона основного металу шириною 7…15 мкм. Вплив температури на в’язкість руйнування зони наплавлення оцінювався за критерієм Малкіна та Тетельмана. Мікротвердість поверхневих наплавлених шарів та діапазон її розкиду близькі результатам лабораторних випробувань при Тcₜ ∼ 823 К. Це свідчить про формування структури металу контактних об’ємів сукупною дією нагріву, пластичної деформації, дифузії. Експериментально підтверджено, що зміна мікротвердості в приповерхневих шарах на стадії зносу зумовлено паралельно процесами взаємної дифузії матеріалів пар тертя, виборчого окислення і термодифузійного перерозподілу зміцнюючої фази під дією температур і деформацій. Коефіцієнт дифузії в деформованому приповерхневому шарі товщиною до кількох десятків мікрометрів є однією з величин, що зумовлюють кінетику зростання зародкових тріщин та розвитку тріщин руйнування. Отримані результати дають можливість використовувати мартенситно-аустенітні та вторинно-твердіючі сталі системи Cr-Mn-Ti з наплавленою поверхнею для інструменту гарячого деформування.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Problems of Atomic Science and Technology
Physics of radiation and ion-plasma technologies
Study of wear of the building-up zone of martensite-austenitic and secondary hardening steels of the Cr-Mn-Ti system
Дослідження зношування зони наплавлення мартенситно-аустенітних і вторинно-твердіючих сталей системи Cr-Mn-Ti
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Study of wear of the building-up zone of martensite-austenitic and secondary hardening steels of the Cr-Mn-Ti system
spellingShingle Study of wear of the building-up zone of martensite-austenitic and secondary hardening steels of the Cr-Mn-Ti system
Hlushkova, D.B.
Bagrov, V.A.
Saenko, V.A.
Volchuk, V.M.
Kalinin, A.V.
Kalinina, N.E.
Physics of radiation and ion-plasma technologies
title_short Study of wear of the building-up zone of martensite-austenitic and secondary hardening steels of the Cr-Mn-Ti system
title_full Study of wear of the building-up zone of martensite-austenitic and secondary hardening steels of the Cr-Mn-Ti system
title_fullStr Study of wear of the building-up zone of martensite-austenitic and secondary hardening steels of the Cr-Mn-Ti system
title_full_unstemmed Study of wear of the building-up zone of martensite-austenitic and secondary hardening steels of the Cr-Mn-Ti system
title_sort study of wear of the building-up zone of martensite-austenitic and secondary hardening steels of the cr-mn-ti system
author Hlushkova, D.B.
Bagrov, V.A.
Saenko, V.A.
Volchuk, V.M.
Kalinin, A.V.
Kalinina, N.E.
author_facet Hlushkova, D.B.
Bagrov, V.A.
Saenko, V.A.
Volchuk, V.M.
Kalinin, A.V.
Kalinina, N.E.
topic Physics of radiation and ion-plasma technologies
topic_facet Physics of radiation and ion-plasma technologies
publishDate 2023
language English
container_title Problems of Atomic Science and Technology
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Дослідження зношування зони наплавлення мартенситно-аустенітних і вторинно-твердіючих сталей системи Cr-Mn-Ti
description The work deals with wear of the building-up zone of martensite-austenitic and secondary hardening steels of the Cr-Mn-Ti system (partially alloyed with Mo, B, and V). Additional alloying of the studied steels with titanium in the amount of 2…5% supported avoiding cleavages along the building-up zone. It was determined that there is a 7…15 μm wide parent metal zone next to the weld line. The influence of temperature on the weld toughness of the building-up zone was assessed according to the criterion of Malkin and Tetelman. The microhardness of the surface layers of built-up layers and the range of its dispersion are close to the results of laboratory tests, where Тcₜ ∼ 823 K. This approves the formation of structure of metal of contact volumes with the collective effect of heating, plastic deformation and diffusion. It was experimentally approved that the change of microhardness in the sub-surface layers at the wear stage is justified simultaneously with the processes of mutual diffusion of friction pair materials, selective oxidation and thermodiffusion redistribution of the hardening phase under the influence of temperatures and deformations. The diffusion coefficient in the deformed sub-surface layer, which is up to some dozen micrometers thick, is one of the values providing the kinetics of growing of nuclear cracks and development of destruction cracks. The received results provide an opportunity to use martensite-austenitic and secondary hardening steels of the Cr-Mn-Ti system with built-up surface for the hot forming tools. Досліджується зношування зони наплавлення мартенситно-аустенітних і вторинно-твердіючих сталей системи Cr-Mn-Ti (частково легованих Mo, B, V). Додаткове легування досліджуваних сталей титаном у кількості 2…5% сприяло запобіганню сколам по зоні сплавлення. Встановлено, що поблизу лінії сплаву знаходиться зона основного металу шириною 7…15 мкм. Вплив температури на в’язкість руйнування зони наплавлення оцінювався за критерієм Малкіна та Тетельмана. Мікротвердість поверхневих наплавлених шарів та діапазон її розкиду близькі результатам лабораторних випробувань при Тcₜ ∼ 823 К. Це свідчить про формування структури металу контактних об’ємів сукупною дією нагріву, пластичної деформації, дифузії. Експериментально підтверджено, що зміна мікротвердості в приповерхневих шарах на стадії зносу зумовлено паралельно процесами взаємної дифузії матеріалів пар тертя, виборчого окислення і термодифузійного перерозподілу зміцнюючої фази під дією температур і деформацій. Коефіцієнт дифузії в деформованому приповерхневому шарі товщиною до кількох десятків мікрометрів є однією з величин, що зумовлюють кінетику зростання зародкових тріщин та розвитку тріщин руйнування. Отримані результати дають можливість використовувати мартенситно-аустенітні та вторинно-твердіючі сталі системи Cr-Mn-Ti з наплавленою поверхнею для інструменту гарячого деформування.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/196088
citation_txt Study of wear of the building-up zone of martensite-austenitic and secondary hardening steels of the Cr-Mn-Ti system / D.B. Hlushkova, V.A. Bagrov, V.A. Saenko, V.M. Volchuk, A.V. Kalinin, N.E. Kalinina // Problems of Atomic Science and Technology. — 2023. — № 2. — С. 105-109. — Бібліогр.: 14 назв. — англ.
work_keys_str_mv AT hlushkovadb studyofwearofthebuildingupzoneofmartensiteausteniticandsecondaryhardeningsteelsofthecrmntisystem
AT bagrovva studyofwearofthebuildingupzoneofmartensiteausteniticandsecondaryhardeningsteelsofthecrmntisystem
AT saenkova studyofwearofthebuildingupzoneofmartensiteausteniticandsecondaryhardeningsteelsofthecrmntisystem
AT volchukvm studyofwearofthebuildingupzoneofmartensiteausteniticandsecondaryhardeningsteelsofthecrmntisystem
AT kalininav studyofwearofthebuildingupzoneofmartensiteausteniticandsecondaryhardeningsteelsofthecrmntisystem
AT kalininane studyofwearofthebuildingupzoneofmartensiteausteniticandsecondaryhardeningsteelsofthecrmntisystem
AT hlushkovadb doslídžennâznošuvannâzoninaplavlennâmartensitnoaustenítnihívtorinnotverdíûčihstaleisistemicrmnti
AT bagrovva doslídžennâznošuvannâzoninaplavlennâmartensitnoaustenítnihívtorinnotverdíûčihstaleisistemicrmnti
AT saenkova doslídžennâznošuvannâzoninaplavlennâmartensitnoaustenítnihívtorinnotverdíûčihstaleisistemicrmnti
AT volchukvm doslídžennâznošuvannâzoninaplavlennâmartensitnoaustenítnihívtorinnotverdíûčihstaleisistemicrmnti
AT kalininav doslídžennâznošuvannâzoninaplavlennâmartensitnoaustenítnihívtorinnotverdíûčihstaleisistemicrmnti
AT kalininane doslídžennâznošuvannâzoninaplavlennâmartensitnoaustenítnihívtorinnotverdíûčihstaleisistemicrmnti
first_indexed 2025-11-24T19:09:17Z
last_indexed 2025-11-24T19:09:17Z
_version_ 1850493566666670080
fulltext ISSN 1562-6016. Problems of Atomic Science and Technology. 2023. №2(144) 105 https://doi.org/10.46813/2023-144-105 UDC 621.891 STUDY OF WEAR OF THE BUILDING-UP ZONE OF MARTENSITE- AUSTENITIC AND SECONDARY HARDENING STEELS OF THE Cr-Mn-Ti SYSTEM D.B. Hlushkova1, V.A. Bagrov1, V.A. Saenko1, V.M. Volchuk2, A.V. Kalinin2, N.E. Kalinina3 1Kharkiv National Automobile and Highway University, Kharkiv, Ukraine E-mail: diana@khadi.kharkov.ua; 2Prydnіprovska State Academy of Civil Engineering and Architecture, Dnipro, Ukraine; 3Oles Honchar Dnipro National University, Dnipro, Ukraine E-mail: diana.borisovna@gmail.com The work deals with wear of the building-up zone of martensite-austenitic and secondary hardening steels of the Cr-Mn-Ti system (partially alloyed with Mo, B, and V). Additional alloying of the studied steels with titanium in the amount of 2…5% supported avoiding cleavages along the building-up zone. It was determined that there is a 7…15 µm wide parent metal zone next to the weld line. The influence of temperature on the weld toughness of the building-up zone was assessed according to the criterion of Malkin and Tetelman. The microhardness of the surface layers of built-up layers and the range of its dispersion are close to the results of laboratory tests, where ТСт ~ 823 K. This approves the formation of structure of metal of contact volumes with the collective effect of heating, plastic deformation and diffusion. It was experimentally approved that the change of microhardness in the sub-surface layers at the wear stage is justified simultaneously with the processes of mutual diffusion of friction pair materials, selective oxidation and thermodiffusion redistribution of the hardening phase under the influence of temperatures and deformations. The diffusion coefficient in the deformed sub-surface layer, which is up to some dozen micrometers thick, is one of the values providing the kinetics of growing of nuclear cracks and development of destruction cracks. The received results provide an opportunity to use martensite-austenitic and secondary hardening steels of the Cr-Mn-Ti system with built-up surface for the hot forming tools. INTRODUCTION Quality of the surface layers of metal greatly determines its durability and wear resistance [1, 2]. For this purpose, various methods are used. For instance, such methods include detonation sputtering [3]; reinforcement of layers of steam turbine blades [4]; obtaining gas-plasma coatings [5, 6]; laser treatment [7]; modes of thermal treatment for the purpose of getting the required level of mechanical properties of details [8, 9]; nanomodification treatment [10], etc. One of potentially productive approaches to improving the service characteristics of metal materials is depositing of their surface [11, 12]. In order to implement this process of depositing, observing the set technology parameters in the operating space is required. The operating space of the parameters of the technology of acquiring deposited surface is determined by many factors (material make, processing modes, etc.) that influence its durability. One of the factors influencing the durability of the hot forming tools is temperature. The influence of temperature is related to the following events taking place in the surface and sub-surface layers: – change of indicators of mechanical properties after temperature rising; – tempering and structural transformation; – manifestation of secondary deformations and stresses caused by the inequality of temperature distribution. Therefore, the task of studying wear of the building- up zone is current. Research of wear of the building-up zone of martensite-austenitic and secondary hardening steels of the Cr-Mn-Ti system was performed in the work. At the same time, the diffusion coefficient in the deformed sub-surface layer, which supports the development of its destruction cracks, was considered. MATERIAL AND METHODS OF THE STUDY For building-up of the studied materials, copper moulds were used. Cooling of the metastable steels of the Cr-Mn-Ti system (partially alloyed with Mo, B, and V) was performed forcefully according to the 30480-97 standard of product wear resistance. The wear resistance of the material was determined using the 2070 CT-1 installation, using the board-disc methodic. At the same time, the disc was rotating at the speed of 0.5 m/s, the load on the sample being 25 and 50 N. The board was made of the 45X steel, the HRC of which is within the range of 47–49 units. Measurement of the temperature of samples and rods was also performed during back-and-forth movement, using the chromel-alumel thermocouple of 0.1 mm radius. The speed of the temperature change recording ribbon was 2.160 mm/min. The study of the primary structure of metallographic specimens of built-up steels showed the presence of white interfacial layers that are hardly pickled, and their width is insignificantly different (Figs. 1 and 2). mailto:diana@khadi.kharkov.ua 106 ISSN 1562-6016. Problems of Atomic Science and Technology. 2023. №2(144) 20Х3Г9М5Т2С 40Х4Г9Т2С Fig. 1. Structure of the alloying zone. Transverse template, ×100 20Х3Г9М5Т2С 40Х4Г9Т2С Fig. 2. Structure of the alloy zone. Transverse template, ×100 The metallographic analysis of the interfacial layers showed that in most cases their location copies the front of crystallization of the built-up metal. RESULTS AND DISCUSSION Additional alloying of these steels with titanium in the amount of 2…5% supported avoiding cleavages along the building-up zone. There is a parent metal zone, which is 7…15 µm wide, next to the weld line, the microhardness of which is slightly lower than the microhardness of the parent metal, which provides evidence of diffuse processes [12]. The microstructure of built-up chrome-manganese metal with up to 4% of titanium is shown on Fig. 3. The comparison of calculated and experimental values of wear intensity showed that the calculated values of wear intensity may be used for rough estimate of wear resistance of alloys of various chemical composition, but of similar structural classes. According to the fatigue wear theory, the destruction of surface layers during external friction is due to alternating load [13]. In some cases, during normal stress corresponding to elastic deformations, plastic deformation along the surface layers is caused by shear stress. In case of plastic contact load leading to plastic flow, it significantly depends on the molecular component of the friction coefficient. 1.07% С, ×600 1.31% С, ×600 a ×200 ×600 b Fig. 3. Microstructure of built-up chrome-managanese metal with up to 4% content of titanium: a – Cr: 9.51; Mn: 8.86; Si: 1.87%; b – Cr: 8.20; Mn: 7.54; Si: 1.87% ISSN 1562-6016. Problems of Atomic Science and Technology. 2023. №2(144) 107 A characteristic feature of all the studied alloys is graduate reduction of spread of microhardness values regarding the depth of the friction zone. The change of microhardness in the sub-surface layers at the wear stage is due to simultaneous processes of mutual diffusion of materials of friction pairs, selective oxidation and thermodiffuse re-distribution of the hardening phase under the influence of temperature and deformations. The listed changes have various influences on the intensity of wear of the studied materials. The microhardness of the surface layers of built-up layers and the range of its dispersion are close to the results of laboratory tests, where ТСт ~ 823 K (Fig. 4), which means that the formation of structure of metal of contact volumes takes place due to collective effect of heating, plastic deformation and diffusion. The diffusion coefficient in the deformed sub- surface layer, which is up to some dozen micron thick, is one of the values providing the kinetics of growing of nuclear cracks and development of destruction cracks. Indeed, the critical length of the nuclear crack on the background of influence of its normal stress area is determined by the (1) equation: ( ) 221 2   −  е л E l , ( ) 0.5 к Пl D   , (1) where γе=γ0+γр is the effective surface energy. 0 100 300 500 700 900 Z, мм 3000 4000 5000 6000 7000 8000 Нμ, МПа 50Х5Г2СТ 50Х4В1ФСТ Р=2Н Fig. 4. Microhardness of surface layers of the built-up rolls after operation The minimum thickness of the wear layers (h (2)) and the minimum distance between the cracks (Smin (3)) are correspondingly determined as follows: ( ) f вG h  − = 14 , (2) 2 22 min 2 r f V lс вS  =  , (3) where G and b are the shear modulus and the Burgers vector of the destroyed metal; σf is the dislocation friction stress; ρ is the dislocation density; С is the speed of distribution of elastic transverse waves in the material; lf is the length of the Frank-Read source; Vr is the speed of crack growth; and μ is the Poisson ratio. Considering for low sliding speeds (4): ( ) G СlV f fr  − = 12 2 . (4) From (1); time of crack formation (5): ( ) ПD Е 4222 2 1 2 1 4    −  . (5) The h value was determined, considering assessment calculations, and the crack is formed as a result of cyclic deformation in case of combination of shear and tear, which are the conditions different from those considered by the (1) equation. The wear intensity I ~ f(A, E, √ρ), where A, E, and ρ are correspondingly the friction effort, the elastic module and the dislocation density. The friction effort may be considered as a value depending on the change of dislocation density on the friction surfaces, on an assumption of its correspondence to the internal work of change of the dislocation structure. Upon the mentioned precognition, the friction force may be expressed using the following formula (6): 0 1    G РF Т Тр , (6) where ρ0 and ρ1 are the initial dislocation density and that which appeared due to friction; and P is the normal load. Friction is accompanied with a complex aggregate of physical and chemical processes; energy dissipation may not be narrowed down to dislocation processes even approximately, but their role in the metal destruction is approved by many studies of national and foreign scientists. 0 10 20 30 Z, мм 1,7 2,1 2,5 2,9 Δа/а·10 3 1,0 2,0 3,0 4,0 5,0 ρ·10 -11 , см -2 3 2 2 1 1 Плотность дислокаций Величина микроискажений Fig. 5. Dislocation density (ρ) and microdistortions (Δа/а) of the built-up metals with carbide and intermetallidic strengthening after the wear test (τ=1 h, Р = 20 MPA, VВ.П.П.=18.8 cm/s, ТСМ ~ 923 К). 1 – 0Х3М5В8К10Ф; 2 – 0Х3М5В8К15Ф; 3 – 70Х4М3ВФ Dislocation density Microdistortions value H, MPa Z, mm Z, mm ∙10-11, cm-2 108 ISSN 1562-6016. Problems of Atomic Science and Technology. 2023. №2(144) The type of ρ = f(Z) dependences is close to all the alloys mentioned on Fig. 5; therefore, one of the reasons of formation of the zone with reduced dislocation density is backstock. Recrystallization is made more difficult with the dispersion particles slowing down the strengthening phases and relatively low temperature. The influence of temperature on the weld toughness was assessed according to the criterion of J. Malkin and A.S. Tetelman [14]. As far as for the conditions of molecular and mechanical wear the wear resistance coefficient КІ~КС [14], the KC increase shall change the correlation (7): KI  j2 (1 − 1B)-2, (7) where j is the crack resistance limit; σ1 and σ2 are correspondingly the maximum main stress in the stress concentration area and the hardness limit. In case of similar values of contact pressure in the friction pair, the time of formation of a critically long crack increases together with the increase of efficient surface energy (γе), which includes the plastic deformation energy. The influence of temperature on the weld toughness is shown on Fig. 6. 0 1,4 1,8 2,2 2,6 3,0 LgT 2.0 2.2 2.4 2.6 2.8 K1C/√Eσ 20Х3Г9М5Т2С 40Х4Г8Т2С Fig. 6. Dependence of the calculation experimental destruction criterion (К1С=√АЕGTεαβ) on the temperature Therefore, the crack resistance indicators (КС, j-integral and δС), which means wear resistance as well, of martensite-ageing steels is higher than those of metastable and instrument steels. CONCLUSIONS 1. The diffusion coefficient in the deformed sub- surface layer, which is up to some dozen micron thick, is one of the values providing the kinetics of growing of nuclear cracks and development of destruction crack. 2. The crack resistance indicators (КС, j-integral and δС), which means wear resistance as well, of martensite- ageing steels is higher than those of metastable and instrument steel. REFERENCES 1. V.N. Kalyanov. Structure and characteristics of wear-resistant sparingly alloyed deposited metal // Welding production. 1997, N 4, p. 13-17. 2. V.P. Ovcharov. Improving the wear resistance of parts of a cylinder-piston group of CT compressors by treatment in a steam atmosphere // Bulletin of mechanical engineering. Kiev, 1980, N 4, p. 31-32. 3. D.B. Hlushkova, I.H. Kyrychenko, V.A. Bahrov, N.Ye. Kalinina, T.V. Nosova. Use of detonation sputtering to increase the durability of hydraulic hammer critical parts // Problems of Atomic Science and Technology. 2021, N 5(135), p. 139-145. 4. D.B. Hlushkova, V.A. Bahrov, O.D. Hrinchenko, A.A. Hnatiuk, N.E. Kalinina, V.T. Kalinin. Corrosion Resistance of Reinforced Layers of 15Х11МФ Steel Steam Turbine Blades // Problems of Atomic Science and Technology. 2021, N 2(132), p. 136-141. 5. V.D. Parkhomenko, P.N. Tsybulev, Yu.I. Kras- nokutsky. Technology of plasma chemical production. Kiev: “Visha school”, 2001, 255 p. 6. D.B. Hlushkova, V.A. Bagrov, S.V. Demchenko, V.M. Volchuk, O.V. Kalinin, N.E. Kalinina. Structure and properties of powder gas-plasma coatings based on nickel // Problems of Atomic Science and Technology. 2022, N 4(140), p. 125-130. 7. C. Paul, P. Ganesh, S. Mishra. Investigating laser rapid manufacturing for Inconel-625 components // Optics and Laser Technology. 2007, N 39(4), p. 800-805. 8. D.B. Hlushkova, V.A. Bagrov, V.M. Volchuk, U.A. Murzakhmetova. Influence of structure and phase composition on wear resistance of sparingly alloyed alloys // Functional Materials. 2023, N 1(30), p. 74-78. 9. V.S. Vahrusheva, D.B. Hlushkova, V.M. Vol- chuk, T.V. Nosova, S.I. Mamhur, N.I. Tsokur, V.A. Bagrov, S.V. Demchenko, Yu.V. Ryzhkov, V.O. Scrypnikov. Increasing the corrosion resistance of heat-resistant alloys for parts of power equipment // Problems of Atomic Science and Technology. 2022, N 4(140), p. 137-140. 10. N.E. Kalinina, D.B. Glushkova, A.I. Voronkov, V.T. Kalinin. Influence of nanomodification on structure formation of multicomponent nickel alloys // Functional Materials. 2019, N 3(26), p. 514-518. 11. А.А. Holyakevych, L.M. Orlov, H.V. Pokhmur- s’ka, М.М. Student, N.R. Chervins’ka. O.V. Khyl’ko. Influence of the Phase Composition of the Layers Deposited on the Rods of Hydraulic Cylinders on Their Local Corrosion // Materials Science. 2015, N 5(50), p. 740-747. 12. D.N. Garkunov. Tribotechnics, Design, manu- facture and operation of machines. M.: MSHA, 2002, 632 p. 13. Fracture mechanics and strength of materials: Ref. allowance: In 4 volumes / Under the general editorship of Panasyuk V.V. Vol. 1: Fundamentals of Fracture Mechanics. K.: “Nauk. Dumka”, 1998, 448 p. 14. S.D. Kolotienko, A.P. Kolotiev. Analysis of the process of contact destruction of surfacing materials during setting // The Third Republican Scientific and Technical Conference Modern methods of surfacing and surfacing materials. Kharkiv, 1981, p. 106-108. Article received 07.03.2023 https://www.scopus.com/authid/detail.uri?authorId=36842974100#disabled https://www.scopus.com/authid/detail.uri?authorId=36842974100#disabled https://www.scopus.com/authid/detail.uri?authorId=36842974100#disabled https://www.scopus.com/authid/detail.uri?authorId=36842974100#disabled https://link.springer.com/article/10.1007/s11003-015-9780-5#auth-_____-Student https://link.springer.com/article/10.1007/s11003-015-9780-5#auth-N__R_-Chervins_ka https://link.springer.com/article/10.1007/s11003-015-9780-5#auth-O__V_-Khyl_ko ISSN 1562-6016. Problems of Atomic Science and Technology. 2023. №2(144) 109 ДОСЛІДЖЕННЯ ЗНОШУВАННЯ ЗОНИ НАПЛАВЛЕННЯ МАРТЕНСИТНО- АУСТЕНІТНИХ І ВТОРИННО-ТВЕРДІЮЧИХ СТАЛЕЙ СИСТЕМИ Cr-Mn-Ti Д.Б. Глушкова, В.А. Багров, В.О. Саєнко, В.М. Волчук, О.В. Калінін, Н.Є. Калініна Досліджується зношування зони наплавлення мартенситно-аустенітних і вторинно-твердіючих сталей системи Cr-Mn-Ti (частково легованих Mo, B, V). Додаткове легування досліджуваних сталей титаном у кількості 2…5% сприяло запобіганню сколам по зоні сплавлення. Встановлено, що поблизу лінії сплаву знаходиться зона основного металу шириною 7...15 мкм. Вплив температури на в’язкість руйнування зони наплавлення оцінювався за критерієм Малкіна та Тетельмана. Мікротвердість поверхневих наплавлених шарів та діапазон її розкиду близькі результатам лабораторних випробувань при ТСт ~ 823 К. Це свідчить про формування структури металу контактних об’ємів сукупною дією нагріву, пластичної деформації, дифузії. Експериментально підтверджено, що зміна мікротвердості в приповерхневих шарах на стадії зносу зумовлено паралельно процесами взаємної дифузії матеріалів пар тертя, виборчого окислення і термодифузійного перерозподілу зміцнюючої фази під дією температур і деформацій. Коефіцієнт дифузії в деформованому приповерхневому шарі товщиною до кількох десятків мікрометрів є однією з величин, що зумовлюють кінетику зростання зародкових тріщин та розвитку тріщин руйнування. Отримані результати дають можливість використовувати мартенситно-аустенітні та вторинно-твердіючі сталі системи Cr-Mn-Ti з наплавленою поверхнею для інструменту гарячого деформування.