Frequency of parametric X-ray radiation

The exact solution of the equation for the frequency of parametric X-ray radiation (PXR) of relativistic charged particles moving in a crystal is obtained and compared to the approximate solution. It is found that the exact solution is in good agreement with the approximate one and that the approxim...

Full description

Saved in:
Bibliographic Details
Published in:Problems of Atomic Science and Technology
Date:2023
Main Authors: Shchagin, A.V., Kube, G.
Format: Article
Language:English
Published: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2023
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/196180
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Frequency of parametric X-ray radiation / A.V. Shchagin, G. Kube // Problems of Atomic Science and Technology. — 2023. — № 4. — С. 85-87. — Бібліогр.: 8 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-196180
record_format dspace
spelling Shchagin, A.V.
Kube, G.
2023-12-11T11:54:06Z
2023-12-11T11:54:06Z
2023
Frequency of parametric X-ray radiation / A.V. Shchagin, G. Kube // Problems of Atomic Science and Technology. — 2023. — № 4. — С. 85-87. — Бібліогр.: 8 назв. — англ.
1562-6016
PACS: 41.60.-m, 61.80.Cb
DOI: https://doi.org/10.46813/2023-146-085
https://nasplib.isofts.kiev.ua/handle/123456789/196180
The exact solution of the equation for the frequency of parametric X-ray radiation (PXR) of relativistic charged particles moving in a crystal is obtained and compared to the approximate solution. It is found that the exact solution is in good agreement with the approximate one and that the approximate PXR frequency solution is practically correct for a comparison to experimental data.
Отримано точний розв’язок рівняння частоти параметричного рентгенівського випромінювання релятивістських заряджених частинок, що рухаються в кристалі, та порівняно з наближеним розв’язком. Встановлено, що точний розв’язок добре узгоджується з приблизним рішенням і що приблизний частотний розв’язок практично коректний для порівняння з експериментальними даними.
A.V.S. is grateful to A.P. Potylitsyn for the discussion the work [6] and to V.A. Maisheev for the discussion the work [7] at the conference [8]. This project has received funding through the MSCA4Ukraine project, which is funded by the European Union.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Problems of Atomic Science and Technology
Parametric radiation
Frequency of parametric X-ray radiation
Частота параметричного рентгенівського випромінювання
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Frequency of parametric X-ray radiation
spellingShingle Frequency of parametric X-ray radiation
Shchagin, A.V.
Kube, G.
Parametric radiation
title_short Frequency of parametric X-ray radiation
title_full Frequency of parametric X-ray radiation
title_fullStr Frequency of parametric X-ray radiation
title_full_unstemmed Frequency of parametric X-ray radiation
title_sort frequency of parametric x-ray radiation
author Shchagin, A.V.
Kube, G.
author_facet Shchagin, A.V.
Kube, G.
topic Parametric radiation
topic_facet Parametric radiation
publishDate 2023
language English
container_title Problems of Atomic Science and Technology
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Частота параметричного рентгенівського випромінювання
description The exact solution of the equation for the frequency of parametric X-ray radiation (PXR) of relativistic charged particles moving in a crystal is obtained and compared to the approximate solution. It is found that the exact solution is in good agreement with the approximate one and that the approximate PXR frequency solution is practically correct for a comparison to experimental data. Отримано точний розв’язок рівняння частоти параметричного рентгенівського випромінювання релятивістських заряджених частинок, що рухаються в кристалі, та порівняно з наближеним розв’язком. Встановлено, що точний розв’язок добре узгоджується з приблизним рішенням і що приблизний частотний розв’язок практично коректний для порівняння з експериментальними даними.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/196180
citation_txt Frequency of parametric X-ray radiation / A.V. Shchagin, G. Kube // Problems of Atomic Science and Technology. — 2023. — № 4. — С. 85-87. — Бібліогр.: 8 назв. — англ.
work_keys_str_mv AT shchaginav frequencyofparametricxrayradiation
AT kubeg frequencyofparametricxrayradiation
AT shchaginav častotaparametričnogorentgenívsʹkogovipromínûvannâ
AT kubeg častotaparametričnogorentgenívsʹkogovipromínûvannâ
first_indexed 2025-11-25T23:31:25Z
last_indexed 2025-11-25T23:31:25Z
_version_ 1850584625903042560
fulltext ISSN 1562-6016. Problems of Atomic Science and Technology. 2023. № 4(146) 85 P A R A M E T R I C R A D I A T I O N https://doi.org/10.46813/2023-146-085 FREQUENCY OF PARAMETRIC X-RAY RADIATION A.V. Shchagin 1,2 , G. Kube 1 1 Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany; 2 National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine E-mail: alexander.shchagin@desy.de The exact solution of the equation for the frequency of parametric X-ray radiation (PXR) of relativistic charged particles moving in a crystal is obtained and compared to the approximate solution. It is found that the exact solution is in good agreement with the approximate one and that the approximate PXR frequency solution is practically cor- rect for a comparison to experimental data. PACS: 41.60.-m, 61.80.Cb INTRODUCTION Parametric Cherenkov radiation emitted by fast charged particles moving in a layered dielectric medium was first predicted in [1]. Later on, the equation for the frequency of parametric X-ray radiation (PXR) emitted by a relativistic charged particle moving in a crystal was derived by Ter-Mikaelian [2]. The approximate solution of the equation was confirmed in a number of experi- mental researches of PXR properties, see e.g. [3 - 5]. The influence of the medium where the radiation is emitted, is neglected in the approximate solution, and PXR is considered as emitted in vacuum due to the pe- riodical interaction with crystallographic planes. How- ever, sufficient influence of the medium on the radiation frequency was found at the interaction of particles with macroscopic periodical structures, as transition radiation from a stack of thick foils [5, 6], and at undulator radia- tion from an undulator filled by an amorphous medium [7], and at undulator radiation from a volume reflection undulator [8]. In the present paper, we consider an exact analytical solution of the equation for the frequency of PXR emitted in a crystal and compare it to the approxi- mate solution and experimental data. 1. CALCULATIONS The equation for the angular frequency  of PXR, excited by a relativistic charged particle in a crystal, was derived by Ter-Mikaelian [2] and reads 2 1 cos nV l V c       , (1) with V – the particle velocity, l – the distance between crystallographic planes along the particle velocity vector V , c – the speed of light, 1   – the observation angle between particle velocity vector V and observa- tion direction, 1  – the relativistic Lorentz factor of the incident particles, n – the harmonic number (in crystals n is associated with the crystal structure factor, therefore PXR does not exists for every n ), and 2 1 p           (2) the frequency dependent dielectric permittivity of the crystal in the X-ray range for frequencies exceeding the atomic frequencies in the crystal such that p  , (3) p being the crystal plasma frequency. With 1 p   in Eq. (2), the solution of Eq. (1) often can be used in the approximate form 0 2 1 cos nV Vl c      . (4) The approximate solution 0 (4) can be considered as “vacuum” solution because the dielectric permittivity of the crystal (2) (where PXR is generated) is not taken into account. Eq. (4) was confirmed experimentally in a number of experimental investigations of PXR proper- ties. In the following, taking Eq. (1) as start point it is indicated how the exact solution differs from the ap- proximate vacuum solution (4). Eq. (1) together with the dielectric permittivity Eq. (2) results in a quadratic equation that can be written in the form 2 22 (1 cos ) cos 0 2 p V Vn V c l c          . (5) The two solutions of Eq. (5) are 2 2 0 0 1,2 cos 2 2 2 1 cos pV V c c                   . (6) The second term under the root in Eq. (6) is much smaller than the first one because of condition (3). Therefore, one can write two separate solutions. The low-frequency solution 1 (“-” sign in Eq. (6)) is 2 1 cos 4 pl cn      , (7) and the high-frequency solution 2 (“+” sign in Eq. (6)) is 2 2 0 1 cos2 4 1 cos plnV Vl cn c             . (8) The low-frequency solution (7) does not correspond to PXR because it does not satisfy the condition p  , see Eq. (3). The high-frequency solution 2 86 ISSN 1562-6016. Problems of Atomic Science and Technology. 2023. № 4(146) (8) differs from the vacuum solution (4) by the value of the low-frequency solution 1 . The difference leads to an increase in the PXR frequency (8) in the PXR reflec- tion emitted in the backward hemisphere at 2     , and to a decrease in the PXR frequency for radiation emitted in the forward hemisphere at 1 2      . The difference is absent if PXR is emitted at a right angle with respect to the particle velocity vector, i.e. 2    . The value of the difference 1 ( 1 is in the electron- volt range in typical cases) between the exact (Eq. (8)) and the approximate vacuum solution (Eq. (4)) is much smaller than the PXR quanta energy (typically 0 is in the range exceeding a few kiloelectronvolt) calculated by formula (4). Let us consider an example for typical experimental conditions described in [3, 4]. In those works, the PXR spectral peak from the (111) crystallographic planes of a Si single-crystal was observed in the vicinity of the cen- ter of the PXR reflection at a fixed observation angle 305.9  mrad, and the angle of the crystal rotation was around / 2 . PXR was generated by a 25.0 MeV electron beam in a thin Si plate in Laue geometry. The value l in (4) is (111) 2 20.7 sin 2 l g      Angstroms in the center of the PXR reflection, where (111)g is the module of the reciprocal lattice vector for the (111) Si crystallo- graphic plane. The energy of the observed radiation [3, 4] and the calculated one by the approximate formula (4) in the center of the PXR reflection spectral peak is 0 12.9  keV. The energy 1 calculated by formu- la (7) is 1 0.8  eV for the plasma energy in Si crys- tal 31.1p  eV and n=1. The energy of the low- frequency radiation (7) does not satisfy the condition (3) and cannot be considered as a realistic solution. The energy of the high-frequency radiation (8) 2 0 1    is less than 0 12.9  keV for 0.8 eV. The relative correction is 410 . The differ- ence between the exact high-frequency solution 2 (8) and the approximate solution (4) amounts to only 0.8 eV, which is much less than the observed width of the PXR spectral peak of 166 eV in [3, 4]. Thus, the difference between the exact (8) and the approximate (4) solution is negligibly small for PXR, and the approx- imate solution (4) is practically correct. 2. RESULTS AND DISCUSSION We demonstrated a good agreement between the ex- act (8) and the approximate vacuum solution (4) for PXR frequencies produced by relativistic particles in a crystal. Let us discuss the reason, why the exact and approximate vacuum solutions for radiation frequencies are practically the same for PXR in a crystal, and they are sufficiently different at emission of radiation in for- ward direction from macroscopic periodical structures, as transition radiation from a stack of thick foils [5, 6], undulator radiation from an undulator filled by amor- phous medium [7], and undulator radiation from a vol- ume reflection undulator [8]. The important thing is the period length l of the structure. In the case of PXR the period is determined by the distance between crystallographic planes, which is usually in the Angstrom region. Therefore, the values of the low-frequency solution (7) and the correction in the high-frequency solution (8) are insignificant. In the case of macroscopic structures [5 - 8], the period lengths l can be in sub-mm or even larger range. Therefore, the low-frequency solution and the related correction of the high-frequency solution for macroscopic structures [5 - 8] can be sufficient to lead to significant changes of the spectral distribution of the emitted radiation. ACKNOWLEDGEMENTS A.V.S. is grateful to A.P. Potylitsyn for the discus- sion the work [6] and to V.A. Maisheev for the discus- sion the work [7] at the conference [8]. This project has received funding through the MSCA4Ukraine project, which is funded by the European Union. REFERENCES 1. Ya.B. Fainberg, N.A. Khizhnyak. Energy losses by a charged particle passing through a laminar dielectric // Sov. Phys. JETP. 1957, v. 5, p. 720; Translated from Russian // Zh. Eksp. Teor. Fiz. 1957, v. 32, p. 883. 2. M.L. Ter-Mikaelian. High-Energy Electromagnetic Processes in Condensed Media, New York: Wiley- Interscience, 1972; Translated from Russian: Vliyanie Sredy na Elektromagnitnye Protsess(y pri Vysokikh Energiyakh), Erevan: Izd. AN Arm. SSR, 1969 (in Russian). 3. A.V. Shchagin, V.I. Pristupa, N.A. Khizhnyak. A fine structure of parametric X-ray radiation from relativistic electrons in a crystal // Phys. Lett. A. 1990, v. 148, p. 485-488. 4. A.V. Shchagin, X.K. Maruyama. Accelerator-Based Atomic Physics: Techniques and Applications / Eds. S.M. Shafroth, J.C. Austin. New York: “AIP Press”, 1997, p. 279. 5. A.P. Potylitsyn. Electromagnetic Radiation of Elec- trons in Periodic Structures, Springer  Verlag Ber- lin Heidelberg, 2011; Translated from Russian: Izlu- chenie Elektronov v Periodicheskikh Strukturakh. Tomsk: NTL, 2009 (in Russian). 6. V.N. Baier, V.M. Katkov. Transition radiation as a source of quasi-monochromatic X-rays // Nucl. In- struments and Methods. 2000, v. A 439, p. 189-198. 7. S. Bellucci, V.A. Maisheev. Radiation of relativistic particles for quasiperiodic motion in a transparent medium // J. Phys.: Condens. Matter. 2006, v. 18, p. S2083-S2093. 8. A.V. Shchagin, G. Kube, S.A. Strokov. About fre- quencies of radiation of relativistic particles in period- ical crystalline structure. Oral paper at IX Internation- al Conference Charged and Neutral Particles Channel- ing Phenomena, June 4-9, 2023, Riccione, Italy // Sci- entific Program and Abstract Book. 2023, p. 37. Article received 30.06.2023 ISSN 1562-6016. Problems of Atomic Science and Technology. 2023. № 4(146) 87 ЧАСТОТА ПАРАМЕТРИЧНОГО РЕНТГЕНІВСЬКОГО ВИПРОМІНЮВАННЯ А.В. Щагін, Г. Кубе Отримано точний розв'язок рівняння частоти параметричного рентгенівського випромінювання релятиві- стських заряджених частинок, що рухаються в кристалі, та порівняно з наближеним розв'язком. Встановле- но, що точний розв'язок добре узгоджується з приблизним рішенням і що приблизний частотний розв'язок практично коректний для порівняння з експериментальними даними.