Modeling of the substrate cooling system in the installation for the deposition of coatings by the gas plasma method

The efficiency of diamond coating synthesis depends on both the parameters of the plasma flow and the uniform temperature distribution on the surface of the substrate on which the coating is synthesized. Mathematical modeling of the substrate cooling system in the installation for the deposition of...

Full description

Saved in:
Bibliographic Details
Published in:Problems of Atomic Science and Technology
Date:2023
Main Authors: Martynov, S.O., Luchaninov, O.A., Lukyanova, V.P., Prokhorets, S.I., Slabospytska, O.O., Khazhmuradov, M.A.
Format: Article
Language:English
Published: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2023
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/196143
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Modeling of the substrate cooling system in the installation for the deposition of coatings by the gas plasma method / S.O. Martynov, O.A. Luchaninov, V.P. Lukyanova, S.I. Prokhorets, O.O. Slabospytska, M.A. Khazhmuradov // Problems of Atomic Science and Technology. — 2023. — № 3. — С. 72-75. — Бібліогр.: 2 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-196143
record_format dspace
spelling Martynov, S.O.
Luchaninov, O.A.
Lukyanova, V.P.
Prokhorets, S.I.
Slabospytska, O.O.
Khazhmuradov, M.A.
2023-12-10T16:54:28Z
2023-12-10T16:54:28Z
2023
Modeling of the substrate cooling system in the installation for the deposition of coatings by the gas plasma method / S.O. Martynov, O.A. Luchaninov, V.P. Lukyanova, S.I. Prokhorets, O.O. Slabospytska, M.A. Khazhmuradov // Problems of Atomic Science and Technology. — 2023. — № 3. — С. 72-75. — Бібліогр.: 2 назв. — англ.
1562-6016
PACS: 52.77.Fv; 81.15.Rs; 47.11.Df
DOI: https://doi.org/10.46813/2023-145-072
https://nasplib.isofts.kiev.ua/handle/123456789/196143
The efficiency of diamond coating synthesis depends on both the parameters of the plasma flow and the uniform temperature distribution on the surface of the substrate on which the coating is synthesized. Mathematical modeling of the substrate cooling system in the installation for the deposition of coatings by the gas plasma method was carried out in order to find optimal parameters at which high density and radial uniformity of energy and chemically active particle flows are simultaneously achieved on the substrate in the process of synthesis of diamond coatings. The task was solved by direct search methods using the FlowSimulation module of the SolidWorks package.
Ефективність синтезу алмазного покриття залежить від параметрів плазмового потоку й однорідного розподілу температури на поверхні підложки, на якій здійснюється синтез покриття. Проведено математичне моделювання системи охолодження підложки в установці для осадження покриттів газоплазмовим методом з метою знаходження оптимальних параметрів, при яких як висока щільність, так і радіальна однорідність енергії і хімічно активних потоків частинок одночасно досягаються на підложки в процесі синтезу алмазних покриттів. Завдання вирішувалося методами прямого пошуку із використанням модуля FlowSimulation пакета SolidWorks.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Problems of Atomic Science and Technology
Computational and model systems
Modeling of the substrate cooling system in the installation for the deposition of coatings by the gas plasma method
Моделювання системи охолодження підложки в установці для осадження покриттів газоплазмовим методом
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Modeling of the substrate cooling system in the installation for the deposition of coatings by the gas plasma method
spellingShingle Modeling of the substrate cooling system in the installation for the deposition of coatings by the gas plasma method
Martynov, S.O.
Luchaninov, O.A.
Lukyanova, V.P.
Prokhorets, S.I.
Slabospytska, O.O.
Khazhmuradov, M.A.
Computational and model systems
title_short Modeling of the substrate cooling system in the installation for the deposition of coatings by the gas plasma method
title_full Modeling of the substrate cooling system in the installation for the deposition of coatings by the gas plasma method
title_fullStr Modeling of the substrate cooling system in the installation for the deposition of coatings by the gas plasma method
title_full_unstemmed Modeling of the substrate cooling system in the installation for the deposition of coatings by the gas plasma method
title_sort modeling of the substrate cooling system in the installation for the deposition of coatings by the gas plasma method
author Martynov, S.O.
Luchaninov, O.A.
Lukyanova, V.P.
Prokhorets, S.I.
Slabospytska, O.O.
Khazhmuradov, M.A.
author_facet Martynov, S.O.
Luchaninov, O.A.
Lukyanova, V.P.
Prokhorets, S.I.
Slabospytska, O.O.
Khazhmuradov, M.A.
topic Computational and model systems
topic_facet Computational and model systems
publishDate 2023
language English
container_title Problems of Atomic Science and Technology
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Моделювання системи охолодження підложки в установці для осадження покриттів газоплазмовим методом
description The efficiency of diamond coating synthesis depends on both the parameters of the plasma flow and the uniform temperature distribution on the surface of the substrate on which the coating is synthesized. Mathematical modeling of the substrate cooling system in the installation for the deposition of coatings by the gas plasma method was carried out in order to find optimal parameters at which high density and radial uniformity of energy and chemically active particle flows are simultaneously achieved on the substrate in the process of synthesis of diamond coatings. The task was solved by direct search methods using the FlowSimulation module of the SolidWorks package. Ефективність синтезу алмазного покриття залежить від параметрів плазмового потоку й однорідного розподілу температури на поверхні підложки, на якій здійснюється синтез покриття. Проведено математичне моделювання системи охолодження підложки в установці для осадження покриттів газоплазмовим методом з метою знаходження оптимальних параметрів, при яких як висока щільність, так і радіальна однорідність енергії і хімічно активних потоків частинок одночасно досягаються на підложки в процесі синтезу алмазних покриттів. Завдання вирішувалося методами прямого пошуку із використанням модуля FlowSimulation пакета SolidWorks.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/196143
citation_txt Modeling of the substrate cooling system in the installation for the deposition of coatings by the gas plasma method / S.O. Martynov, O.A. Luchaninov, V.P. Lukyanova, S.I. Prokhorets, O.O. Slabospytska, M.A. Khazhmuradov // Problems of Atomic Science and Technology. — 2023. — № 3. — С. 72-75. — Бібліогр.: 2 назв. — англ.
work_keys_str_mv AT martynovso modelingofthesubstratecoolingsystemintheinstallationforthedepositionofcoatingsbythegasplasmamethod
AT luchaninovoa modelingofthesubstratecoolingsystemintheinstallationforthedepositionofcoatingsbythegasplasmamethod
AT lukyanovavp modelingofthesubstratecoolingsystemintheinstallationforthedepositionofcoatingsbythegasplasmamethod
AT prokhoretssi modelingofthesubstratecoolingsystemintheinstallationforthedepositionofcoatingsbythegasplasmamethod
AT slabospytskaoo modelingofthesubstratecoolingsystemintheinstallationforthedepositionofcoatingsbythegasplasmamethod
AT khazhmuradovma modelingofthesubstratecoolingsystemintheinstallationforthedepositionofcoatingsbythegasplasmamethod
AT martynovso modelûvannâsistemioholodžennâpídložkivustanovcídlâosadžennâpokrittívgazoplazmovimmetodom
AT luchaninovoa modelûvannâsistemioholodžennâpídložkivustanovcídlâosadžennâpokrittívgazoplazmovimmetodom
AT lukyanovavp modelûvannâsistemioholodžennâpídložkivustanovcídlâosadžennâpokrittívgazoplazmovimmetodom
AT prokhoretssi modelûvannâsistemioholodžennâpídložkivustanovcídlâosadžennâpokrittívgazoplazmovimmetodom
AT slabospytskaoo modelûvannâsistemioholodžennâpídložkivustanovcídlâosadžennâpokrittívgazoplazmovimmetodom
AT khazhmuradovma modelûvannâsistemioholodžennâpídložkivustanovcídlâosadžennâpokrittívgazoplazmovimmetodom
first_indexed 2025-11-25T22:45:23Z
last_indexed 2025-11-25T22:45:23Z
_version_ 1850571207196278784
fulltext 72 ISSN 1562-6016. Problems of Atomic Science and Technology. 2023. №3(145) COMPUTATIONAL AND MODEL SYSTEMS https://doi.org/10.46813/2023-145-072 MODELING OF THE SUBSTRATE COOLING SYSTEM IN THE INSTALLATION FOR THE DEPOSITION OF COATINGS BY THE GAS PLASMA METHOD S.O. Martynov, O.A. Luchaninov, V.P. Lukyanova, S.I. Prokhorets, O.O. Slabospytska, M.A. Khazhmuradov National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine E-mail: khazhm@kipt.kharkov.ua; sprokhorets@gmail.com The efficiency of diamond coating synthesis depends on both the parameters of the plasma flow and the uniform temperature distribution on the surface of the substrate on which the coating is synthesized. Mathematical modeling of the substrate cooling system in the installation for the deposition of coatings by the gas plasma method was carried out in order to find optimal parameters at which high density and radial uniformity of energy and chemically active particle flows are simultaneously achieved on the substrate in the process of synthesis of diamond coatings. The task was solved by direct search methods using the FlowSimulation module of the SolidWorks package. PACS: 52.77.Fv; 81.15.Rs; 47.11.Df INTRODUCTION Plasma coating refers to advanced technologies that allow to increase the reliability and durability of machine parts and tools with high efficiency. The main purpose of these technologies is to ensure high wear and corrosion resistance of the surfaces of parts, restoration of the dimensions of worn surfaces of parts due to the application of coatings on them The advantages of plasma coating include the possibility of the widest variety of materials, the minimum possible heating of the substrate, a small zone of thermal influence, the possibility of coating in all positions. This technology allows you to apply multi- component coatings made of various materials and diamond-like structures, designed to protect the working surfaces of parts, tools and equipment from wear, erosion, the influence of the external environment, increase heat resistance, etc. One of the most promising are diamond coatings, which are characterized by strength, hardness, high modulus of elasticity, low coefficient of linear thermal expansion, high thermal conductivity, good tribological properties, as well as erosion, thermal and chemical resistance. These properties allow them to be used in various industries, in particular, to increase the reliability and durability of machine parts and tools. The efficiency of the synthesis of the diamond coating is determined by the parameters of the plasma flow and the thermal regime of the substrate where the coating is deposited (Fig. 1). The optimal conditions are the temperature of the surface of the substrate in the range of 800…900°С, while the uniformity of the thickness of the coating depends on the uniformity of the temperature distribution over the surface of the substrate. With a given thermal power of the plasma flow, the optimal thermal regime of the substrate can be ensured by selecting the parameters of the cooling system. Fig. 1. Scheme of the deposition process of diamond coatings The aim of the work: search for optimal parameters of the cooling system of the substrate of the gas plasma deposition of diamond coatings, which ensure a uniform temperature distribution of the surface of the substrate in a given range and the efficiency of the synthesis of the diamond coating. 1. OPTIMIZATION OF THE COOLING SYSTEM OF THE SUBSTRATE The geometric model of the cooling system for being optimized is shown at Fig. 2 [1, 6]. The substrate, a molybdenum disk with a diameter of 40 mm, is attached to the end of the cooling collector in the form of a hollow cylinder with a diameter of 40 mm. The water cooling cavity has the shape of a cylinder with a diameter of 20 mm, ending with a spherical top. The coolant (water) is fed into the cavity through a tube measuring 6×0.5 mm; made of stainless steel. The ambient temperature is 20°C, the integral thermal power of the plasma flow is 5000 W. mailto:khazhm@kipt.kharkov.ua mailto:sprokhorets@gmail.com ISSN 1562-6016. Problems of Atomic Science and Technology. 2023. №3(145) 73 Fig. 2. Geometrical model of the substrate cooling unit: 1 – molybdenum substrate (disk with a diameter of 40 mm); 2 – cooling collector; 3 – coolant supply tube (stainless steel 6×0.5 mm); 4 – coolant (water) The optimization task was solved as a mathematical programming task ‒ finding the extremum of the objective function by varying the controlled parameters within the permissible range ( ) x x D extrF X  ,  ,/XD 0)x(,0)x(x   where )X(F – goal function (temperature distribution over the surface of the molybdenum substrate along the radius); X is a vector of controlled parameters (the thickness of the molybdenum substrate is 1 and 0.1 mm; the material of the cooling collector is copper, zinc, steel; the water flow rate in the cooling collector is 1, 0.5, 0.08, 0.012 l/s; gap (from the top of the sphere of the water cooling cavity to the substrate) – 2 mm, 0.2 mm; )x( ; )x( – restriction functions (temperature range ~ 800…900С); x D – admissible area in the space of controlled parameters; the heat flux density distribution over the surface of the substrate is uniform or Gaussian. The task was solved by direct search methods using the FlowSimulation module of the SolidWorks license package. 2. MODELING RESULTS When studying the influence of the collector material on the goal function, calculations were made for stainless steel and copper. In Figs. 3 and 4 it is shown the temperature distribution over the surface of the substrate for the case of a stainless steel cooling collector and two options for the distribution of the thermal power density of the plasma flow: uniform or Gaussian. Fig. 3. The material of the collector is steel. Heat distribution is uniform. Water consumption – 1 l/s Fig. 4. The material of the collector is steel. Gaussian distribution of heat. Water consumption – 1 l/s. The gap is 0.2 mm 74 ISSN 1562-6016. Problems of Atomic Science and Technology. 2023. №3(145) In both variants, the temperature distribution over the substrate is nonuniform, and for a Gaussian flow ΔТ/Т=1.1, and the maximum temperature falls on the center of the substrate, and for a uniform flow ΔТ/Т=0.5, and the temperature reaches its highest value at the periphery. The same regularity is observed in the case of a copper collector: the temperature distribution is more uniform for a uniform plasma flow. The effect of the flow rate of the cooling liquid on the target function can be seen in Figs. 5 and 6, it can be seen that reducing the flow rate from 0.5 l/s to 0.08 l/s slightly improves the uniformity of the temperature distribution over the surface of the substrate, but at the same time, the maximum temperature value deviates more from the optimal range. Fig. 5. Collector material copper Gaussian heat distribution. Water consumption – 0.5 l/s. ΔT/T=1.5 Fig. 6. The material of the collector is copper. Gaussian distribution of heat. Water consumption – 0.08 l/s. ΔT/T=1.1 Removing the water-cooling cavity from the substrate (increasing the gap) makes it possible to reduce the unevenness of the temperature distribution by reducing its maximum, but both the maximum and minimum values remain far outside the optimal range (compare Figs. 5 and 7). The analysis of the results shows that the distribution of the thermal power density of the plasma flow has the greatest influence on the objective function. With a uniform flow, it is possible to achieve that the temperature of all points of the surface of the substrate falls into the optimal range, while there remains some inhomogeneity of the temperature distribution along the radius (ΔТ/Т=0.06), which is much smaller than in all the options considered (Fig. 8). Fig. 7. The material of the collector is copper, the gap is 2 mm. Gaussian distribution of heat. The thickness of molybdenum is 0.1 mm. Water consumption ‒ 0.5 l/s. ΔT/T=1.1 ISSN 1562-6016. Problems of Atomic Science and Technology. 2023. №3(145) 75 Fig. 8. The collector material is copper. The heat flux power density is uniform. Water consumption – 0.012 l/s. ΔT/T=0.06 As follows from the above, in order to achieve the best uniformity of temperature distribution over the surface of the substrate, the cooling system in the considered geometric model must satisfy the following parameters: – the collector material is copper; – a gap of 2 mm; – the thickness of the molybdenum substrate is 0.1 mm; – water consumption 0.012 l/s. With a uniform distribution of the power density of the plasma flow, the surface temperature is 805…850°C. A further reduction of the inhomogeneity of the temperature distribution on the surface of the molybdenum substrate in the considered geometric model of the cooling system can be achieved by providing additional heating of the outer part of the cooling collector to a temperature of ~ 800°C, or in the case of using a collector made of a composite material with variable thermal conductivity along the radius. 3. CONCLUSIONS Computer modeling of the substrate cooling system in the installation for the deposition of diamond coating by the gas plasma method was carried out. The plasma stream falls on a substrate located at the end of a metal cylinder, in the cavity of which a cooling liquid (water) flows. Modeling showed that in the case of a uniform distribution of the power density of the plasma flow, it is possible to ensure the uniformity of the temperature distribution over the surface of the substrate in the range of 805…850°C. Varying the parameters of the cooling system showed that the best temperature uniformity is achieved with a water consumption of 0.012 l/s; copper water cooling collector; the thickness of the molybdenum substrate is 0.1 mm. At the same time, the inhomogeneity of the temperature distribution by radius is ΔТ/Т=0.06. The obtained results are of practical importance for the creation of highly efficient technologies for the synthesis of diamond coatings. REFERENCES 1. С.А. Мартынов, А.А. Лучанинов, В.П. Лукья- нова, М.А. Хажмурадов. Оптимизация теплового режима подложки при вакуумно-плазменном осаждении алмазных покрытий // Тезисы докладов ХVI Конференции по физике высоких энергий, ядерной физике и ускорителям. Харьков, ННЦ ХФТИ, 20-23 марта 2018 г., с. 62. 2. С.А. Мартынов, В.П. Лукьянова, А.А. Лучани- нов, М.А. Хажмурадов. Оптимизация системы охлаждения молибденовой подложки установки газоплазменного напыления // Радиоэлектроника и информатика. 2018, №3, с. 5-7. Article received 01.02.2023 МОДЕЛЮВАННЯ СИСТЕМИ ОХОЛОДЖЕННЯ ПІДЛОЖКИ В УСТАНОВЦІ ДЛЯ ОСАДЖЕННЯ ПОКРИТТІВ ГАЗОПЛАЗМОВИМ МЕТОДОМ С.О. Мартинов, О.А. Лучанінов, В.П. Лук'янова, С.І. Прохорець, О.О. Слабоспицька, М.А. Хажмурадов Ефективність синтезу алмазного покриття залежить від параметрів плазмового потоку й однорідного розподілу температури на поверхні підложки, на якій здійснюється синтез покриття. Проведено математичне моделювання системи охолодження підложки в установці для осадження покриттів газоплазмовим методом с ціллю знаходження оптимальних параметрів, при яких як висока щільність, так і радіальна однорідність енергії і хімічно активних потоків частинок одночасно досягаються на підложки в процесі синтезу алмазних покриттів. Завдання вирішувалося методами прямого пошуку із використанням модуля FlowSimulation пакета SolidWorks.