Influence of the energy parameters of the primary circuit on the current characteristics of the DIN-2K accelerator
Optimal voltage values were established for plasma guns and the pulsed current generator providing maximum break current values. The current values were determined for the plasma jumper formation region. The optimal time delay between the triggering of the plasma guns and the pulsed current generato...
Gespeichert in:
| Veröffentlicht in: | Problems of Atomic Science and Technology |
|---|---|
| Datum: | 2023 |
| Hauptverfasser: | , , , , , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2023
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/196170 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Influence of the energy parameters of the primary circuit on the current characteristics of the DIN-2K accelerator / D.V. Vinnikov, V.V. Katrechko, O.M. Ozerov, V.I. Tkachev, S.V. Marchenko, V.B. Yuferov, O.V. Manuilenko // Problems of Atomic Science and Technology. — 2023. — № 4. — С. 36-40. — Бібліогр.: 11 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-196170 |
|---|---|
| record_format |
dspace |
| spelling |
Vinnikov, D.V. Katrechko, V.V. Ozerov, O.M. Tkachev, V.I. Marchenko, S.V. Yuferov, V.B. Manuilenko, O.V. 2023-12-11T11:49:25Z 2023-12-11T11:49:25Z 2023 Influence of the energy parameters of the primary circuit on the current characteristics of the DIN-2K accelerator / D.V. Vinnikov, V.V. Katrechko, O.M. Ozerov, V.I. Tkachev, S.V. Marchenko, V.B. Yuferov, O.V. Manuilenko // Problems of Atomic Science and Technology. — 2023. — № 4. — С. 36-40. — Бібліогр.: 11 назв. — англ. 1562-6016 PACS: 52.75.−d, 94.20. wc, 52.80 Vp, 52.70Kz, 29.30Ep DOI: https://doi.org/10.46813/2023-146-036 https://nasplib.isofts.kiev.ua/handle/123456789/196170 Optimal voltage values were established for plasma guns and the pulsed current generator providing maximum break current values. The current values were determined for the plasma jumper formation region. The optimal time delay between the triggering of the plasma guns and the pulsed current generator has been established. The beam current was measured in the region behind the vacuum diode and in the plasma jumper region. The ultimate current was determined for the available plant geometry. Встановлено оптимальні значення напруги для плазмових гармат і генератора імпульсного струму, що забезпечують максимальні значення струму розриву. Значення струму визначено для області формування плазмової перемички. Встановлено оптимальну затримку часу між спрацьовуванням плазмових гармат і генератора імпульсного струму. Струм пучка вимірювався в області за вакуумним діодом і в області плазмової перемички. Граничний струм був визначений для наявної геометрії установки. en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Problems of Atomic Science and Technology Relativistic and nonrelativistic plasma electronics Influence of the energy parameters of the primary circuit on the current characteristics of the DIN-2K accelerator Вплив енергетичних параметрів первинного контуру на струмові характеристики прискорювача ДІН-2К Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Influence of the energy parameters of the primary circuit on the current characteristics of the DIN-2K accelerator |
| spellingShingle |
Influence of the energy parameters of the primary circuit on the current characteristics of the DIN-2K accelerator Vinnikov, D.V. Katrechko, V.V. Ozerov, O.M. Tkachev, V.I. Marchenko, S.V. Yuferov, V.B. Manuilenko, O.V. Relativistic and nonrelativistic plasma electronics |
| title_short |
Influence of the energy parameters of the primary circuit on the current characteristics of the DIN-2K accelerator |
| title_full |
Influence of the energy parameters of the primary circuit on the current characteristics of the DIN-2K accelerator |
| title_fullStr |
Influence of the energy parameters of the primary circuit on the current characteristics of the DIN-2K accelerator |
| title_full_unstemmed |
Influence of the energy parameters of the primary circuit on the current characteristics of the DIN-2K accelerator |
| title_sort |
influence of the energy parameters of the primary circuit on the current characteristics of the din-2k accelerator |
| author |
Vinnikov, D.V. Katrechko, V.V. Ozerov, O.M. Tkachev, V.I. Marchenko, S.V. Yuferov, V.B. Manuilenko, O.V. |
| author_facet |
Vinnikov, D.V. Katrechko, V.V. Ozerov, O.M. Tkachev, V.I. Marchenko, S.V. Yuferov, V.B. Manuilenko, O.V. |
| topic |
Relativistic and nonrelativistic plasma electronics |
| topic_facet |
Relativistic and nonrelativistic plasma electronics |
| publishDate |
2023 |
| language |
English |
| container_title |
Problems of Atomic Science and Technology |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Вплив енергетичних параметрів первинного контуру на струмові характеристики прискорювача ДІН-2К |
| description |
Optimal voltage values were established for plasma guns and the pulsed current generator providing maximum break current values. The current values were determined for the plasma jumper formation region. The optimal time delay between the triggering of the plasma guns and the pulsed current generator has been established. The beam current was measured in the region behind the vacuum diode and in the plasma jumper region. The ultimate current was determined for the available plant geometry.
Встановлено оптимальні значення напруги для плазмових гармат і генератора імпульсного струму, що забезпечують максимальні значення струму розриву. Значення струму визначено для області формування плазмової перемички. Встановлено оптимальну затримку часу між спрацьовуванням плазмових гармат і генератора імпульсного струму. Струм пучка вимірювався в області за вакуумним діодом і в області плазмової перемички. Граничний струм був визначений для наявної геометрії установки.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/196170 |
| citation_txt |
Influence of the energy parameters of the primary circuit on the current characteristics of the DIN-2K accelerator / D.V. Vinnikov, V.V. Katrechko, O.M. Ozerov, V.I. Tkachev, S.V. Marchenko, V.B. Yuferov, O.V. Manuilenko // Problems of Atomic Science and Technology. — 2023. — № 4. — С. 36-40. — Бібліогр.: 11 назв. — англ. |
| work_keys_str_mv |
AT vinnikovdv influenceoftheenergyparametersoftheprimarycircuitonthecurrentcharacteristicsofthedin2kaccelerator AT katrechkovv influenceoftheenergyparametersoftheprimarycircuitonthecurrentcharacteristicsofthedin2kaccelerator AT ozerovom influenceoftheenergyparametersoftheprimarycircuitonthecurrentcharacteristicsofthedin2kaccelerator AT tkachevvi influenceoftheenergyparametersoftheprimarycircuitonthecurrentcharacteristicsofthedin2kaccelerator AT marchenkosv influenceoftheenergyparametersoftheprimarycircuitonthecurrentcharacteristicsofthedin2kaccelerator AT yuferovvb influenceoftheenergyparametersoftheprimarycircuitonthecurrentcharacteristicsofthedin2kaccelerator AT manuilenkoov influenceoftheenergyparametersoftheprimarycircuitonthecurrentcharacteristicsofthedin2kaccelerator AT vinnikovdv vplivenergetičnihparametrívpervinnogokonturunastrumovíharakteristikipriskorûvačadín2k AT katrechkovv vplivenergetičnihparametrívpervinnogokonturunastrumovíharakteristikipriskorûvačadín2k AT ozerovom vplivenergetičnihparametrívpervinnogokonturunastrumovíharakteristikipriskorûvačadín2k AT tkachevvi vplivenergetičnihparametrívpervinnogokonturunastrumovíharakteristikipriskorûvačadín2k AT marchenkosv vplivenergetičnihparametrívpervinnogokonturunastrumovíharakteristikipriskorûvačadín2k AT yuferovvb vplivenergetičnihparametrívpervinnogokonturunastrumovíharakteristikipriskorûvačadín2k AT manuilenkoov vplivenergetičnihparametrívpervinnogokonturunastrumovíharakteristikipriskorûvačadín2k |
| first_indexed |
2025-11-27T08:54:22Z |
| last_indexed |
2025-11-27T08:54:22Z |
| _version_ |
1850806991397584896 |
| fulltext |
36 ISSN 1562-6016. Problems of Atomic Science and Technology. 2023. № 4(146)
https://doi.org/10.46813/2023-146-036
INFLUENCE OF THE ENERGY PARAMETERS OF THE PRIMARY
CIRCUIT ON THE CURRENT CHARACTERISTICS
OF THE DIN-2K ACCELERATOR
D.V. Vinnikov
1,2
, V.V. Katrechko
1
, O.M. Ozerov
1
, V.I. Tkachev
1
, S.V. Marchenko
1
,
V.B. Yuferov
1
, O.V. Manuilenko
1,3
1
National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine;
2
O.Ya. Usikov Institute for Radiophysics and Electronics of the NAS of Ukraine,
Kharkiv, Ukraine;
3
V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
E-mail: vinniden@gmail.com
Optimal voltage values were established for plasma guns and the pulsed current generator providing maximum
break current values. The current values were determined for the plasma jumper formation region. The optimal time
delay between the triggering of the plasma guns and the pulsed current generator has been established. The beam
current was measured in the region behind the vacuum diode and in the plasma jumper region. The ultimate current
was determined for the available plant geometry.
PACS: 52.75.−d, 94.20. wc, 52.80 Vp, 52.70Kz, 29.30Ep
INTRODUCTION
Accelerating equipment operating based on the prin-
ciple of plasma opening switch (POS) or plasma current
breakers (PCB) is widely used in various industrial,
high-tech and scientific fields [1, 2]. The DIN-2K plant
is a high-current linear electron accelerator [3, 4]. Simi-
lar systems used as pulsed microwave generators oper-
ating on the basis of an inductive energy storage device
with a plasma current breaker ensure the small size of
the entire system, in contrast to bulky Arkadiev-Marx
generator-based accelerators, with power exceeding
500 MW in the frequency range of 1 to 25 GHz and the
efficiency factor of up to 10% or linear accelerators
based on impulse voltage generators [5 - 7]. The ad-
vantages of such systems are the ability to work without
a focusing magnetic field and the ability to quickly
change the output characteristics of radiation pulses
(pulse repetition rate, pulse generation rate, and the
signal strength).
The main factors of influence on the materials, the
environment and the objects located both in the imme-
diate vicinity of the region of initiation of physical pro-
cesses and at a considerable distance include the beam
of charged particles and the virtual cathode (VC) being
formed. Electron accelerators with VC are implemented
to create powerful microwave devices and are used by
radiation and biological technologies for the pulsed
radiation sterilization, destruction of rocks, modification
of the surfaces of solid materials, and as a source of ions
for implantation and hardening [8]. Microwave radia-
tion is the most important output influencing factor, and
the power and energy of it depend on the break current
value, on the vacuum diode geometry (VD), the initial
energy parameters of the primary circuit, namely the
energy of plasma guns (PG), pulsed current generator
(PCG), time delays and vacuum conditions.
Therefore, the study of the effect of energy parame-
ters on the characteristics of the break current is of sub-
stantive scientific interest.
The objectives of this research are to establish the
optimal ranges for energy parameters of the primary
circuits of the power supply systems used by the high-
current linear accelerator DIN-2K that guarantee the
maximum values of the break current and its implemen-
tation at a maximum rise in the plasma jumper current.
1. STATEMENT OF THE PROBLEM
The current dynamics was studied in different sec-
tions of the DIN-2K high-current electron accelerator
(Fig. 1).
Fig. 1. General view of the DIN-2K accelerator:
1 – Rogovsky belt № 1; 2 – Rogovsky belt № 2;
3 – Rogovsky belt № 3; 4 – Rogovsky belt № 4;
5 – tubular cathode of 26 mm in diameter;
6 – the chamber body as the anode of the coaxial line
of the accelerator; 7 – high-voltage insulator;
8 – a block of plasma guns – 5 pieces; 9 – grid-anode;
10 – copper current collector; 11 – end plexiglass
flange; 12 – plasma jumper; 13 – electron beam;
14 – VC at the beam current exceeding the limit;
15 – Rogovsky belt № 5; 16 – oscilloscope; C1, F1 –
tank and the air-controlled gun discharger; C2, F2 –
tank and the air-controlled PCG unit discharger
To initiate the discharge in the plant, a block of
plasma guns C1, up to 16 kV and PCG C2 up to 40 kV
was triggered. After the controlled actuation of the PG-
8, a breakdown occurs through the discharger F1 along
the surface of the guns. The plasma (12) formed as a
result of the breakdown is injected into the chamber (6)
ISSN 1562-6016. Problems of Atomic Science and Technology. 2023. № 4(146) 37
filling it mainly due to the gas-kinetic expansion and the
pressure gradient. The chamber body is the anode with a
stepped-like changing diameter. In front of the mesh,
the diameter is 98 mm and it expands after it to
290 mm. The diameter expansion reduces the probabil-
ity of the microwave breakdown along the surface of the
plexiglass flange 11 onto the chamber body. Plasma jets
of the guns propagate at the initial moment of time into
a cone with an angle of up to 60° and a speed of
(2…7)∙10
6
cm/s, depending on the charging voltage
value. After about 3 μs, the plasma reaches the accelera-
tor cathode (5) of 26 mm diameter and being partially
reflected from it and filling the chamber relatively even-
ly. The plasma density can be considered conventionally
uniform over the entire cross section. Subsequently, the
plasma spreads in both directions along the cathode-
anode axis. On elapse of the time set on the block, i.e.
3 to 30 μs, the energy accumulated in the IK50/3 capaci-
tors of the PCG begins to release in the cathode-anode
gap after the discharger F2 is triggered. To prevent the
breakdown in the area near the discharger F2, a high-
voltage insulator of 50 kV is placed between the anode
and cathode. The magnetic energy accumulation time is
defined by the current rise front and does not exceed
1 µs. The current flowing through the jumper creates, in
its turn, a magnetic field that pushes electrons out of the
plasma. Faster electrons rush to the anode and at some
time point the conductivity is broken in such a way that
an abrupt increase in resistance occurs, current instabil-
ity is formed and the so-called “break” of the current
occurs, resulting in the voltage multiplication [1, 9, 10].
This voltage jump provides an explosive emission of
electrons from the cathode actuating the particle accel-
eration phase. An electron beam is formed, accelerated
by the grid-anode field, with a geometric transparency
of 0.6. Electrons passing through the grid are accelerat-
ed and then slowed down by their own field, creating
thus a potential well in the form of a space charge, cre-
ating a VC (14). The VC formation is possible only at
beam currents above the so-called limiting vacuum
current:
( )
((
( )
)
-1)
3/2
,
where rb is an average beam radius equal to the cathode
radius; r0 is the drift tube radius – anode radius
(145 mm); V0 is the multiplied voltage across the an-
ode-cathode gap measured by the capacitive divider and
equal to 0.25 MV. The formula presented above works
for an annular beam, which is confirmed experimentally
as shown on Fig. 2.
Fig. 2. Ring-shaped beam autograph
Hence, the limiting vacuum current ensures the VC
formation.
The beam current value and the microwave radiation
power are conditioned by the current values at the break
time, the current decrease values during the break, and
the rate of this process.
2. TECHNIQUE AND EXPERIMENTAL
METHODS
By the break time, the current was Imax, the current
decrease value at break (Ibreak) and the residual current
in the plasma current breaker after the break (Iresidual)
were measured by Rogovski belt (RB) № 1 and the
backup belt № 2, respectively. Both belts are coupled
with the RC integrators of microsecond signals. The
conversion factor of both belts is 1V = 1.2 kA. Rogov-
ski belt № 3 recorded the current flowing through the
plasma jumper. It was placed at a distance of 140 mm
behind the plasma guns from the side of the anode grid.
In the case of a current break, by the moment when the
jumper was already at the location of this belt, it record-
ed the total current of the beam and plasma. This belt
operates in combination with a nanosecond RC integra-
tor.
Fig. 3. Time diagram of current processes
The conversion coefficient is 1V = 0.282 kA.
Rogovski belt № 4 was used to record the beam current
behind the anode grid at distances of 40 to 200 mm.
This belt has the nanosecond RC integrator. The con-
version coefficient is 1V = 0.275 kA. The current of
plasma guns was recorded by RB 15. The data from the
belts were recorded by a four-channel WON XDS3104E
oscilloscope with a bandwidth of 100 MHz and a sam-
pling rate of 1 GSa/s.
A typical time diagram, the dynamics of currents
measured by the above current meters, as shown in
Fig. 3, makes it possible to identify specific sections
that define the delay time between the operation of the
PGs and the PCG (3 to 30 μs or more). The detailed
description of the operation of plasma guns is given in
article [11]. A minimum possible value of 3 μs is condi-
tioned by the signal propagation time along the trans-
mission lines and the response times of the discharger
F2, the delay unit and the PCG start-up unit. The con-
duction time characterized by the front rise rate does not
exceed 1.2 µs and is recorded by RB № 1. The current
break time is within 200 ns and it is recorded by the RB
№ 1 or № 2. The duration of the beam current coincides
with the break time and it is recorded by the RB № 3 or
38 ISSN 1562-6016. Problems of Atomic Science and Technology. 2023. № 4(146)
RB № 4 built into the camera body. A quarter period of
the current duration T/4 of plasma guns does not exceed
2 µs and it provides the implementation of a series of
physical processes in the accelerator.
The charging voltage of PGs was varying in the
range of 6 to 16 kV. The values below 6 kV failed to
provide sufficient plasma density. And the values above
16 kV created the plasma concentration at which the
current flowing through it was not able to break it. As a
result, the current flowed through the jumper without
the break of it and had a periodic character. The charg-
ing voltage at the PCG was varying in the range of 20 to
40 kV. Lower voltage values failed to provide the conti-
nuity of the break realization due to the impossibility of
breaking the plasma jumper. Higher values were limited
due to the observance of the electrical strength require-
ments set to the insulating structures of the accelerator.
For experiments with a time delay, the PCG and PG
voltages had fixed values. When obtaining the depend-
ences of the current on the charging voltage, for exam-
ple, PCG, the time delay was fixed at the level of 6 µs
and the PG voltage was recorded, etc. The generating
pulses were launched at the same vacuum value of
p=5∙10
-4
Torr. Each pulse with the same studied pa-
rameters was repeated 5 to10 times.
3. EXPERIMENTAL PART
For the first time, the DIN-2K accelerator enabled
the experimental generation of the current values at each
stage of the facility operation starting with the PGs
triggering through to the beam current formation behind
the anode grid. Fig. 4 gives the oscillograms with the
current break at a maximum that is an optimal mode and
with the current break at an early front stage that is
conventionally not optimal mode.
Fig. 4. The current break
at a maximum (a), and at an early front stage (b)
Maximum values of the currents that are of interest
for us were obtained for the cases similar to those of the
shape of the current curve given in Fig. 4,a.
Fig. 5 gives the experimental dependence of the cur-
rents on the time delay in operation of the PGs and
PCG.
Fig. 5. Dependence of the current characteristics
on the PGs and PCG time delays
The optimal section can be seen in the considered
range of time delays when the current decrease value
during the break (Ibreak) exceeds the residual current
(Iresidual) in plasma current breakers after the break.
This domain is marked by a dotted line in the range of
3 to 7 µs. Here, the current maxima are observed by the
break time of 60 to 74 kA.
An increase in the maximum current does not neces-
sarily provide an increase in the break current and, ac-
cordingly, does not lead to an expansion of the range of
optimal values, or to its shift towards larger values
(Fig. 6).
Fig. 6. The dependence of the current characteristics
on the charging voltage of plasma guns
at a fixed PCG voltage
In terms of the minimum residual current, the opti-
mal voltage for a given PCG voltage is in the range of 8
to 10 kV. It can also be seen that with an increase in the
current value by the time of the break, the energy input
into the beam formation is decreased because most of
the charge carriers remain uninvolved in the physical
processes associated with the break. Hence, there is a
need for an increase in the PCG charging voltage.
Fig. 7 shows that the optimal PCG charging voltage
in terms of the minimum residual current is typical for
the values exceeding 30 kV.
a
b
ISSN 1562-6016. Problems of Atomic Science and Technology. 2023. № 4(146) 39
Fig. 7. The dependence of current characteristics
on the PCG charging voltage at a fixed PG voltage
The difference between the break current and the re-
sidual current remains such that the break current is
more than 50% of the maximum current value. Also, the
plasma jumper breaks at the maximum, or close to the
maximum (the moment of break occurs at a point above
85% of the peak current). The obtained dependences
also show that optimal conditions arise at PCG voltages
exceeding 30 kV. Here, the energy input to the current
decrease value at the break is increased along with the
current by the time of break.
When the break current was recorded, the values of
the pulse strength in the beam formation region of about
4.8 GW were obtained for a maximum of the break
current front, taking into account the fact that the meas-
ured anode-cathode voltage was 240 kV at the PCG
charging voltage of 35 kV.
Fig. 8. Current characteristics, at Upcg = 35 kV,
Upg =14 kV and the delay time of 6 µs
It can be seen (Fig. 8) that the beam current in the
PCB domain and the beam current behind the VC domain
at a distance of 40 mm from the grid significantly exceed
the limiting vacuum current, and it should provide the
availability of the current beam and the virtual cathode at
given energy parameters of the primary circuit.
CONCLUSIONS
A system for diagnosing currents was created
providing a sufficient level of accuracy and repeatability
to define optimal operating modes for the DIN-2K ac-
celerator. Optimal parameters for the operation of the
DIN-2K accelerator were determined in terms of obtain-
ing maximum current values by the time of break and
current decrease values at break. For the considered
ranges of delay times and charging voltages of the PGs
and PCG, it is reasonable to provide optimal current
modes by changing PCG and PGs voltages, working at
delays between the operation of the PGs and PCG of
less than 8 μs.
Each PCG charging voltage value corresponds to the
optimal PG voltage value that provides the required
plasma concentration and is selected experimentally.
With an increase in the PCG voltage the PG voltage
should also be increased in order to increase the values
of the break current. Accordingly, each plasma density
generated by the PG has a current initiated by the PCG
that provides the best current break, the one that lies
near the maximum.
REFERENCES
1. O.V. Manuilenko, I.N. Onishchenko, A.V. Pashchenko,
I.A. Pashchenko, V.B. Yuferov. Current Flow Dy-
namics in Plasma Opening Switch // Problems of
Atomic Science and Technology. 2021, № 4, p. 6-10.
https://doi.org/10.46813/2021-134-006.
2. S.V. Loginov. Conduction Current in Low-Density
Plasma Opening Switches // IEEE Transactions on
Plasma Science. 2022, № 50(7), p. 2026-2029.
https://doi.org/10.1109/TPS.2022.3178792.
3. O.S. Druj, V.V. Yegorenkov, I.M. Onyshchenko,
V.B. Yuferov. Plasma Dynamics in Accelerator with
Plasma Opening Switch // Problems of Atomic Sci-
ence and Technology. 2019, №6, p. 77-80.
https://doi.org/10.46813/2019-124-077.
4. O.S. Druj, V.V. Yegorenkov, A.V. Shchagin,
V.B. Yuferov. Electron beam transport in dielectric
tubes // East European Journal of Phisics. 2014,
v. 1, № 1, p. 70-73.
5. V.B. Yuferov, E.I. Skibenko, I.V. Buravilov,
А.S. Svichkar, А.N. Ponamoriev, V.V. Katrechko,
V.V. Nikulshina. SMALL-SIZE “DI-2” Accelerator
with the Plasma Current Switch and Inductive Ener-
gy Accumulator as a Material Irradiation Test Rig //
Problems of Atomic Science and Technology. 2022,
№ 4, p. 154-156. https://doi.org/10.46813/2022-140-154.
6. U. Shanmuganathan, K. Saket, S. Senthil Kumar,
M.K. Das, S. Nekkanti, S.K. Gupta, K. Senthil,
V. Nallasamy. A Compact Repetitive Marx Genera-
tor for Generating Intense Electron Beams for HPM
Sources // IEEE Transactions on Electron Devices.
2023, v. 70, № 3, p. 1256-1261.
https://doi.org/10.1109/TED.2022.3233810.
7. D.V. Vinnikov, I.V. Buravilov, V.B. Yuferov,
A.N. Ponomarev, V.I. Tkachev. Linear Charged-
Particle Accelerators Opportunities for the Use of
the Small-Size Accelerator, VGIK-1 // Problems of
Atomic Science and Technology. 2019, № 6, p. 115-
121. https://doi.org/10.46813/2019-124-115.
8. James Benford, John A. Swegle, Edl Schamiloglu.
High Power Microwaves. CRC Press, 2015, 447 p.
9. O.V. Manuilenko, I.N. Onishchenko, A.V. Pashchenko,
I.A. Pashchenko, V.A. Soshenko, V.G. Svichensky,
V.B. Yuferov, B.V. Zajtsev. Magnetic Field Dynam-
ics in Plasma Opening Switch // Problems of Atomic
Science and Technology. 2021, №6, p. 61-66.
https://doi.org/10.46813/2021-136-061.
https://www.researchgate.net/scientific-contributions/VB-Yuferov-57255979?_sg%5B0%5D=7TQhpslvHcR0KRhoyPqZaUKuqBxzvuHdhDhBnQeL8au21PkaSuf7qAsU2Z-w1PbHWLzdOjw.PkZy0IiuR6OyhpqFwSJCuEILrnrlOwvFWsv7urTLXIZwqeF3U9ilLF-x6dM0kmYgWdv18JLD_gj4yInbUJi4MQ&_sg%5B1%5D=5kG98bkxDBzrG1gJVIHWI9M0iEqqUGXpsIqkfg-Yh91sOSDTIZQ5_P9AT7SZhyUiqe6VgJE.APIonlvekHp8fvTQml3pD1WJ5sP4WZNwWUQn_iVjtd7vrsKX_n4mx0yzyE_Vlxfyy71AmoxKy2uSqptMm-RmTA
https://doi.org/10.46813/2021-134-006
https://doi.org/10.1109/TPS.2022.3178792
https://www.researchgate.net/journal/Problems-of-Atomic-Science-and-Technology-1682-9344
https://www.researchgate.net/journal/Problems-of-Atomic-Science-and-Technology-1682-9344
https://doi.org/10.46813/2019-124-077
https://www.researchgate.net/journal/Problems-of-Atomic-Science-and-Technology-1682-9344
https://doi.org/10.46813/2022-140-154
https://doi.org/10.1109/TED.2022.3233810
https://www.researchgate.net/journal/Problems-of-Atomic-Science-and-Technology-1682-9344
https://www.researchgate.net/journal/Problems-of-Atomic-Science-and-Technology-1682-9344
https://doi.org/10.46813/2019-124-115
https://www.researchgate.net/journal/Problems-of-Atomic-Science-and-Technology-1682-9344
https://www.researchgate.net/journal/Problems-of-Atomic-Science-and-Technology-1682-9344
https://doi.org/10.46813/2021-136-061
40 ISSN 1562-6016. Problems of Atomic Science and Technology. 2023. № 4(146)
10. O.V. Manuilenko, I.N. Onishchenko, A.V. Pashchenko,
I.A. Pashchenko, V.B. Yuferov. Plasma and Mag-
netic Field Dynamics in POS: PIC simulations //
Problems of Atomic Science and Technology. 2022,
№ 6, p. 55-59. https://doi.org/10.46813/2022-142-055.
11. D.V. Vinnikov, V.V. Katrechko, V.B. Yuferov,
V.I. Tkachev. Plasma Guns of an Erosion Type with
the Pulse-Periodic Gas-Metal Injection // Problems
of Atomic Science and Technology. 2022, № 6,
p. 60-65. https://doi.org/10.46813/2022-142-060.
Article received 23.06.2023
ВПЛИВ ЕНЕРГЕТИЧНИХ ПАРАМЕТРІВ ПЕРВИННОГО КОНТУРУ
НА СТРУМОВІ ХАРАКТЕРИСТИКИ ПРИСКОРЮВАЧА ДІН-2К
Д.В. Вінніков, В.В. Катречко, О.М. Озеров, В.І. Ткачов, С.В. Марченко, В.Б. Юферов, О.В. Мануйленко
Встановлено оптимальні значення напруги для плазмових гармат і генератора імпульсного струму, що
забезпечують максимальні значення струму розриву. Значення струму визначено для області формування
плазмової перемички. Встановлено оптимальну затримку часу між спрацьовуванням плазмових гармат і
генератора імпульсного струму. Струм пучка вимірювався в області за вакуумним діодом і в області плаз-
мової перемички. Граничний струм був визначений для наявної геометрії установки.
https://www.researchgate.net/journal/Problems-of-Atomic-Science-and-Technology-1682-9344
https://doi.org/10.46813/2022-142-055
https://www.researchgate.net/journal/Problems-of-Atomic-Science-and-Technology-1682-9344
https://www.researchgate.net/journal/Problems-of-Atomic-Science-and-Technology-1682-9344
https://doi.org/10.46813/2022-142-060
|