Modernization of the analytical nuclear-physical complex sokil
New modifications that have been used at the analytical nuclear-physics complex (ANPC) Sokil in recent years are described. They concerned an ion accelerator with an increase in the energy of accelerated ions and the separation of ⁴He²⁺ and H²⁺ beams. A system for irradiating materials science sampl...
Gespeichert in:
| Veröffentlicht in: | Problems of Atomic Science and Technology |
|---|---|
| Datum: | 2023 |
| Hauptverfasser: | , , , , , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2023
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/196109 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Modernization of the analytical nuclear-physical complex sokil / S.G. Karpus, V.V. Kuzmenko, V.V. Levenets, O.Yu. Lonin, A.P. Omelnik, A.O. Shchur, V.I. Sukhostavets // Problems of Atomic Science and Technology. — 2023. — № 2. — С. 134-139. — Бібліогр.: 11 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-196109 |
|---|---|
| record_format |
dspace |
| spelling |
Karpus, S.G. Kuzmenko, V.V. Levenets, V.V. Lonin, O.Yu. Omelnik, A.P. Shchur, A.O. Sukhostavets, V.I. 2023-12-10T12:57:52Z 2023-12-10T12:57:52Z 2023 Modernization of the analytical nuclear-physical complex sokil / S.G. Karpus, V.V. Kuzmenko, V.V. Levenets, O.Yu. Lonin, A.P. Omelnik, A.O. Shchur, V.I. Sukhostavets // Problems of Atomic Science and Technology. — 2023. — № 2. — С. 134-139. — Бібліогр.: 11 назв. — англ. 1562-6016 PACS: 41.75.Ak, 41.85.Ct, 07.77.+p DOI: https://doi.org/10.46813/2023-144-134 https://nasplib.isofts.kiev.ua/handle/123456789/196109 New modifications that have been used at the analytical nuclear-physics complex (ANPC) Sokil in recent years are described. They concerned an ion accelerator with an increase in the energy of accelerated ions and the separation of ⁴He²⁺ and H²⁺ beams. A system for irradiating materials science samples with a beam of gas ions with the possibility of choosing the irradiated target space has been created. The use of electrostatic beam deflection made it possible to increase the service life of the foil for beam release into the atmosphere. The use of a pyrocarbon filter in the analysis of monoelements or objects with a high X-ray output of one or several elements changed the form of the spectrum. These modifications made it possible to improve the operation of the complex and obtain new possibilities in solving problems by analytical nuclear physics methods in the study of materials for nuclear power engineering and ecology. Описано нові модифікації, які застосовувалися на аналітичному ядерно-фізичному комплексі Сокіл в останні роки. Вони стосувалися прискорювача іонів зі збільшенням енергії прискорених іонів і розділенням пучків ⁴He²⁺ і H²⁺. Створено систему опромінення матеріалознавчих зразків пучком іонів газу із можливістю вибору опромінюваного простору мішені. Використання електростатичного відхилення променя дозволило збільшити термін служби фольги для виходу променя в атмосферу. Використання піровуглецевого фільтра при аналізі моноелементів або об’єктів з високим рентгенівським випромінюванням одного або кількох елементів змінило форму спектра. Ці модифікації дозволили удосконалити роботу комплексу та отримати нові можливості вирішення задач аналітичними методами ядерної фізики при дослідженні матеріалів для атомної енергетики та екології. en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Problems of Atomic Science and Technology Irradiation installations, diagnostic and research methods Modernization of the analytical nuclear-physical complex sokil Модернізація аналітичного ядерно-фізичного комплексу cокіл Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Modernization of the analytical nuclear-physical complex sokil |
| spellingShingle |
Modernization of the analytical nuclear-physical complex sokil Karpus, S.G. Kuzmenko, V.V. Levenets, V.V. Lonin, O.Yu. Omelnik, A.P. Shchur, A.O. Sukhostavets, V.I. Irradiation installations, diagnostic and research methods |
| title_short |
Modernization of the analytical nuclear-physical complex sokil |
| title_full |
Modernization of the analytical nuclear-physical complex sokil |
| title_fullStr |
Modernization of the analytical nuclear-physical complex sokil |
| title_full_unstemmed |
Modernization of the analytical nuclear-physical complex sokil |
| title_sort |
modernization of the analytical nuclear-physical complex sokil |
| author |
Karpus, S.G. Kuzmenko, V.V. Levenets, V.V. Lonin, O.Yu. Omelnik, A.P. Shchur, A.O. Sukhostavets, V.I. |
| author_facet |
Karpus, S.G. Kuzmenko, V.V. Levenets, V.V. Lonin, O.Yu. Omelnik, A.P. Shchur, A.O. Sukhostavets, V.I. |
| topic |
Irradiation installations, diagnostic and research methods |
| topic_facet |
Irradiation installations, diagnostic and research methods |
| publishDate |
2023 |
| language |
English |
| container_title |
Problems of Atomic Science and Technology |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Модернізація аналітичного ядерно-фізичного комплексу cокіл |
| description |
New modifications that have been used at the analytical nuclear-physics complex (ANPC) Sokil in recent years are described. They concerned an ion accelerator with an increase in the energy of accelerated ions and the separation of ⁴He²⁺ and H²⁺ beams. A system for irradiating materials science samples with a beam of gas ions with the possibility of choosing the irradiated target space has been created. The use of electrostatic beam deflection made it possible to increase the service life of the foil for beam release into the atmosphere. The use of a pyrocarbon filter in the analysis of monoelements or objects with a high X-ray output of one or several elements changed the form of the spectrum. These modifications made it possible to improve the operation of the complex and obtain new possibilities in solving problems by analytical nuclear physics methods in the study of materials for nuclear power engineering and ecology.
Описано нові модифікації, які застосовувалися на аналітичному ядерно-фізичному комплексі Сокіл в останні роки. Вони стосувалися прискорювача іонів зі збільшенням енергії прискорених іонів і розділенням пучків ⁴He²⁺ і H²⁺. Створено систему опромінення матеріалознавчих зразків пучком іонів газу із можливістю вибору опромінюваного простору мішені. Використання електростатичного відхилення променя дозволило збільшити термін служби фольги для виходу променя в атмосферу. Використання піровуглецевого фільтра при аналізі моноелементів або об’єктів з високим рентгенівським випромінюванням одного або кількох елементів змінило форму спектра. Ці модифікації дозволили удосконалити роботу комплексу та отримати нові можливості вирішення задач аналітичними методами ядерної фізики при дослідженні матеріалів для атомної енергетики та екології.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/196109 |
| citation_txt |
Modernization of the analytical nuclear-physical complex sokil / S.G. Karpus, V.V. Kuzmenko, V.V. Levenets, O.Yu. Lonin, A.P. Omelnik, A.O. Shchur, V.I. Sukhostavets // Problems of Atomic Science and Technology. — 2023. — № 2. — С. 134-139. — Бібліогр.: 11 назв. — англ. |
| work_keys_str_mv |
AT karpussg modernizationoftheanalyticalnuclearphysicalcomplexsokil AT kuzmenkovv modernizationoftheanalyticalnuclearphysicalcomplexsokil AT levenetsvv modernizationoftheanalyticalnuclearphysicalcomplexsokil AT loninoyu modernizationoftheanalyticalnuclearphysicalcomplexsokil AT omelnikap modernizationoftheanalyticalnuclearphysicalcomplexsokil AT shchurao modernizationoftheanalyticalnuclearphysicalcomplexsokil AT sukhostavetsvi modernizationoftheanalyticalnuclearphysicalcomplexsokil AT karpussg modernízacíâanalítičnogoâdernofízičnogokompleksucokíl AT kuzmenkovv modernízacíâanalítičnogoâdernofízičnogokompleksucokíl AT levenetsvv modernízacíâanalítičnogoâdernofízičnogokompleksucokíl AT loninoyu modernízacíâanalítičnogoâdernofízičnogokompleksucokíl AT omelnikap modernízacíâanalítičnogoâdernofízičnogokompleksucokíl AT shchurao modernízacíâanalítičnogoâdernofízičnogokompleksucokíl AT sukhostavetsvi modernízacíâanalítičnogoâdernofízičnogokompleksucokíl |
| first_indexed |
2025-11-26T00:41:51Z |
| last_indexed |
2025-11-26T00:41:51Z |
| _version_ |
1850600499581026304 |
| fulltext |
134 ISSN 1562-6016. Problems of Atomic Science and Technology. 2023. №2(144)
SECTION 4
IRRADIATION INSTALLATIONS, DIAGNOSTIC
AND RESEARCH METHODS
https://doi.org/10.46813/2023-144-134
MODERNIZATION OF THE ANALYTICAL NUCLEAR-PHYSICAL
COMPLEX SOKIL
S.G. Karpus, V.V. Kuzmenko, V.V. Levenets, O.Yu. Lonin, A.P. Omelnik,
A.O. Shchur, V.I. Sukhostavets
National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine
E-mail: levenets@kipt.kharkov.ua
New modifications that have been used at the analytical nuclear-physics complex (ANPC) Sokil in recent years
are described. They concerned an ion accelerator with an increase in the energy of accelerated ions and the
separation of
4
He
2+
and H
2+
beams. A system for irradiating materials science samples with a beam of gas ions with
the possibility of choosing the irradiated target space has been created. The use of electrostatic beam deflection
made it possible to increase the service life of the foil for beam release into the atmosphere. The use of a pyrocarbon
filter in the analysis of monoelements or objects with a high X-ray output of one or several elements changed the
form of the spectrum. These modifications made it possible to improve the operation of the complex and obtain new
possibilities in solving problems by analytical nuclear physics methods in the study of materials for nuclear power
engineering and ecology.
PACS: 41.75.Ak, 41.85.Ct, 07.77.+p
INTRODUCTION
Several hundred ion accelerators with energy up to
several megaelectronvolt have been in the world, which
can be used to solve analytical problems related to
elemental and isotope analysis [1]. NSC KIPT was one
of the first to create an accelerator that could become
the basis for analytical nuclear-physical methods of
substance (ANPM) [2]. The use of two or more methods
of research on ion beam made it possible to expand the
range of identified elements (isotopes) [3]. Currently, in
the study of materials, more than 70% of works are
carried out with the complex use of ANPM. Several
analytical nuclear-physical complexes (ANPC) based on
an electrostatic accelerator created at NSC KIPT were
used to solve technological problems at the enterprise
[4]. One of these complexes, which selves for testing
new approaches, works at the National Science Center
of Kharkiv Institute of Physics and Technology.
Over the past time, improvements and
modernization of the ANPC Sokil nuclear power plant
have been carried out, several experimental devices
have been developed and created, which allow the
implementation of almost all modifications and
improvements of modern ion beam analysis.
The article shows new developments that were used
at the ANPC Sokil.
EXPERIMENTAL EQUIPMENT
The ANPC Sokil (Fig. 1) consists of the following
main systems:
electrostatic accelerator (ESP);
output devices;
experimental channels for the use of ANPM;
measuring and computing equipment.
Fig. 1. ANPC Sokil: 1–5 – experimental channels;
6 – electrostatic accelerator; 7 – output devices
The created accelerator has the following
technical characteristics.
Technical characteristics of the accelerator
The energy range of accelerated ions,
MeV
0.2...2.0
The smoothness of energy regulation,
keV
0.1
The maximum ion current at the
direct output of the magnetic analyzer,
µA
30
Beam current in experimental
channels,
µA
0.001…10
The largest diameter of the beam on
the target, mm
5
The smallest diameter of the beam on
the target, µm
3
Monoenergeticity and energy stability,
%
0.1
mailto:levenets@kipt.kharkov.ua
ISSN 1562-6016. Problems of Atomic Science and Technology. 2023. №2(144) 135
The existing equipment at the ANPC Sokil has
already been partially described [5], so the following
will be about the existing modernization of the
accelerator and experimental channels.
MULTICHARGED ION SOURCE
AND INJECTOR
The radio frequency source of ions used on the
electrostatic accelerator of the ANPC Sokil allows you
to obtain only singly charged ions of gases, therefore,
the energy of the ions is limited to the maximum
potential on the high-voltage electrode. But in order to
expand the capabilities of the complex, a source of
multi-charged ions (MСI) was created at the ESP.
Taking into account all factors, the following
requirements were put forward to the future MСI:
low consumption of working gas Q < 10
-4
(m
3 Pa)/s)
to ensure a high vacuum in the accelerator tube;
power consumption no more than 150 W;
the source should have a small mass (about
4…5 kg) so as not to overload the tube of the horizontal
type accelerator, and small dimensions for placement in
a high-voltage conductor;
ease of management;
service life is more than 150 h.
The analysis showed that the source of ions with a
high-voltage Penning discharge with a cold cathode and
extraction of ions along the axis of the source best meets
these requirements [6–8]. Calculations were carried out
and experiments were carried out, which made it
possible to coordinate the work of the created MCI and
the accelerator tube of the ANPC Sokil. On the basis of
this source, performed calculations, and experimental
works, an injector of MCI was created [9]. Fig. 2 shows
the appearance of the source and the ion injector created
on its basis, which was used on the electrostatic
accelerator of the ANPC Sokil.
Fig. 2. Injector of MCI on the electrostatic accelerator of the ANPC Sokil
CHANNEL OF IRRADIATION
OF MATERIALS WITH GAS IONS
When irradiating samples with hydrogen, carbon,
nitrogen, and oxygen ions, it is necessary to separate the
beam ions by mass, because the accelerated beam
contains both atomic and molecular ions. Therefore, the
irradiation channel must be located at some angle
relative to the initial direction of the beam. The angle of
rotation of the beam was chosen based on the geometric
dimensions of the room, the installation and its
structural features. The maximum possible angle of
rotation was 5
0
40', which corresponds to the radius of
rotation of the ion beam of 2.5 m. With this radius of
rotation, it is possible to transport heavy ions up to Xe
with an energy of 2 MeV into the irradiation channel.
The scheme of the irradiation channel is shown in
Fig. 3.
An important node of the irradiation channel is the
beam scanning system of the irradiated sample. An
electrostatic scanning system was chosen because it
provides the same deflection of the beam ions regardless
of mass.
The scanning system allows you to implement the
following irradiation modes: irradiation of the entire
surface of the sample; irradiation of any half of the
sample surface; irradiation of any fourth surface of the
sample. Irradiation of the sample is performed in the
irradiation chamber. The chamber is equipped with a
new high-performance pumping system based on a
turbomolecular pump, which allows maintaining the
residual pressure at the level of 10
-4
Pa [9].
136 ISSN 1562-6016. Problems of Atomic Science and Technology. 2023. №2(144)
Fig. 3. Channel of irradiation of materials with gas ions
SEPARATION SYSTEM IN A BEAM
OF
4
Нe
2+
AND Н
2+
IONS
The use of multi-charged ions at the accelerator of
the ANPC Sokil expands the analytical capabilities of
the complex, as well as expands the ion energy range of
the irradiation channel.
Since hydrogen and compounds with hydrogen are
always present in the residual gas in the installation, H
2+
ions are formed in the source along with
4
He
2+
ions. The
values of cross sections for the formation of H
2+
are
~ 10
3
times higher than the values of the cross sections
for the formation of
4
He
2+
(Fig. 4). In this regard, the
values of the currents of H
2+
and
4
He
2+
ions can be equal
in magnitude, which is where the task of separating
these ion beams arises.
0 200 400 600 800 1000
10
-21
10
-20
10
-19
10
-18
10
-17
10
-16
10
-15
H
2
+ e --> H
+
2
... Kim, Y.-K. Comments At. Mol. Phys. 34 (1999) 309-320
H
2
+ e --> H
+
... Yoon, J-S. J. Phys. Chem. Ref. Data 37 (2008) 913
He+e-->He
+
... Rejoub, R. et al. Phys. Rev. A 65 (2002) 042713
He+e-->He
2+
... Shah, M.B. et al. J. Phys. B 21 (1988) 2751
,с
м
2
Е, кеВ
Fig. 4. Cross sections for the formation of H
+
, H
2+
, He
+
,
He
2+
ions depending on the electron energy
There are several methods of separation by mass of
streams of charged particles that can be considered as
possible in our case for application:
Wien filter;
distribution magnet and electrostatic analyzer;
destruction of H
2+
molecular ions when passing
through a carbon film.
At a conductor potential of 1.7 MeV and an ion
beam diameter of about 4 mm, the deviation of H
2+
ions
by 0.8 mm or less will not lead to beam separation, i.e.,
the Wien ilter cannot separate H
2+
and
4
He
2+
beams
under our conditions.
When separating the beams of
4
He
2+
and H
2+
ions,
the other two possibilities were used. With the use of a
distribution magnet and an electrostatic analyzer, the
separation of helium and hydrogen ions was carried out
according to the scheme (Fig. 5). The research used the
method of measuring beam ion currents by detecting
backscattered He and H particles on the Ta target.
.
Fig. 5. Scheme of the experiment on the separation of
4
He
2+
and H
2+
beams at outlet #4:
1 – diaphragm 5 mm; 2 – mass analyzer;
3 – slit device; 4 – experimental chamber;
5 – electrostatic analyzer; 6 – collimator slit 0.9x9 mm;
7 – Ta target; 8 – surface barrier detector;
9 – beam monitor
In Fig. 6 presents the profiles of the
4
He
2+
and H
2+
beams obtained by measuring the current. The obtained
results show that the width of the
4
He
2+
and H
2+
ion
beams is about 4 mm, and the distance between the
peaks is ~ 4.5 mm, that is, the beams are separated.
200 400 600 800 1000 1200 1400 1600 1800
0.0
0.5
1.0
1.5
2.0
2.5
3.0
He
2+I,
н
A
Різниця потенціалів на конденсаторі, B
H
+
2
Fig. 6. Profiles of
4
He
2+
and H
2+
beams
σ
,
cm
2
keV
ISSN 1562-6016. Problems of Atomic Science and Technology. 2023. №2(144) 137
SEPARATION OF
4
He
2+
AND H
2+
ION
BEAMS USING CARBON FILMS
During the passage of ions through thin films,
processes associated with the capture and loss of
electrons (recharging, stripping, neutralization), as well
as the disintegration of molecular ions are possible.
Thus, if a thin carbon film is installed in front of the
distribution magnet on the path of the beam, it is worth
expecting the disintegration of H
2+
ions into H
+
and H
0
.
These particles will not pass through the mass analyzer
and the beam will not be cleaned of molecular hydrogen
ions. But at the same time, the loss of a part of
4
He
2+
ions is possible.
In the experiment on the separation of
4
Не
2+
and Н
2+
ion beams, free carbon films produced by the NSC
KIPT, which were obtained by the method of vacuum-
arc spraying, were used. The thickness of the films and
their composition were determined using the RBS
method. According to the data of RBS spectroscopy, the
used films have a thickness of 79 and 300 nm and their
composition includes: C (98 at.%), O (1.9 at.%),
K (0.1 at.%).
The following results were obtained: for a film with
a thickness of 300 nm, the ratio of
4
He
2+
to H
2+
currents
was 88, and for a film with a thickness of 79 nm – 52
[10].
PULSE REJECTION SYSTEMS
IN THE SPECTRA OF С.X.R.
In the version with a beam of protons released into
the atmosphere, it is often important to carry out a non-
destructive analysis of objects, which is a necessary
condition in many cases (for example, when analyzing
objects that represent historical value or biological
objects). In addition, in this version of the analysis, the
durability factor of the original vacuum-tight foil, which
separates the vacuum part of the ion conductor from the
atmosphere, becomes relevant. The use of the rejection
system will reduce the destructive factor of the beam
impact on the target and increase the service life of the
original vacuum-tight foil.
In early work, the ion beam deflection scheme is
fundamentally modified and allows working with
several targets located off the beam axis, which allows
the beam to be passed to subsequent chambers and to
increase the efficiency of using the accelerating time.
When working with a beam emitted into the
atmosphere, a beam deflection system is used, in which
only one plate is switched, and the second is under a
constant potential, and the target is in the path of the
undeflected ion beam. Fig. 7 shows the scheme of the
deflection system for a beam of ions released into the
atmosphere [11].
When working with the beam, the proton energy was
1.8 MeV. For a more qualitative display of the effect of
the application of the rejection system, both single-
element (Ti, Cu, Zr) and multi-element (steel) objects
were used as targets. Spectra obtained with the beam
deflection system turned off and with the system
operating were measured and compared for different
load values of the spectrometric path.
In Fig. 8 presents the spectra of the steel sample
obtained without the use of the deflection system and
with its use. It can be seen that the use of the deviation
system when loading the spectrometric path over 50,000
pulses per second allows to significantly improve the
appearance of the X-ray spectra and improve the
analysis errors.
Fig. 7. Deflection system for a beam of ions released into
the atmosphere: 1 – ion conductor;
2 – upper plate; 3 – lower plate; 4 – diaphragm;
5 – “graveyard”; 6 – output foil;
7 – analyzed object; 8 – detector; 9 – pre-amplifier;
10 –electronic switch with control system;
11 – electronic key; 12 – charged particle accelerator
USING A PYROCARBON FILTER
The use of the PIXE method for the analysis of
elements of the iron group in zirconia or similar tasks
causes complications with intense radiation from matrix
elements (for example, K-series zirconia). The principal
scientific and technical solution to such a task would be
the use of a broadband X-ray radiation filter with a
rectangular band of spectral transmission. At the same
time, it is necessary to achieve the maximum coefficient
of selective transmission in the working range of the
spectrum and the maximum absorption outside the
transmission band.
A computer program “Monochromator” was created
and designed to calculate the X-ray transmission
function of a broad-band filter based on pyrocarbon.
According to the developed program, calculations were
carried out to determine the form of the pass function
and to find out the influence of the geometric factors of
the filter on it. The varied parameters were: the diameter
of the proton beam on the target, the length of the
pyrocarbon plates in the filter, and the diameter of the
filter; the distance between the spot on the target and the
filter, the distance between the filter and the detector,
the diameter of the detector aperture.
As a result of the calculations and experiments, it
was found that the plate material chosen for the filter
reflectors is an almost perfect graphite single crystal.
Such a filter was developed and created on the basis of
pyrocarbon graphite. The spectral characteristics of the
filter in the X-ray range of 4-20 keV were studied and
the analytical capabilities of the X-ray spectral scheme
with such a filter for the analysis of zirconium-based
materials were determined.
The filter is a cylindrical assembly of plane-parallel
plates of pyrocarbon graphite 3130 mm in size, cut
long the plane, reflection (002) with a mosaic of the
order of 0.4
0
and a constant lattice of 6.713 Ả.
138 ISSN 1562-6016. Problems of Atomic Science and Technology. 2023. №2(144)
a
b
Fig. 8. X-ray spectrum of a steel sample:
a –when the rejection system is turned off;
b – with the rejection system turned on
The filter was located at the outlet of the ion beam
into the atmosphere. The output of the proton beam into
the atmosphere was carried out through a window made
of aluminum foil with a thickness of 5 μm. The target
was at a distance of 7 mm from the foil at an angle of
45
0
. The energy of the proton beam in a vacuum was
equal to 1.8…1.9 MeV. This value was chosen on the
condition that the energy on the target will be about
1.6 MeV. The scheme of the X-ray channel with a filter
is shown in Fig. 9.
Fig. 9. Scheme of the channel on the released beam of
the ANPC Sokil: 1 – target; 2 – output device of the ion
channel; 3 – foil; 4 – proton beam; 5 – X-ray radiation
filter; 6 – X-ray radiation from the target; 7 – absorber;
8 – filter movement mechanism; 9 – Si-detector;
10 – detector crystal; 11 – foil and detector diaphragm;
12 – detector movement mechanism
CONCLUSIONS
Two methods of separation of
4
Не
2+
and Н
2+
ions
have been developed at the ANPC Sokil of the NSC
KIPT. In the first case, a distribution magnet and an
electrostatic analyzer installed after the magnet are used.
In the second case, carbon films are used in front of the
magnet, which should ensure insignificant losses of the
He
2+
beam and the final disintegration of the H
2+
molecular ion.
The study of the interaction of a beam of accelerated
gas ions with materials allows for studying the state and
modification of nuclear energy materials.
The detection limit values achieved with the
broadband filter allow the PIXE method to be used for
the study of zirconium-based materials for the
determination of elements of the iron and hafnium
group.
REFERENCES
1. Improvement of the reliability and accuracy of
heavy ion beam analysis // International Atomic Energy
Agency: Technical reports series. No. 485. Vienna,
2019, p. 214.
2. A.D. Vergunov, Yu.Z. Levchenko, M.T. Novikov,
et al. Small-sized 2 MeV horizontal type electrostatic
accelerator // PAST. Siries “General and nuclear
physics”. 1983, N 3(24), p. 13-15.
3. O.I. Ekhichev, V.V. Levenets, M.F. Severyn.
Method of nuclear-physical analysis of substance
composition: A.S. No. 1137889. 1983, p. 1-13.
4. V.V. Levenets, A.P. Omelnyk, A.A. Shchur.
Analysis of rare earth elements by characteristic X-ray
radiation of the K-series // PAST. Series “Vacuum, Pure
materials, Superconductors”. 2004, N 6(14), p. 47-52.
5. V.N. Bondarenko, L.S. Glasunov, A.V. Gon-
charov, A.V. Zats, V.V. Kuzmenko, V.V. Levenets,
A.P. Omelnik, V.M. Pistryak, V.I. Sukhostavets,
A.A. Tschur, N.P. Usikov. NSC KIPT analytical
nuclear-physical complex “Sokol” // Current Problems
in Nuclear Physics and Atomic Energy: Proceedings.
Kyiv, 2006, p. 852-857.
6. V.M. Pystryak, V.V. Kuzmenko, Yu.Z. Lev-
chenko. Source of multi-charged gas ions for
electrostatic accelerators // PAST. Series “General and
Nuclear Physics”. 1980, N 2(12).
7. V.V. Kuzmenko, V.M. Pystryak, A.V. Simo-
nenko, A.V. Zats, Yu.Z. Levchenko. Injector of multi-
charged ions for electrostatic accelerators (resource
tests) // PAST. Series “Physical experiment technique”.
1985, N 1(22), p. 45-47.
8. L.S. Glazunov, A.V. Zats, S.G. Karpus,
V.V. Kuz'menko, V.M. Pistryak. Multi-charged ion
source // PAST. Series “Nuclear Physics
Investigations”. 2011, N 3(55), p. 68-74.
9. L.S. Glazunov, A.V. Goncharov, A.V. Zats,
S.G. Karpus, V.V. Kuz'menko, V.V. Levenets, V.M. Pi-
stryak, V.I. Sukhostavets. Channel for ion irradiation of
materials at the accelerator “Sokol” // PAST. Series
“Nuclear Physics Investigations”. 2006, N 2(46),
p. 184-186.
10. S.G. Karpus, A.V. Goncharov, V.M. Pistryak,
A.V. Zats, V.V. Kuz’menko, V.N. Bondarenko, V.I. Su-
ISSN 1562-6016. Problems of Atomic Science and Technology. 2023. №2(144) 139
khostavets, L.S. Glazunov.
4
He
2+
and H
+2
ion beam
separation on ”Sokol” iba facility // PAST. Series
“Nuclear Physics Investigations”. 2015, N 3(97),
p. 95-98.
11. V.V. Levenets, A.P. Omelnyk, N.P. Usykov,
T.V. Chernov, A.A. Shchur. System of rejection of
spectrometric pulses with electrostatic deflection of a
proton beam // Collection of scientific papers SNUYAE
and P. 2008, N 4(28), p. 143-149.
Article received 15.02.2023
МОДЕРНІЗАЦІЯ АНАЛІТИЧНОГО ЯДЕРНО-ФІЗИЧНОГО КОМПЛЕКСУ СОКІЛ
С.Г. Карпусь, В.В. Кузьменко, В.В. Левенець, О.Ю. Лонін, А.П. Омельник,
А.О. Щур, В.І. Сухоставець
Описано нові модифікації, які застосовувалися на аналітичному ядерно-фізичному комплексі Сокіл в
останні роки. Вони стосувалися прискорювача іонів зі збільшенням енергії прискорених іонів і розділенням
пучків
4
He
2+
і H
2+
. Створено систему опромінення матеріалознавчих зразків пучком іонів газу із можливістю
вибору опромінюваного простору мішені. Використання електростатичного відхилення променя дозволило
збільшити термін служби фольги для виходу променя в атмосферу. Використання піровуглецевого фільтра
при аналізі моноелементів або об'єктів з високим рентгенівським випромінюванням одного або кількох
елементів змінило форму спектра. Ці модифікації дозволили удосконалити роботу комплексу та отримати
нові можливості вирішення задач аналітичними методами ядерної фізики при дослідженні матеріалів для
атомної енергетики та екології.
|