General solution of the excitation problem of a symmetric flat dielectric structure by plane electromagnetic waves
General solution of the excitation problem of a symmetric flat dielectric structure by two laser pulses is obtained. The symmetrical geometry consists of two dielectric prisms separated by a vacuum channel for electron acceleration (so called “sandwich”). Each prism can be illuminated with a separat...
Gespeichert in:
| Veröffentlicht in: | Problems of Atomic Science and Technology |
|---|---|
| Datum: | 2023 |
| Hauptverfasser: | , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2023
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/196149 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | General solution of the excitation problem of a symmetric flat dielectric structure by plane electromagnetic waves / A.V. Vasiliev, A.I. Povrozin, G.V. Sotnikov // Problems of Atomic Science and Technology. — 2023. — № 3. — С. 99-102. — Бібліогр.: 16 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-196149 |
|---|---|
| record_format |
dspace |
| spelling |
Vasiliev, A.V. Povrozin, A.I. Sotnikov, G.V. 2023-12-10T16:57:12Z 2023-12-10T16:57:12Z 2023 General solution of the excitation problem of a symmetric flat dielectric structure by plane electromagnetic waves / A.V. Vasiliev, A.I. Povrozin, G.V. Sotnikov // Problems of Atomic Science and Technology. — 2023. — № 3. — С. 99-102. — Бібліогр.: 16 назв. — англ. 1562-6016 PACS: 41.75.Lx, 41.60.-m, 41.75.Ht, 41.85.Ar DOI: https://doi.org/10.46813/2023-145-099 https://nasplib.isofts.kiev.ua/handle/123456789/196149 General solution of the excitation problem of a symmetric flat dielectric structure by two laser pulses is obtained. The symmetrical geometry consists of two dielectric prisms separated by a vacuum channel for electron acceleration (so called “sandwich”). Each prism can be illuminated with a separate laser pulse; electric filed amplitudes of pulses can differ. The general solution consist from a symmetric distribution and asymmetric one of a longitudinal electric field across the vacuum channel. In the case of a general solution, the effect of the asymmetric part on the total amplitude of the accelerating and defocusing fields is also analyzed. We determined also conditions when a symmetric or asymmetric solution only is realized. For these cases, the obtained analytical solutions are compared with results of full time-domain numerical simulations of bilateral excitation of dielectric prisms with laser pulses. Отримано загальне рішення задачі збудження симетричної плоскої діелектричної структури двома лазерними імпульсами. Симетрична геометрія складається з двох діелектричних призм, розділених вакуумним каналом для прискорення електронів (так званий сендвіч). Кожну призму можна опромінювати окремим лазерним імпульсом, амплітуди електричного поля імпульсів можуть відрізнятися. Загальне рішення складається з симетричного та асиметричного розподілів поздовжнього електричного поля впоперек вакуумного каналу. У разі загального рішення аналізується також вплив асиметричної частини на сумарну амплітуду полів, що прискорює і дефокусує. Визначено також умови, коли реалізується лише симетричне чи асиметричне рішення. Для цих випадків одержані аналітичні рішення порівнюються з результатами повного тимчасового чисельного моделювання білатерального збудження. The National Research Foundation of Ukraine under the program “Leading and Young Scientists Research Support” supports the study (project # 2020.02/0299). en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Problems of Atomic Science and Technology Linear charged-particle accelerators (theory and technology) General solution of the excitation problem of a symmetric flat dielectric structure by plane electromagnetic waves Загальне рішення задачі збудження симетричної плоскої діелектричної структури плоскими електромагнітними хвилями Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
General solution of the excitation problem of a symmetric flat dielectric structure by plane electromagnetic waves |
| spellingShingle |
General solution of the excitation problem of a symmetric flat dielectric structure by plane electromagnetic waves Vasiliev, A.V. Povrozin, A.I. Sotnikov, G.V. Linear charged-particle accelerators (theory and technology) |
| title_short |
General solution of the excitation problem of a symmetric flat dielectric structure by plane electromagnetic waves |
| title_full |
General solution of the excitation problem of a symmetric flat dielectric structure by plane electromagnetic waves |
| title_fullStr |
General solution of the excitation problem of a symmetric flat dielectric structure by plane electromagnetic waves |
| title_full_unstemmed |
General solution of the excitation problem of a symmetric flat dielectric structure by plane electromagnetic waves |
| title_sort |
general solution of the excitation problem of a symmetric flat dielectric structure by plane electromagnetic waves |
| author |
Vasiliev, A.V. Povrozin, A.I. Sotnikov, G.V. |
| author_facet |
Vasiliev, A.V. Povrozin, A.I. Sotnikov, G.V. |
| topic |
Linear charged-particle accelerators (theory and technology) |
| topic_facet |
Linear charged-particle accelerators (theory and technology) |
| publishDate |
2023 |
| language |
English |
| container_title |
Problems of Atomic Science and Technology |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Загальне рішення задачі збудження симетричної плоскої діелектричної структури плоскими електромагнітними хвилями |
| description |
General solution of the excitation problem of a symmetric flat dielectric structure by two laser pulses is obtained. The symmetrical geometry consists of two dielectric prisms separated by a vacuum channel for electron acceleration (so called “sandwich”). Each prism can be illuminated with a separate laser pulse; electric filed amplitudes of pulses can differ. The general solution consist from a symmetric distribution and asymmetric one of a longitudinal electric field across the vacuum channel. In the case of a general solution, the effect of the asymmetric part on the total amplitude of the accelerating and defocusing fields is also analyzed. We determined also conditions when a symmetric or asymmetric solution only is realized. For these cases, the obtained analytical solutions are compared with results of full time-domain numerical simulations of bilateral excitation of dielectric prisms with laser pulses.
Отримано загальне рішення задачі збудження симетричної плоскої діелектричної структури двома лазерними імпульсами. Симетрична геометрія складається з двох діелектричних призм, розділених вакуумним каналом для прискорення електронів (так званий сендвіч). Кожну призму можна опромінювати окремим лазерним імпульсом, амплітуди електричного поля імпульсів можуть відрізнятися. Загальне рішення складається з симетричного та асиметричного розподілів поздовжнього електричного поля впоперек вакуумного каналу. У разі загального рішення аналізується також вплив асиметричної частини на сумарну амплітуду полів, що прискорює і дефокусує. Визначено також умови, коли реалізується лише симетричне чи асиметричне рішення. Для цих випадків одержані аналітичні рішення порівнюються з результатами повного тимчасового чисельного моделювання білатерального збудження.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/196149 |
| citation_txt |
General solution of the excitation problem of a symmetric flat dielectric structure by plane electromagnetic waves / A.V. Vasiliev, A.I. Povrozin, G.V. Sotnikov // Problems of Atomic Science and Technology. — 2023. — № 3. — С. 99-102. — Бібліогр.: 16 назв. — англ. |
| work_keys_str_mv |
AT vasilievav generalsolutionoftheexcitationproblemofasymmetricflatdielectricstructurebyplaneelectromagneticwaves AT povrozinai generalsolutionoftheexcitationproblemofasymmetricflatdielectricstructurebyplaneelectromagneticwaves AT sotnikovgv generalsolutionoftheexcitationproblemofasymmetricflatdielectricstructurebyplaneelectromagneticwaves AT vasilievav zagalʹneríšennâzadačízbudžennâsimetričnoíploskoídíelektričnoístrukturiploskimielektromagnítnimihvilâmi AT povrozinai zagalʹneríšennâzadačízbudžennâsimetričnoíploskoídíelektričnoístrukturiploskimielektromagnítnimihvilâmi AT sotnikovgv zagalʹneríšennâzadačízbudžennâsimetričnoíploskoídíelektričnoístrukturiploskimielektromagnítnimihvilâmi |
| first_indexed |
2025-11-24T15:54:12Z |
| last_indexed |
2025-11-24T15:54:12Z |
| _version_ |
1850849329938432000 |
| fulltext |
ISSN 1562-6016. Problems of Atomic Science and Technology. 2023. №3(145) 99
https://doi.org/10.46813/2023-145-099
GENERAL SOLUTION OF THE EXCITATION PROBLEM
OF A SYMMETRIC FLAT DIELECTRIC STRUCTURE
BY PLANE ELECTROMAGNETIC WAVES
A.V. Vasiliev, A.I. Povrozin, G.V. Sotnikov*
NSC “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine
*E-mail: sotnikov@kipt.kharkov.ua
General solution of the excitation problem of a symmetric flat dielectric structure by two laser pulses is obtained.
The symmetrical geometry consists of two dielectric prisms separated by a vacuum channel for electron acceleration
(so called “sandwich”). Each prism can be illuminated with a separate laser pulse; electric filed amplitudes of pulses
can differ. The general solution consist from a symmetric distribution and asymmetric one of a longitudinal electric
field across the vacuum channel. In the case of a general solution, the effect of the asymmetric part on the total
amplitude of the accelerating and defocusing fields is also analyzed. We determined also conditions when a
symmetric or asymmetric solution only is realized. For these cases, the obtained analytical solutions are compared
with results of full time-domain numerical simulations of bilateral excitation of dielectric prisms with laser pulses.
PACS: 41.75.Lx, 41.60.-m, 41.75.Ht, 41.85.Ar
INTRODUCTION
To use microscale dielectric structures for high
gradient acceleration by waves arising from their
illumination with intense laser beams had been proposes
in the last century [1, 2]. Further development of
dielectric laser accelerators (DLA) took place in several
directions: using grating structures [3, 4] (acceleration
mechanism is the inverse Smith-Purcell radiation),
photonic gap structures [3, 5] and flat структур [6, 7]
(acceleration mechanism is the inverse Cherenkov
radiation).
However, even A. Lohman [1] drew attention to the
fact that for ultra-relativistic electrons the acceleration
rate tends to zero when using both single grating
structures and single flat structures. The dependence of
the accelerating gradient on particle energy
21 1/acE ( is the velocity of a particle
synchronous with the excited wave, is the relativistic
factor) then was confirmed in analytical studies [6, 8].
For the DLA with single flat dielectric structure the
exact dependence of the acceleration rate on the beam
energy is studied in the paper [9].
The vanishing of the longitudinal electric field acE
when 1 can be eliminated by using double flat
dielectric structures [1, 10] or double grating dielectric
structures [1, 8]. At this authors [1, 8, 10] considered the
bilateral illumination of double dielectric structures by
laser pulse (so called “two-side interaction” [1]).
In a recent study [11], a more general case is
considered in comparison [1, 8], when a double flat
dielectric structure (double-prism model) is illuminated
both from one side and from both sides (unilateral
illumination and bilateral illumination by driving laser
pulses). It is shown that even when using a unilateral
illumination of a double flat dielectric structure the
longitudinal electric field acE does not vanish when
1 .
The analytical solution given in [11] for bilateral
illumination of a double prism has a transverse
distribution of the longitudinal electric field that is
symmetric with respect to the axis of the accelerating
channel. At the same time, it is known [12-14] that
symmetric dielectric structures have both symmetric and
antisymmetric solution of the excitation problem by an
external source. Below, we will obtain a general
solution to the excitation problem of a two-sided
dielectric structure by two laser pulses having the same
frequency but differing in the amplitude of the electric
field. We will show analytically when the case with a
symmetric or the case with an antisymmetric transverse
distribution of the longitudinal electric field can be
realized. These conclusions then will be confirmed by
numerical simulations of excitation by laser pulses of a
double dielectric structure.
1. STATEMENT OF THE PROBLEM
We will describe the electromagnetic fields of laser
pulses in the plane wave approximation. Let p-polarized
plane waves fall from a optically transparent medium with
refractive index n under an angle onto the
boundary between the vacuum and this mediums. The
frequencies of these waves are equal, but the amplitudes in
the general case have different values. If sin 1/ n the
incident electromagnetic wave undergoes total internal
reflection. Geometry of the problem and the coordinate
system is given in Fig. 1. The boundary surfaces are planes
/ 2x d , the incident plane is xz -plane, and the z-axis
is directed along the propagation of accelerated bunch. In
such a frame the components of the electric vector of the
incident waves will be of the form
1 1 1 1 1 1
3 3 3 3 3 3
1,3 0 0
cos( )exp( ), sin( )exp( ),
cos( )exp( ), sin( )exp( ),
sin cos ( / 2) ,
i i i i
z x
i i i i
z x
E E i E E i
E E i E E i
k n z k n x d t
(1)
where 0 /k c , is the frequency of plane wave, c
is the speed of light in the vacuum, 1E and 3E are
amplitudes of incident waves in region 1( / 2x d ) and
in region 3 ( / 2x d ) correspondently.
100 ISSN 1562-6016. Problems of Atomic Science and Technology. 2023. №3(145)
Fig. 1. Geometry of the problem.
1
iE and
3
iE are
amplitudes of incident waves in the region (1) and (3),
1
oE and
3
oE are unknown amplitudes of reflected
waves. Region (2) is accelerating channel
2. ANALYTICAL SOLUTION OF THE
PROBLEM
Let us designate an unknown amplitudes of the
reflected waves in regions (1) s and (3) as
1
oE and
3
oE
respectively. Then the components of the electric field
of the reflected waves have the form
1 1 1 1 1 1
3
3 3 3 3 3 3
cos( )exp( ), sin( )exp( ),
cos( )exp( ), sin( )exp( ).
o o o o
z x
o o o
z x
E E i E E i
E E i E E i
(2)
We will seek the solution of the Maxwell equations
for the amplitude of longitudinal electric field 2zE of
the evanescent wave in region (2) in the form
2 1 2 2sinh( ) cosh( ) exp( ),zE C px C px i (3)
where 2 0 sink n z t ,
2 2
0 sin 1p k n , 1C
and 2C are unknown constants.
Taking into account the equation (1), for tte
amplitude of transverse electric field 2xE from the
Maxwell equations follows the expression
0
2 1 2 2
sin
cosh( ) sinh( ) exp( )x
k n
E C px C px i
p
.(4)
To uniquely find fields in all regionss, it is necessary
to determine four unknown constants 1C , 2C ,
1
oE ,
3
oE .
They can be found using the continuity conditions for
the longitudinal electric field zE and the transverse
component of the electric field induction vector xD at
the boundary / 2x d
1 1 1 2
0
1 1 1
2
cos cos sinh( / 2) cosh( / 2),
cos
sin sin cosh( / 2)
sinh( / 2)
i o
i o
E E C pd C pd
ik n
E E C pd
p
C pd
(5)
and at the boundary / 2x d
3 3 1 2
0
3 3 1
2
cos cos sinh( / 2) cosh( / 2),
cos
sin sin cosh( / 2)
sinh( / 2)
i o
i o
E E C pd C pd
ik n
E E C pd
p
C pd
(6)
Having solved equations (5) and (6) with respect to
the required values, we find the following expressions
for the variables 1C , 2C
1 1 3
0
sin
( )
sinh tan cosh
2 2
i iC E E
ik npd pd
p
, (7)
2 1 3
0
sin
( )
cosh tan sinh
2 2
i iC E E
ik npd pd
p
. (8)
The constant 1C describes antisymmetric part and the
constant 2C describes symmetric part of the transverse
distribution of the longitudinal electric field in the
accelerating channel (3). From the equation (8) follows
if
3 1
i iE E , i.e. amplitude of incident wave are equal,
then the symmetric solution is absent (3). Similarly,
from the equation (7) follows if
3 1
i iE E , i.e. amplitude
of incident wave are equal but opposite in sign, then the
antisymmetric solution is absent.
If the amplitude of one of incident wave is equal
zero, for example
3 0iE , we obtain the solution for
unilateral illumination of the double flat dielectric
structure, given in the ref. [11]. For the ultrarelativic
electrons 1 the value 0 / 0p k , the
constant 1 0C and the antisymmetric part in the
equation (3) disappears. Therefore, the qualitative
dependences of the longitudinal electric field in the
accelerating channel on the electron energy for
unilateral and bilateral (if
3 1
i iE E ) illumination
coincide.
3. NUMERICAL SIMULATION OF THE
EXCITATION PROBLEM
To verify the analytical results presented in above
section we simulate the field excitation by laser pulses
in double flat dielectric structure. The double flat
dielectric structure consists of two oppositely located
rectangular prisms, the hypotenuses of which form a
vacuum channel for the accelerated bunch. The angle of
the prism is equal to , this angle is equal to the angle
of incidence of the laser pulse on the dielectric-vacuum
channel interface. The field simulations are performed
by using an electromagnetic code based on the finite-
difference time-domain (FDTD) algorithm [15]. The
parameters of the laser pulses and prisms used in the
simulations are given in Table.
In Figs. 2–6 are presented the results of the
simulations. In Fig. 2 are shown 2D-maps of the
distribution of the longitudinal electric field in the
simulated region - inside of prisms, acceleration channel
.
ISSN 1562-6016. Problems of Atomic Science and Technology. 2023. №3(145) 101
and surrounded space (top picture). In the bottom
picture is shown the zoomed part of top picture in the
acceleration channel.
Simulation parameters
Wavelength of laser pulse……………… 790…810 nm
Form of laser pulse ……………………. Gaussian
Electric field amplitude……………..... 3·10
9
V/m
Waist ………………………………….. 20 µm
Focus distance………………………… 5 µm
Refractive index (fused silica), n …….. 1.453
Incident angle, θ ………………………. 43.482°
Channel width, d ………………………. 400 nm
Channel length ………………………... 22 µm
Phase shift between laser pulses ……… 0°, 180°
Fig. 2. 2D-distribution of the longitudinal electric field
in the x-z plane (x-axis is directed upward). Red arrows
show direction and origin of laser pulse injection.
Zoomed part of acceleration channel is in the bottom.
Coordinates measured in microns. Phase shift between
pulses is 180°
The simulation results shown in Fig. 2 are obtained
for the case symmetric excitation of the dielectric
structure, when phase shift between laser pulses is 0.
This case corresponds the case when
3 1
i iE E in the
equations (7), (8), (3), (4). As can be seen from the
bottom figure, inside the vacuum channel, the amplitude
of the longitudinal electric field is almost constant.
In Fig. 3 are shown the axial profile of the
longitudinal (top) and transverse profile electric field in
accelerating channel in the case of symmetric excitation
of the dielectric structure. Maximal amplitude is
4·10
9
V/m in comparison with the value 3·10
9
V/m of
amplitude of electric field of each laser. Transverse
profile the longitudinal electric field is about the
constant.
In Fig. 4 are shown the similar profiles as in Fig. 3,
only in the case of antisymmetric excitation of the
dielectric structure. This case corresponds the case when
3 1
i iE E in the equations (7), (8), (3), (4).
Fig. 3. The distribution of the longitudinal electric field
along the center of the accelerating channel (top) and
across the accelerating channel (channel) in the section
z=5 µm. Symmetric excitation of dielectric structure,
phase shift between pulses is 0.Yellow and cyan
rectangles show location of dielectric prisms
Fig. 4. The same in Fig. 3 for antisymmetric excitation
of dielectric structure, phase shift between pulses is
180°.Yellow and cyan rectangles show location of
dielectric prisms
102 ISSN 1562-6016. Problems of Atomic Science and Technology. 2023. №3(145)
The longitudinal electric field near the channel axis
is about zero, three orders of magnitude less than in the
symmetrical case, not exactly zero due to grid effects.
Transverse profile of the longitudinal electric field has
antisymmetric distribution with opposite signs of the
field at opposite sides of the accelerating channel.
Maximal amplitude is the value of 0.15·10
9
V/m, which
is significantly less than the amplitude of the field of the
incident lase wave.
CONCLUSIONS
Analytical solution of the excitation problem of a
symmetric flat dielectric structure by two laser pulses is
obtained in the case of arbitrary values of field
amplitudes of incident lasers. The general solution
consist from a symmetric part and asymmetric one of a
longitudinal electric field distribution across the vacuum
channel.
If the vectors of the electric field of the incident
waves are oriented so that their longitudinal components
are directed in one direction, then the case of a
symmetrical distribution of the accelerating field across
the vacuum channel is realized. In opposite case when
electric fields of incident waves are shifted by 180° is
realized the antisymmetric distribution of the
accelerating field across the vacuum channel.
The obtained analytical results are confirmed with
full finite-difference time-domain simulation of the
bilateral excitation of double flat dielectric structure.
The presented analytical solutions and numerical
simulations are useful in planning experiments on
dielectric laser acceleration.
ACKNOWLEDGEMENTS
The National Research Foundation of Ukraine under
the program “Leading and Young Scientists Research
Support” supports the study (project # 2020.02/0299).
REFERENCES
1. A. Lohmann. Electron Acceleration by Light Waves
// IBM Technical Note TN5. 1962, p. 169-182.
2. Koichi Shimoda. Proposal for an Electron Accel-
erator Using an Optical Maser // Applied Optics.
1962, v. 1, p. 33-35.
3. J. Breuer J and P. Hommelhoff. Laser-based accel-
eration of nonrelativistic electrons at a dielectric
structure // Phys. Rev. Lett. 2013, v. 111, p. 134803.
4. R.J. England et al. Dielectric laser accelerators //
Rev. Mod. Phys. 2014, v. 86, p. 1337-1389.
5. X. E Lin. Photonic band gap fiber accelerator //
Phys. Rev. ST Accel. Beams. 2001, v. 4, p. 051301.
6. S.A. Kheifetz. Particle motion a surface on which
total internal reflection of electromagnetic wave
takes plase // Proc. 8-th Int. conf. Higt energy ac-cel.
CERN, Geneva. 1971, p. 597-599.
7. R.C. Fernow. Acceleration using total internal
reflection // BNL Report No.52290. 1991, p. 1-17.
8. J. Breuer, J. McNeur, and P. Hommelhoff. Dielectric
9. Laser acceleration of electrons in the vicinity of
single and double grating structures theo ry and
simulations // J. Phys. B: At. Mol. Opt. Phys. 2014,
v. 47(23), p. 234004.
10. O.O. Bolshov, A.V. Vasiliev, A.I. Povrozin, and
G.V. Sotnikov. About the acceleration rate of
relativistic beams by a surface wave in a dielectric
laser accelerator // Problems of Atomic Science and
Technology. 2021, N 6(136), p. 57-60.
https://doi.org/10.46813/2021-136-057
11. B.R. Frandsen, S.A. Glasgow, and J.B. Peatross.
Acceleration of free electrons in a symmetric
evanescent wave // Laser Phys. 2006, v. 16, p. 1311-
1314. https://doi.org/10.1134/S1054660X06090040
12. Liwen Zhang, Weihao Liu, Yucheng Liu, et al.
Inverse Cherenkov dielectric laser accelerator for
ultra-relativistic particles // J. Phys. D: Appl. Phys.
2023, v. 56, p. 045103.
13. L. Pincherle. Electromagnetic waves in metal tubes
filled longitudinally with two dielectric // Phys. Rev.
1944, v. 66, №5-6, p. 118-130.
14. Liling Xiao, Wei Gai, and Xiang Sun. Field analysis
of a dielectric-loaded rectangular waveguide
accelerating structure // Phys. Rev. E. 2001, v. 65,
p. 016505(9).
15. Gennadij V. Sotnikov, Ivan N. Onishchenko, and
Thomas C. Marshall. 3D Analysis of Wake Field
Excitation in a Dielectric Loaded Rectangular
Resonator // AIP Conference Proceedings. 2006,
v. 877, p. 888. https://doi.org/10.1063/1.2409230
16. CST Studio Suite Electromagnetic Field Simulation
Software. https://www.3ds.com/products-
services/simulia/products/cst-studio-suite/
Article received 19.04.2023
ЗАГАЛЬНЕ РІШЕННЯ ЗАДАЧІ ЗБУДЖЕННЯ СИМЕТРИЧНОЇ ПЛОСКОЇ ДІЕЛЕКТРИЧНОЇ
СТРУКТУРИ ПЛОСКИМИ ЕЛЕКТРОМАГНІТНИМИ ХВИЛЯМИ
А.В. Васильєв, А.І. Поврозін, Г.В. Сотніков
Отримано загальне рішення задачі збудження симетричної плоскої діелектричної структури двома
лазерними імпульсами. Симетрична геометрія складається з двох діелектричних призм, розділених
вакуумним каналом для прискорення електронів (так званий сендвіч). Кожну призму можна опромінювати
окремим лазерним імпульсом, амплітуди електричного поля імпульсів можуть відрізнятися. Загальне
рішення складається з симетричного та асиметричного розподілів поздовжнього електричного поля
впоперек вакуумного каналу. У разі загального рішення аналізується також вплив асиметричної частини на
сумарну амплітуду полів, що прискорює і дефокусує. Визначено також умови, коли реалізується лише
симетричне чи асиметричне рішення. Для цих випадків одержані аналітичні рішення порівнюються з
результатами повного тимчасового чисельного моделювання білатерального збудження.
https://doi.org/10.46813/2021-136-057
https://doi.org/10.1134/S1054660X06090040
https://doi.org/10.1063/1.2409230
https://www.3ds.com/products-services/simulia/products/cst-studio-suite/
https://www.3ds.com/products-services/simulia/products/cst-studio-suite/
|