Investigation of parameters of electron and positron bunches in a plasma-dielectric wakefield accelerator

The results of numerical PIC-simulation of the dynamics of accelerated positron and drive electron bunches under wake acceleration in a dielectric waveguide filled with plasma with a vacuum channel are presented. The wake field was excited by an electron bunch in a quartz dielectric tube inserted in...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Problems of Atomic Science and Technology
Дата:2023
Автори: Markov, P.I., Kniaziev, R.R., Sotnikov, G.V.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2023
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/196175
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Investigation of parameters of electron and positron bunches in a plasma-dielectric wakefield accelerator / P.I. Markov, R.R. Kniaziev, G.V. Sotnikov // Problems of Atomic Science and Technology. — 2023. — № 4. — С. 61-66. — Бібліогр.: 18 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-196175
record_format dspace
spelling Markov, P.I.
Kniaziev, R.R.
Sotnikov, G.V.
2023-12-11T11:51:43Z
2023-12-11T11:51:43Z
2023
Investigation of parameters of electron and positron bunches in a plasma-dielectric wakefield accelerator / P.I. Markov, R.R. Kniaziev, G.V. Sotnikov // Problems of Atomic Science and Technology. — 2023. — № 4. — С. 61-66. — Бібліогр.: 18 назв. — англ.
1562-6016
PACS: 41.75.Ht, 41.75.Lx, 41.75.Jv, 96.50.Pw
DOI: https://doi.org/10.46813/2023-146-061
https://nasplib.isofts.kiev.ua/handle/123456789/196175
The results of numerical PIC-simulation of the dynamics of accelerated positron and drive electron bunches under wake acceleration in a dielectric waveguide filled with plasma with a vacuum channel are presented. The wake field was excited by an electron bunch in a quartz dielectric tube inserted into a cylindrical metal waveguide. The inner region of the dielectric tube was filled with plasma with a vacuum channel along the waveguide axis. The difference in the energy and spatial characteristics, acceleration efficiency, emittance, and energy spread for positron and electron bunches is studied for different radii of the vacuum channel and two models of the plasma density dependence on the radius: a homogeneous and an inhomogeneous dependence characteristic of a capillary discharge.
Наведено результати чисельного PIC-моделювання динаміки прискореного позитронного та драйверного електронного згустків при кільватерному прискоренні в діелектричному хвилеводі, заповненому плазмою з вакуумним каналом. Кільватерне поле збуджувалося електронним згустком у кварцовій діелектричній трубці, вставленій у циліндричний металевий хвилевід. Внутрішня область діелектричної трубки була заповнена плазмою з вакуумним каналом вздовж осі хвилеводу. Досліджено відмінність в енергетичних та просторових характеристиках, ефективності прискорення, емітансі та енергетичному розкиді для позитронного та електронного згустків при різних радіусах вакуумного каналу та двох моделях залежності щільності плазми від радіусa: однорідної та неоднорідної залежності характерної для капілярного розряду.
The study is supported by the National Research Foundation of Ukraine under the program “Leading and Young Scientists Research Support” (project # 2020.02/0299).
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Problems of Atomic Science and Technology
New methods of charged particles acceleration
Investigation of parameters of electron and positron bunches in a plasma-dielectric wakefield accelerator
Дослідження параметрів електронних і позитронних згустків у плазмово-діелектричному кільватерному прискорювачі
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Investigation of parameters of electron and positron bunches in a plasma-dielectric wakefield accelerator
spellingShingle Investigation of parameters of electron and positron bunches in a plasma-dielectric wakefield accelerator
Markov, P.I.
Kniaziev, R.R.
Sotnikov, G.V.
New methods of charged particles acceleration
title_short Investigation of parameters of electron and positron bunches in a plasma-dielectric wakefield accelerator
title_full Investigation of parameters of electron and positron bunches in a plasma-dielectric wakefield accelerator
title_fullStr Investigation of parameters of electron and positron bunches in a plasma-dielectric wakefield accelerator
title_full_unstemmed Investigation of parameters of electron and positron bunches in a plasma-dielectric wakefield accelerator
title_sort investigation of parameters of electron and positron bunches in a plasma-dielectric wakefield accelerator
author Markov, P.I.
Kniaziev, R.R.
Sotnikov, G.V.
author_facet Markov, P.I.
Kniaziev, R.R.
Sotnikov, G.V.
topic New methods of charged particles acceleration
topic_facet New methods of charged particles acceleration
publishDate 2023
language English
container_title Problems of Atomic Science and Technology
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Дослідження параметрів електронних і позитронних згустків у плазмово-діелектричному кільватерному прискорювачі
description The results of numerical PIC-simulation of the dynamics of accelerated positron and drive electron bunches under wake acceleration in a dielectric waveguide filled with plasma with a vacuum channel are presented. The wake field was excited by an electron bunch in a quartz dielectric tube inserted into a cylindrical metal waveguide. The inner region of the dielectric tube was filled with plasma with a vacuum channel along the waveguide axis. The difference in the energy and spatial characteristics, acceleration efficiency, emittance, and energy spread for positron and electron bunches is studied for different radii of the vacuum channel and two models of the plasma density dependence on the radius: a homogeneous and an inhomogeneous dependence characteristic of a capillary discharge. Наведено результати чисельного PIC-моделювання динаміки прискореного позитронного та драйверного електронного згустків при кільватерному прискоренні в діелектричному хвилеводі, заповненому плазмою з вакуумним каналом. Кільватерне поле збуджувалося електронним згустком у кварцовій діелектричній трубці, вставленій у циліндричний металевий хвилевід. Внутрішня область діелектричної трубки була заповнена плазмою з вакуумним каналом вздовж осі хвилеводу. Досліджено відмінність в енергетичних та просторових характеристиках, ефективності прискорення, емітансі та енергетичному розкиді для позитронного та електронного згустків при різних радіусах вакуумного каналу та двох моделях залежності щільності плазми від радіусa: однорідної та неоднорідної залежності характерної для капілярного розряду.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/196175
citation_txt Investigation of parameters of electron and positron bunches in a plasma-dielectric wakefield accelerator / P.I. Markov, R.R. Kniaziev, G.V. Sotnikov // Problems of Atomic Science and Technology. — 2023. — № 4. — С. 61-66. — Бібліогр.: 18 назв. — англ.
work_keys_str_mv AT markovpi investigationofparametersofelectronandpositronbunchesinaplasmadielectricwakefieldaccelerator
AT kniazievrr investigationofparametersofelectronandpositronbunchesinaplasmadielectricwakefieldaccelerator
AT sotnikovgv investigationofparametersofelectronandpositronbunchesinaplasmadielectricwakefieldaccelerator
AT markovpi doslídžennâparametrívelektronnihípozitronnihzgustkívuplazmovodíelektričnomukílʹvaternomupriskorûvačí
AT kniazievrr doslídžennâparametrívelektronnihípozitronnihzgustkívuplazmovodíelektričnomukílʹvaternomupriskorûvačí
AT sotnikovgv doslídžennâparametrívelektronnihípozitronnihzgustkívuplazmovodíelektričnomukílʹvaternomupriskorûvačí
first_indexed 2025-11-26T03:58:06Z
last_indexed 2025-11-26T03:58:06Z
_version_ 1850610738019696640
fulltext ISSN 1562-6016. Problems of Atomic Science and Technology. 2023. № 4(146) 61 https://doi.org/10.46813/2023-146-061 INVESTIGATION OF PARAMETERS OF ELECTRON AND POSITRON BUNCHES IN A PLASMA-DIELECTRIC WAKEFIELD ACCELERATOR P.I. Markov, R.R. Kniaziev, G.V. Sotnikov National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine E-mail: pmarkov@kipt.kharkov.ua The results of numerical PIC-simulation of the dynamics of accelerated positron and drive electron bunches un- der wake acceleration in a dielectric waveguide filled with plasma with a vacuum channel are presented. The wake field was excited by an electron bunch in a quartz dielectric tube inserted into a cylindrical metal waveguide. The inner region of the dielectric tube was filled with plasma with a vacuum channel along the waveguide axis. The dif- ference in the energy and spatial characteristics, acceleration efficiency, emittance, and energy spread for positron and electron bunches is studied for different radii of the vacuum channel and two models of the plasma density de- pendence on the radius: a homogeneous and an inhomogeneous dependence characteristic of a capillary discharge. PACS: 41.75.Ht, 41.75.Lx, 41.75.Jv, 96.50.Pw INTRODUCTION Recently, to improve the bunch transport in dielec- tric wakefield accelerators (DWA) it was proposed to use the filling of the vacuum channel with plasma [1]. Subsequent more detailed studies (theoretical and experimental) showed that plasma-filled dielectric wakefield accelerators (PDWAs) make it possible to reduce the transverse size of the accelerated bunches [2 - 5] and suppress beam breakup instability [6]. Compact PDWAs with a higher acceleration gradi- ent than conventional RF accelerators can find applica- tion in different areas of industry, technology, medicine, etc. However, if we consider the PDWA in relation to high energy physics as a possible candidate for future electron-positron colliders, it is necessary that the quali- ty of accelerated bunches meet the collider requirements [7 - 12]. The quality of accelerated bunches is character- ized by the following characteristics: emittance and en- ergy spread. We have already begun to study these characteristics for positron bunches in the PDWA with an axial vacuum channel inside the plasma column. We started with the study of the transport of positron bunches [13], because this is a more challengeable task than the transport of electron bunches. This problem is similar to that of the PWFA method and a vacuum channel is used to mitigate it [14]. In present paper we continue our research of accel- eration of positron bunch in PDWA [13]. We have in- creased the acceleration length and in more detail inves- tigated dynamic characteristics of accelerated positron and drive electron bunches (emittance, energy spread, efficiency of energy transfer from the drive electron bunch to the witness positron bunch) to see if these stats could saturate with acceleration time. In addition, we investigate the dependences from the size of the vacuum channel. The article is organized as follows. Section 1 pre- sents the statement of the problem. The results of the 2.5-dimensional PIC-simulation of positron acceleration in PDWA are presented in Section 2. In Section 3 char- acteristics of the accelerated positron bunch (emittance, energy spread and efficiency) are given. In Conclusions are summarized main results. 1. THE PROBLEM DEFINITION The statement of the problem is the next. A dielec- tric tube with inner radius a and outer b , inserted into cylindrical metal waveguide; the internal area of dielec- tric tube is filled with annular plasma with inner radius 1pr and outer radius a . Thus, the paraxial region 1pr r is a vacuum channel. The cylindrically shaped drive electron bunch of radius 1br pass through the slowing-down structure along its axis and excite a wakefield. After the delay time delt following the drive bunch, positron bunch with an absolute value of charge much smaller than that of the drive bunch, is injected in the system along its axis. The radius of positron bunch is 2br . The plasma-filled structure with the drive elec- tron bunch and the witness positron bunch is the plasma dielectric wakefield accelerator of positrons (PDWAP). For numerical simulation of drive electron and test positron bunch dynamics we used own 2.5D particle-in- cell (PIC) code [1]. The parameters of the structure and bunches, used in the simulations are specified in Table. The parameters of the waveguide, drive and witness (test) bunches, employed in PDWAP calculations Inner radius of dielectric tube, a 0.5 mm Outer radius of dielectric tube, b 0.6 mm Inner plasma cylinder radius, rp1 0…0.5 mm Waveguide length, L 80 mm Dielectric permittivity, ε 3.75 Bunch energy, E0 5 GeV Drive electron bunch charge –3 nC Witness (test) positron bunch charge 0.05 nC Longitudinal rms deviation of drive bunch charge, 2σ1 (Gauss charge distribution) 0.1 mm Longitudinal rms deviation of positron bunch charge, 2σ2 (Gauss charge distribution) 0.05 mm Total drive bunch length in PIC simulation 0.2 mm Total positron bunch length in PIC simulation 0.1 mm Drive bunch diameter, 2rb1 0.9 mm Positron bunch diameter, 2rb2 0.7 mm Paraxial plasma density (np0) when rp1 = 0 2∙10 14 cm -3 62 ISSN 1562-6016. Problems of Atomic Science and Technology. 2023. № 4(146) Fig. 1. Models of plasma density-radius relationship  pn r for two cases: the plasma fills completely the interior of the dielectric tube (dash lines) and the plas- ma cylinder of internal radius p1r = 0.2 mm (solid lines). Red line (2) corresponds to the inhomogeneous distribution of plasma density [15], cyan line (1) is for the homogeneous one When simulating plasma two different models of the plasma density-radius relationship  pn r are studied: 1) the homogeneous model and 2) the inhomogeneous dependence, characteristic to the capillary discharge [15]. In the general case, there is a vacuum channel in- side the plasma. At the vacuum-plasma boundary at 1pr r the stepwise behavior of  pn r as a functions of radius r is assumed. Examples of these dependencies for the case 1 0.2pr  mm and 1 0pr  (no vacuum channel) are shown in Fig. 1. A homogeneous profile of a hollow core plasma channel can easily be obtained by the high order Bessel beams [14, 16]. As for a hollow core plasma from the capillary discharge, a coaxial ge- ometry of the DWA structure with two dielectric tubes, can be suitable. The wall thickness of the inner coaxial has to be significantly smaller than the wall thickness of the outer capillary, so that it does not change the fre- quency of the main accelerating mode. 2. RESULTS OF 2.5-DIMENSIONAL PIC-SIMULATION Dependence of test bunch radius on the inner plasma tube radius from 0 to 0.5 mm at time 266.9 pst  is shown in Fig. 2 (top panel). As appears from the curves shown in Fig. 2 for the homogeneous plasma distribution as 1pr increases from 0 to 0.25 mm, the gradual increase in the test positron bunch focusing is observed. With a further 1pr increase to 0.35 mm (a positron bunch radius), the focusing slightly reduces. Further increase of 1pr leads to a dras- tic degradation in the test bunch focusing. If 1 0.4pr  mm the test bunch focusing is practically ab- sent. In case of inhomogeneous transverse profile of plasma density, a gradual increase in the test positron bunch focusing is observed with an 1pr increase from 0 to 0.37 mm (see Fig. 2). It should be noted that the behavior of bunch radius dependencies differ a slightly from presented in paper [13], especially for the case of homogeneous plasma density distribution in drift chan- nel. Fig. 2. Behavior of radiuses maxR of bunches (above) and energy change of the accelerated test positron bunch and the slowed-down drive electron bunch at change of smaller plasma tube radius p1r for time t 266.9 ps for different plasma density dependences on radius Lower panel of Fig. 2 show the energy gain E of the test bunch (blue curve) and the slowed-down drive bunch (red curve) as function of the inner plasma-tube radius 1pr . With 1pr increase from 0 to 0.25 mm, a small energy gain E reduction of the test bunch is observed. The further 1pr increase from 0.25 to 0.5 mm leads to E increase of the test bunch. The dependence of drive bunch energy loss is given for homogeneous plasma density case, for the inhomogeneous plasma density case in drift channel, an obtained dependence is practically coincides with the depicted one. 3. CHARACTERISTICS OF ACCELERATED POSITRON AND DRIVE ELECTRON BUNCHES Here we study the characteristics of the accelerated positron and drive electron bunches. Figs. 3-5 show the efficiency of energy transfer to the positron bunch from the drive electron bunch, the trace-space emittance of the positron and electron bunches, and their energy spread. For the calculation of the efficiency of energy transfer of drive bunch to the witness bunch, we used the following equation:     0 1 0 1 100% ac dr N ac ac ac i i i i tr N dr dr dr i i i i m m              , where ac im and dr im are the masses of macroparticles of the witness bunch and the drive bunch; ac i and dr i are the relativistic factors of the macroparticles of the wit- ness bunch and the drive bunch; 0 ac i and 0 dr i their ini- tial values; acN and drN are the number of macroparti- cles in the witness bunch and the drive bunch. The maximum efficiency was about 3.21% and achieved when the drift channel was completely free from plasma. The minimum of efficiency was achieved when 1pr provide the best positron bunch focusing what ISSN 1562-6016. Problems of Atomic Science and Technology. 2023. № 4(146) 63 can be seen in Fig. 3, c, d: in the inhomogeneous case it is ≈ 1.92%; in the homogeneous case it is ≈ 1.90%. In the presence of a vacuum channel, the efficiency is smaller, that is associated with a smaller value of the accelerating field. Fig. 4 shows the change in the trace-space emittance [17] of positron and electron bunches as positron bunch accelerates in the PDWA. For a cylindrically symmetric on-axis beam, it is calculated by the formulas [18]:   2 221 4 tr r r r r     , where       2 2 1 1 2 2 2 1 1 1 1 , , 1 1 , N N ri i i i i zii i N N i i i ri zi i i v r q r r r q r Q Q v r q r q v v Q Q               , , ,i i ri ziq r v v are charge, radius, radial and longitudinal macroparticle velocity, Q is total bunch charge, N is number of macroparticles in the bunch. Fig. 3. Transfer energy efficiency tr from the drive electron bunch to the witness positron bunch versus time: a, c correspond the inhomogeneous plasma density; b, d  the homogeneous plasma density in the drift channel; a, b are the 2D charts; c, d  3D charts with p1r as the depth axis. Time t = 0 corresponds to the beginning of the injection of the drive electron bunch As follows from Fig. 4 trace-space emittance of the positron beam increases during acceleration in the PDWA, but after travelling ≈ 70 mm it is increased to acceptable values. The smallest value of the emittance 57.9 10 mmmrad is realized for the case when the drift channel is completely free from plasma. The larg- est value of the emittance is obtained in the case of best positron bunch focusing what can be seen in Fig. 4, d, e: in the inhomogeneous plasma density in the drift chan- nel case it is 24.51 10 mmmrad, in the homogeneous case it is 24.65 10 mmmrad. It can be seen that even for this non-optimal case, there is already a tendency to reach saturation. Extrapolating the above curves with the parabolic quadratic dependencies, we obtain that in the case of homogeneous plasma the emittance at the maximum is 34.67 10  mmmrad and is achieved at an acceleration length of ≈ 94 mm, and in the case of inhomogeneous plasma, the emittance at the maximum is 24.6 10  mmmrad and is achieved at the accelera- tion length of ≈ 150 mm. In the case of incomplete fill- ing the trace-space emittances turn out to be higher, both in the homogeneous and the inhomogeneous cases of plasma, and their value are approximately the same. a b c d 64 ISSN 1562-6016. Problems of Atomic Science and Technology. 2023. № 4(146) Fig. 4. Trace-space emittance of the witness positron bunch (a, b, d, e) and drive electron bunch (c, f) versus time: a, d correspond the inhomogeneous plasma density; b, e  the homogeneous plasma density in the drift channel; a, b, c are the 2D charts; d, e, f  3D charts with p1r as the depth axis Trace-space emittance of electron driver is signifi- cantly smaller than emittance of positron witness and reach 36.42 10 mmmrad value at 1 0pr  . In our case the saturation of drive electron bunch emittance occurs when plasma leaves a bunch boundary. However, the deterioration of the emittance of the drive bunch is not yet critical for continuing the process of positron bunch acceleration. In Fig. 4, d, e, f one can see that when plasma leaves a bunch boundary the trace-space emittances sharply decreases to values 57.87 10  mmmrad for positron witness (see Fig. 4, a, b, d, e) and 43.36 10  mmmrad for electron driver (see Fig. 4, c, f). In Fig. 5 is shown the change of the energy spread of the positron and electron bunches when positron bunch accelerates along the PDWA. Fig. 5. Energy spread of the witness positron bunch (a, b, d, f) and driver electron bunch (c, f) versus time: a, d correspond the inhomogeneous plasma density; b, e  the homogeneous plasma density in the drift channel; a, b, c are the 2D charts; d, e, f  3D charts with p1r as the depth axis Energy spread in our simulations for unequally weighted macroparticles is computed using the next equation:  (% ) 100RMSRMS E E    , d e f c b a a b c d e f ISSN 1562-6016. Problems of Atomic Science and Technology. 2023. № 4(146) 65 where 22 2 2 1 1 1 , , 1 , 1, N RMS i i i N i i i i i E E E E q E Q E q E E Q             i is the relativistic factor of the macroparticle. Changes in the energy spread of the positron bunch during its acceleration are shown in the Fig. 5, a, d and Fig. 5, b, e. The smallest energy spread is realized in the case of complete filling of the drift channel of the die- lectric structure with plasma and is equal to 0.01% for the case of the capillary discharge and 0.012% for the homogenous plasma case. These values are significantly lower than the requirements for collider applications [7, 18]. The spread has not yet reached saturation, but there is already a tendency for it to saturate. At the maximum using the parabolic extrapolation we obtain the energy spread of ∼ 0.015% for the case of the capillary dis- charge. The largest energy spread is realized in the case when 1 0.375pr  mm, i.e. when radius of vacuum tube is greater then positron bunch radius and is equal to 0.024% for the case of the capillary discharge and 0.022% for the homogenous plasma case. At further increase in 1pr the energy spread sharply falls down to the minimum value. Changes in the energy spread of the electron bunch at its motion in the drift chamber is shown in the Fig. 5, c, d. Practically, ( )t represents linear relation from time t . Dependence of 1( )pr on the vacuum cylinder radius 1pr is weak. The largest driver energy spread is realized in the case of complete filling of the drift channel of the dielectric structure with plasma and is equal to 0.13%. The smallest driver energy spread is realized in the case when the drift channel was com- pletely free from plasma and is equal to 0.11%. CONCLUSIONS In this article, the main attention is paid to the study of the characteristics of accelerated positron and driver electron bunches by the numerical PIC simulation of wake excitation and self-consistent dynamics of charged particles in a plasma-dielectric slow-wave structure of the THz-band with both a homogeneous model plasma and an inhomogeneous plasma generated by a capillary discharge in waveguide. We also showed that the presence of plasma in the system leads to focusing of an accelerated positron bunch, and the presence of a paraxial vacuum channel increases focusing by 9.25% in the case of a homogene- ous plasma model and by 17.12% in the case of inho- mogeneous plasma. In the absence of plasma, there is no focusing of the positron bunch, and the increase in positron energy gain is 36.8 and 34.6% higher than in the presence of homogeneous and inhomogeneous plasma, respectively, and the highest focusing of the bunch. A study of the energy transfer efficiency from an electron beam to a positron one showed that the maxi- mum efficiency of 3.21% is achieved in the plasma ab- sence and the minimum is 1.90 and 1.92% in the homo- geneous and inhomogeneous plasma presence, respec- tively, and the highest focusing of the bunch. An analysis of the emittance showed that the pres- ence of plasma in the system significantly increases the emittance of the beams, and the presence of a vacuum channel increases the emittance of the positron bunch even more. Thus, for a vacuum channel corresponding to maximum focusing, the positron beam emittance reaches values 24.65 10 mmmrad and 24.51 10 mmmrad in the presence of homogeneous and inhomogeneous plasma, respectively, while in the absence of a vacuum channel, the emittance decreases to 33.85 10 mmmrad and 21.29 10 mmmrad for the studied plasma models, respectively. In the absence of plasma, the value of the maximum emittance of the pos- itron beam is 57.87 10 mmmrad. At the same time, the presence of a vacuum channel in the plasma leads to a decrease in the emittance of the drive electron bunch. When the drift channel is complete- ly filled with plasma, the emittance of the electron bunch is 36.42 10 mmmrad, and in the plasma absence case, the emittance drops to 43.36 10  mmmrad. The great- est change in the emittance is observed when the vacu- um channel radius is close to the radius of the charged particles bunch. The presence of a vacuum channel also leads to an increase in the energy spread of the positron bunch par- ticles. Thus, when the drift channel is completely filled with plasma, the scatter is 0.01%, while for a vacuum channel corresponding to maximum focusing, the ener- gy spread increases to 0.022 and 0.024% in the cases of homogeneous and inhomogeneous plasma, respectively. The filling of the drift channel with plasma and the presence of a vacuum channel in the plasma have a much smaller effect on the energy spread of the driver electron bunch particles than on the positron bunch spread. If, when the drift channel is completely filled with plasma, the energy spread of electrons is 0.13%, then in the plasma absence case, the spread decreases to 0.11%. ACKNOWLEDGEMENTS The study is supported by the National Research Foundation of Ukraine under the program “Leading and Young Scientists Research Support” (project # 2020.02/0299). REFERENCES 1. G.V. Sotnikov, R.R. Kniaziev, O.V. Manuilenko, P.I. Markov, T.C. Marshall, and I.N. Onishchenko. Analytical and numerical studies of underdense and overdense regimes in plasma-dielectric wakefield ac- celerators // Nucl. Instrum. Meth. 2014, v. A 740. p. 124-129 https://doi.org/10.1016/j.nima.2013.10.087. 2. G. Sotnikov, P. Markov, and I. Onishchenko. Excita- tion of wakefields by relativistic electron bunches in the dielectric waveguide filled with radially inho- mogeneous plasma // EPJ Web of Conferences. https://doi.org/10.1016/j.nima.2013.10.087 66 ISSN 1562-6016. Problems of Atomic Science and Technology. 2023. № 4(146) 2017, v. 149, p. 02011. https://doi.org/10.1051/epjconf/ 201714902011. 3. G.V. Sotnikov, P.I. Markov, and I.N. Onishchenko. Focusing of Drive and Test Bunches in a Dielectric Waveguide Filled with Inhomogeneous Plasma // Journal of Instrumentation. 2020, v. 15, C09001. https://doi.org/10.1088/1748-0221/15/09/C09001. 4. A. Biagioni, M.P. Anania, M. Bellaveglia, et al. Wake fields effects in dielectric capillary // Nucl. In- strum. Meth. 2018, v. A 909, p. 247-251. https://doi.org/10.1016/j.nima.2018.01.028. 5. I.N. Onishchenko, G.P. Berezina, K.V. Galaydych, et al. Elaboration of Plasma-Dielectric Wakefield Accelerator // Problems of Atomic Science and Technology. Series “Plasma Physics”. 2016, № 6, p. 133-139. https://vant.kipt.kharkov.ua/ARTICLE/ VANT_2016_6/article_2016_6_133.pdf. 6. K. Galaydych, G. Sotnikov, and I. Onishchenko. Theory of wakefields excited by an off-axis drive bunch in a plasma-dielectric waveguide // Nucl. In- strum. Meth. 2022, v. A 1034, p. 166766. 7. V.D. Shiltsev. High-energy particle colliders: past 20 years, next 20 years, and beyond // Phys. Usp. 2012, v. 55, p. 965. 8. W. Gai, J.G. Power, and C. Jing. Short-pulse dielec- tric two-beam acceleration // J. Plasma Phys. 2012, v. 78, p. 339. 9. E.R. Colby and L.K. Len. Roadmap to the future // Rev. Accel. Sci. Tech. 2016, v. 09, p. 1. 10. C. Jing. Dielectric wakefield accelerators // Rev. Accel. Sci. Tech. 2016, v. 09, p. 127. 11. E.B. Levichev, A.N. Skrinsky, G.M. Tumaikin, and Y.M. Shatunov. Electron-positron beam collision studies at the Budker Institute of Nuclear Physics // Phys. Usp. 2018, v. 61, p. 405. 12. V. Lebedev, A. Burov and S. Nagaitsev. Efficiency versus instability in plasma accelerators // Phys. Rev. Accel. Beams. 2017, v. 20, p. 121301. 13. P.I. Markov, R.R. Kniaziev, and G.V. Sotnikov. Acceleration and focusing of positron bunch in a di- electric wakefield accelerator with plasma in transport // Journal of Instrumentation. 2022, v. 17, p. 11013. http://doi.org/10.1088/1748- 0221/17/11/P11013. 14. Spencer Gessner, Erik Adli, James M Allen, Weiming An, Christine I Clarke, et al. Demonstration of a posi- tron beam-driven hollow channel plasma wakefield accelerator // Nature Communications. 2016, v. 7, p. 11785. https://doi.org/10.1038/ncomms11785. 15. N.A. Bobrova, A.A. Esaulov, J.-I. Sakai, et al. Simu- lations of a hydrogen-filled capillary discharge waveguide // Phys. Rev. E. 2001, v. 65, p. 016407. 16. W.D. Kimura, H.M. Milchberg, P. Muggli, X. Li, and W.B. Mori. Hollow plasma channel for positron plasma wakefield acceleration // Phys. Rev. ST Ac- cel. Beams. 2011, v. 14, p. 041301. 17. K. Flottmann. Some basic features of the beam emit- tance // Phys. Rev. ST Accel. Beams. 2003, v. 6, p. 034202 [Erratum ibid. 6 (2003) 079901]. 18. S. Lidia. Emittance compensation // High Brightness Electron Injectors for Light Sources. 2007. Article received 23.06.2023 ДОСЛІДЖЕННЯ ПАРАМЕТРІВ ЕЛЕКТРОННИХ І ПОЗИТРОННИХ ЗГУСТКІВ У ПЛАЗМОВО-ДІЕЛЕКТРИЧНОМУ КІЛЬВАТЕРНОМУ ПРИСКОРЮВАЧІ П.І. Марков, Р.Р. Князєв, Г.В. Сотніков Наведено результати чисельного PIC-моделювання динаміки прискореного позитронного та драйверного електронного згустків при кільватерному прискоренні в діелектричному хвилеводі, заповненому плазмою з вакуумним каналом. Кільватерне поле збуджувалося електронним згустком у кварцовій діелектричній труб- ці, вставленій у циліндричний металевий хвилевід. Внутрішня область діелектричної трубки була заповнена плазмою з вакуумним каналом вздовж осі хвилеводу. Досліджено відмінність в енергетичних та просторо- вих характеристиках, ефективності прискорення, емітансі та енергетичному розкиді для позитронного та електронного згустків при різних радіусах вакуумного каналу та двох моделях залежності щільності плазми від радіусa: однорідної та неоднорідної залежності характерної для капілярного розряду. https://doi.org/10.1051/epjconf/%20201714902011 https://doi.org/10.1088/1748-0221/15/09/C09001 https://doi.org/10.1016/j.nima.2018.01.028 https://vant.kipt.kharkov.ua/ARTICLE/%20VANT_2016_6/article_2016_6_133.pdf https://vant.kipt.kharkov.ua/ARTICLE/%20VANT_2016_6/article_2016_6_133.pdf http://doi.org/10.1088/1748-0221/17/11/P11013 http://doi.org/10.1088/1748-0221/17/11/P11013 https://doi.org/10.1038/ncomms11785