Penning-type H⁻ ion source with metal hydride cathode in pulsating regime

The features of H⁻ ion emission from gas-feed-free Penning-type ion source with metal hydride cathode have been studied in pulsating regime. The metal hydride cathode provided local injection of hydrogen in activated state and impacts on Penning discharge ability to emit H⁻ ions in the longitudinal...

Full description

Saved in:
Bibliographic Details
Published in:Problems of Atomic Science and Technology
Date:2023
Main Authors: Sereda, I., Hrechko, Ya., Azarenkov, N.
Format: Article
Language:English
Published: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2023
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/196189
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Penning-type H⁻ ion source with metal hydride cathode in pulsating regime / I. Sereda, Ya. Hrechko, N. Azarenkov // Problems of Atomic Science and Technology. — 2023. — № 4. — С. 126-128. — Бібліогр.: 12 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-196189
record_format dspace
spelling Sereda, I.
Hrechko, Ya.
Azarenkov, N.
2023-12-11T12:35:27Z
2023-12-11T12:35:27Z
2023
Penning-type H⁻ ion source with metal hydride cathode in pulsating regime / I. Sereda, Ya. Hrechko, N. Azarenkov // Problems of Atomic Science and Technology. — 2023. — № 4. — С. 126-128. — Бібліогр.: 12 назв. — англ.
1562-6016
PACS: 29.25.Ni
DOI: https://doi.org/10.46813/2023-139-146-126
https://nasplib.isofts.kiev.ua/handle/123456789/196189
The features of H⁻ ion emission from gas-feed-free Penning-type ion source with metal hydride cathode have been studied in pulsating regime. The metal hydride cathode provided local injection of hydrogen in activated state and impacts on Penning discharge ability to emit H⁻ ions in the longitudinal direction. For stimulation of pre-excited hydrogen desorption from metal hydride the voltage pulse (4.5 kV, τ ≈ 15 μs) was performed against the background constant voltage of 6 kV on the anode of the discharge. The H⁻ ion current of about 0.2 mA was obtained.
Досліджено особливості емісії іонів H⁻ джерела іонів пеннінгівського типу з металогідридним катодом у пульсуючому режимі. Металогідридний катод забезпечував локальну інжекцію водню в активованому стані та впливав на здатність пеннінгівського розряду емітувати іони H⁻ у поздовжньому напрямку. Для стимуляції десорбції попередньо збудженого водню з гідриду металу до анода розряду підводили імпульс напруги (4,5 кВ, τ ≈ 15 мкс) на фоні постійної напруги 6 кВ. Отримано струм іонів H⁻ близько 0,2 мА.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Problems of Atomic Science and Technology
Gas discharge, plasma-beam discharge and their applications
Penning-type H⁻ ion source with metal hydride cathode in pulsating regime
Джерело іонів H⁻ пеннінгівського типу з металогідридним катодом у пульсуючому режимі
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Penning-type H⁻ ion source with metal hydride cathode in pulsating regime
spellingShingle Penning-type H⁻ ion source with metal hydride cathode in pulsating regime
Sereda, I.
Hrechko, Ya.
Azarenkov, N.
Gas discharge, plasma-beam discharge and their applications
title_short Penning-type H⁻ ion source with metal hydride cathode in pulsating regime
title_full Penning-type H⁻ ion source with metal hydride cathode in pulsating regime
title_fullStr Penning-type H⁻ ion source with metal hydride cathode in pulsating regime
title_full_unstemmed Penning-type H⁻ ion source with metal hydride cathode in pulsating regime
title_sort penning-type h⁻ ion source with metal hydride cathode in pulsating regime
author Sereda, I.
Hrechko, Ya.
Azarenkov, N.
author_facet Sereda, I.
Hrechko, Ya.
Azarenkov, N.
topic Gas discharge, plasma-beam discharge and their applications
topic_facet Gas discharge, plasma-beam discharge and their applications
publishDate 2023
language English
container_title Problems of Atomic Science and Technology
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Джерело іонів H⁻ пеннінгівського типу з металогідридним катодом у пульсуючому режимі
description The features of H⁻ ion emission from gas-feed-free Penning-type ion source with metal hydride cathode have been studied in pulsating regime. The metal hydride cathode provided local injection of hydrogen in activated state and impacts on Penning discharge ability to emit H⁻ ions in the longitudinal direction. For stimulation of pre-excited hydrogen desorption from metal hydride the voltage pulse (4.5 kV, τ ≈ 15 μs) was performed against the background constant voltage of 6 kV on the anode of the discharge. The H⁻ ion current of about 0.2 mA was obtained. Досліджено особливості емісії іонів H⁻ джерела іонів пеннінгівського типу з металогідридним катодом у пульсуючому режимі. Металогідридний катод забезпечував локальну інжекцію водню в активованому стані та впливав на здатність пеннінгівського розряду емітувати іони H⁻ у поздовжньому напрямку. Для стимуляції десорбції попередньо збудженого водню з гідриду металу до анода розряду підводили імпульс напруги (4,5 кВ, τ ≈ 15 мкс) на фоні постійної напруги 6 кВ. Отримано струм іонів H⁻ близько 0,2 мА.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/196189
citation_txt Penning-type H⁻ ion source with metal hydride cathode in pulsating regime / I. Sereda, Ya. Hrechko, N. Azarenkov // Problems of Atomic Science and Technology. — 2023. — № 4. — С. 126-128. — Бібліогр.: 12 назв. — англ.
work_keys_str_mv AT seredai penningtypehionsourcewithmetalhydridecathodeinpulsatingregime
AT hrechkoya penningtypehionsourcewithmetalhydridecathodeinpulsatingregime
AT azarenkovn penningtypehionsourcewithmetalhydridecathodeinpulsatingregime
AT seredai džereloíonívhpenníngívsʹkogotipuzmetalogídridnimkatodomupulʹsuûčomurežimí
AT hrechkoya džereloíonívhpenníngívsʹkogotipuzmetalogídridnimkatodomupulʹsuûčomurežimí
AT azarenkovn džereloíonívhpenníngívsʹkogotipuzmetalogídridnimkatodomupulʹsuûčomurežimí
first_indexed 2025-11-25T22:49:29Z
last_indexed 2025-11-25T22:49:29Z
_version_ 1850574266835140608
fulltext 126 ISSN 1562-6016. Problems of Atomic Science and Technology. 2023. № 4(146) https://doi.org/10.46813/2023-139-146-126 PENNING-TYPE H – ION SOURCE WITH METAL HYDRIDE CATHODE IN PULSATING REGIME I. Sereda 1 , Ya. Hrechko 1 , N. Azarenkov 1,2 1 V.N. Karazin Kharkiv National University, Kharkiv, Ukraine; 2 National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine E-mail: igorsereda@karazin.ua The features of H – ion emission from gas-feed-free Penning-type ion source with metal hydride cathode have been studied in pulsating regime. The metal hydride cathode provided local injection of hydrogen in activated state and impacts on Penning discharge ability to emit H – ions in the longitudinal direction. For stimulation of pre-excited hydrogen desorption from metal hydride the voltage pulse (4.5 kV, τ ≈ 15 µs) was performed against the background constant voltage of 6 kV on the anode of the discharge. The H – ion current of about 0.2 mA was obtained. PACS: 29.25.Ni INTRODUCTION The independence of neutralization efficiency at high beam energy determines the main fields of H – ions application for the production of neutral beam for fusion [1] and medical radionuclides in cyclotrons [2]. The construction of H – sources is usually based on two well- known physical mechanisms [3]. It is the direct for- mation of H – ions in plasma, when highly rovibrational- ly excited molecules H2* produced with fast electrons, dissociate after colliding with slow electrons. The re- sulting current of H – ions is determined by the flow of neutral hydrogen and is limited by the destruction pro- cesses of negative ions, when the pressure in cold plas- ma rises more than 0.1 Pa [4]. Next one is the produc- tion of H – ions on the plasma electrode surface covered with cesium [5]. It gives much greater intensity of H – current, but cesium leakage to the acceleration zone can cause a breakdown. So, the search for material for effi- cient cesium-free ion source operation is currently the great challenge [6]. Metal hydride application as a plasma electrode mate- rial is known to increase the production of negative hy- drogen ions due to H2* molecules activation at the metal hydride surface, which then can be easily converted to H – ions by dissociative electron attachment [8]. Previously we reported about successful application of metal hydride cathode in Penning negative ion source [7], where we obtained the H – current of 5 µA at a power input of 10 W. For further increase of source performance, the uptake rate of pre-excited hydrogen molecules from the cathode should be raised. The purpose of this paper is to increase the yield of H – ions by the pulsating regime implementa- tion followed by the stimulation of pre-excited hydro- gen desorption from metal hydride due to the current of charged particles impact from plasma. 1. EXPERIMENTAL SETUP The scheme of a Penning cell used as an ion source is shown in Fig. 1. Hydrogen plasma is generated be- tween a metal hydride cathode (1), a copper cathode (5) and a tube-shaped anode (4) with a longitudinal magnet- ic field Hzo0 = 0…0.1 T. The specified dimensions of the cell were chosen experimentally for the stable operation of the discharge without break-downs. The metal hy- dride cathode was produced from hydride-forming alloy Zr50V50 with the hydrogen amount absorbed by the ma- terial on the level of 190 cm 3 /g at atmospheric pressure and room temperature. Temperature stabilization of metal hydride at a level which is lower than the temper- ature of thermal destruction of hydride phase ensures activated hydrogen H2* uptake mainly by ion-stimulated processes from the surface of metal hydride locally to the cathode region. z,c m 0 1 2 3 4 5 6 7 8 9 Hz0 4 8 5 7 6 2 1 9 z water Icol 3 1 kΩ +Ugrid IAC Hzo0 Hcoil 20 MΩ 20 kΩ 12 Ω 10 kΩ +U0 UDC 4.7 pF 16 µF 4.7 nF + - ignition 100 pF Ud UAC Fig. 1. The scheme of a Penning-type ion source: 1 – metal hydride cathode; 2 – cathode-holder; 3 – thermocouple; 4 – anode; 5 – copper cathode with an aperture; 6 – reflecting grid; 7 – electrons collector; 8 – filter magnetic coil; 9 – H – ion collector; Hzo0 – main axial penning magnetic field (Hzo0 =0…0.1 T); Hcoil – reverse magnetic field of the filter Hydrogen activation changes the Penning discharge properties and a flow of negatively charged particles together with positive ions starts yielding along the ex- ternal magnetic field through an aperture in the cathode (5). The separation of negative ions H – from electrons and positive ions is performed by electromagnetic filter, which consists of a grid (6) for positive ions retarding, a magnetic coil (8) to divert electrons, a collector of di- verted electrons (7) and a collector of extracted axial beam of H – ions (9). The coil (8) creates a reverse mag- netic field Hcoil. The required values of the resulting field Hz0 and grid potential (Ugrid = 1.65 kV) in the filter is calculated from the analysis of electrons and H – ions ISSN 1562-6016. Problems of Atomic Science and Technology. 2023. № 4(146) 127 trajectories by numerical solution of a motion equation in axially symmetric electric and magnetic fields [7]. The grid (6) in addition to the retarding function for positive ions accelerates electrons and H – ions to ap- proximately the same energy followed by the successful separation in the magnetic field Hz0 of the filter. The discharge operation is ensured by applying a positive potential to the anode. The electrical circuit provides the supply of pulse voltage of 4.5 kV against the background voltage Ud of 6 kV. The residual pres- sure in the vacuum chamber was 0.2 mPa. 2. RESULTS AND DISCUSSION The ability of Penning source with metal hydride cathode of emitting negative particles in longitudinal direction was described in [7]. It occurs at low pressure, high magnetic field and discharge voltage, when a field- free plasma region is formed along the axis, containing electrons oscillating between the cathodes. Discharge voltage drops in the region of negative space charge layer close to an anode [10]. The cathode layer may still present, but with low voltage drop. H – ions are formed close to the metal hydride cathode due to the dissocia- tive attachment of slow electrons (2…4 eV) to pre- excited hydrogen molecules H2*, which are desorbed from metal hydride due to ion-stimulated mechanism under the influence of ion current from plasma [8]. The ion current determines the rate of desorption and the equilibrium pressure in the discharge volume [11]. So, the easiest way of improving the efficiency of H – pro- duction is to intensify the desorption rate by the increas- ing of ion current from plasma [3]. To implement this idea, we used pulsating regime of gas-feed-free Penning type H – ion source with metal hydride cathode, when the voltage pulse of 4.5 kV was performed against the background constant voltage of 6 kV on the anode. In case of only pulse regime, the only surface of metal hydride works. And after several pulses, when the stored in surface layer hydrogen has been evacuated, the efficiency of H – production drops. In pulsating regime, due to the energy transfer from background continuous discharge, hydrogen releases from thicker surface layer or even from the whole vol- ume of metal hydride. The oscillograms of discharge voltage Ud, pulse dis- charge current Id and H – current are shown in Fig. 2. The distortion of the Id curve especially in the beginning of the pulse is a consequence of the application of Sa- vitzky-Golay smoothing method. However, despite the distortion, it is clearly seen the coincidence of Id and H – current peaks at t ~ 10 µs, which pointed on the intensi- fication of activated hydrogen desorption and the in- creasing of H – production efficiency. 0 10µ 20µ 30µ 40µ 50µ 60µ -60 -40 -20 0 20 40 H -- c u rr en t, m A t, sec Hzo0 = 0,05 T UMH = 0 V 0 10µ 20µ 30µ 40µ 50µ 60µ 6 8 10 Ud U d , k V -10 -8 -6 -4 -2 0 2 4 6 I d , m A Id 0 10µ 20µ 30µ 40µ 50µ 60µ -100 -50 0 H -- c u rr en t, m A t, sec Hzo0 = 0,07 T UMH = 0 V 0 10µ 20µ 30µ 40µ 50µ 60µ 6 8 10 Ud U d , k V -4 0 4 8 12 I d , m A Id 0 10µ 20µ 30µ 40µ 50µ 60µ -80 -60 -40 -20 0 20 H -- c u rr en t, m A t, sec Hzo0 = 0,09 T UMH = 0 V 0 10µ 20µ 30µ 40µ 50µ 60µ 6 8 10 Ud U d , k V -4 0 4 8 12 I d , m A Id Fig. 2. The oscillograms of discharge voltage Ud pulse discharge current Id and H – current at P = 0.2 mPa A strong dependence of the H – current on external magnetic field can be explained by the discharge transi- tion to another mode, when the increase of pressure dur- ing a pulse leads to a jump of the voltage drop from the anode layer to the cathode and makes it difficult for negative particles of escaping along the axis [12]. But according to the estimations performed in [12] high magnetic field suppresses the discharge transition and the maximum values of H – current is observed only for high magnetic field Hzo0 = 0.07…0.1 T. Sufficient enhance of negative current output can be achieved by the supply of negative potential on metal hydride cathode UMH. Due to central field-free plasma region negative particles are additionally pushed out. A positive electrical bias on the cathode-reflector did not lead to any significant result, which testifies to the crea- tion of H – ions near the metal hydride cathode followed by the pushing them out by electrical bias. Fig. 3 shows the dependence of the value of H – current on UMH at different external magnetic field Hzo0 in constant regime of discharge operation at Ud of 6 kV. 20 40 60 80 100 120 140 160 180 200 -10 -8 -6 -4 -2 H - c u rr en t in c o n st an t re g im e, m A Hzo0 = 0.09 T Hzo0 = 0.07 T Hzo0 = 0.05 T -UMH , V Fig. 3. The dependence of H – current on UMH in constant regime Ud = 6 kV Fig. 4 represents the same, but when the pulse volt- age of 4.5 kV was supplied against the background Ud of 6 kV. 128 ISSN 1562-6016. Problems of Atomic Science and Technology. 2023. № 4(146) 20 40 60 80 100 120 140 160 180 200 -240 -220 -200 -180 -160 -140 -120 -100 -80 -60 -40 -20 H - c u rr en t in p u ls e re g im e, m A Hzo0 = 0.09 T Hzo0 = 0.07 T Hzo0 = 0.05 T -UMH , V Fig. 4. The dependence of H – current on UMH in pulsating regime (Ud = 6 kV + 4.5 kV in pulse) In both cases, there is a general trend of increasing the H – current from the UMH value of about -60 V with following decline after -120 V. This behavior is deter- mined by the temperature of plasma electrons (Te), which have Boltzmann distribution and are slowed down in the cathode layer [9]. According to the calculations performed in [9], the higher values of Te, the closer the reflection point of plasma electrons to the cathode surface and higher val- ues of UMH is needed for efficient formation and ejec- tion of H – ions. Reaching the maximum of H – current at certain UMH is due to the competitive processes of H – ion production and destruction, because increasing of UMH pushes the formation area of H – ions away from the surface, and Te increasing reduces the cross section of H – ion formation. CONCLUSIONS The efficient production of H – ions occurs due to the dissociative attachment of thermal electrons to activated hydrogen molecules desorbed from metal hydride cath- ode. Negative electrical bias of metal hydride cathode contributes to a more efficient output of negative ions along the axis of the Penning cell. The value of electri- cal bias is determined by the temperature of plasma electrons ejected from anode layer on the cathodes. When it takes -100 V, the current of H – ions reaches the maximum value of about 0.2 mA. High magnetic field suppresses the potential redistribution in the cell and the maximum values of H – current is observed only for high magnetic field Hzo0 = 0.07…0.1 T, when field-free plasma region is formed along the axis. REFERENCES 1. V. Antoni, D. Aprile, M. Cavenago, G. Chitarin, N. Fonnesu, et al. Physics design of the injector source for ITER neutral beam injector (invited) // Rev. Sci. Instr. 2014, v. 85, 02B128. 2. P.W. Schmor. Review of Cyclotrons for the Produc- tion of Radioactive Isotopes for Medical and Indus- trial Applications // Rev. Accelerator Sci. Tech. 2011, v. 4, p. 103-116. 3. M. Bacal, M. Wada. Negative hydrogen ion produc- tion mechanisms // Appl. Phys. Rev. 2015, v. 2, 021305. 4. M. Bacal, R. McAdams, B. Lepetit. The negative ion mean free path and its possible implications // Se- cond International Symposium on Negative Ions, Beams and Sources, AIP Conf. Proc. 1390. 2011, p. 13-21. 5. V. Dudnikov. Thirty years of surface plasma sources for efficient negative ion production // Rev. Sci. In- str. 2002, v. 73, p. 992-994. 6. K. Maeshiro, M. Wada, and S. Masaki. Extraction of negative hydrogen ions using a plasma electrode covered by Ta or Ti // AIP Conf. Proc. 2373. 2021, p. 100005. 7. I. Sereda, A. Tseluyko, N. Azarenkov, D. Ryabchikov, Ya. Hrechko. Effect of metal- hydride hydrogen activation on longitudinal yield of negative ions from PIG // Int. J. Hydrogen Energy. 2017, v. 42, p. 21866-21870. 8. C. Schermann, F. Pichou, M. Landau, I. a , R.I. Hall. Highly excited hydrogen molecules de- sorbed from a surface: Experimental results // J. Chem. Phys. 1994, v. 101, p. 8152-8158. 9. I.N. Sereda, Ya.O. Hrechko, D.L. Ryabchikov, A.F. Tseluyko, N.A. Azarenkov. The increasing of H – current from Penning ion source with electrically biased metal hydride cathode // Vacuum. 2019, v. 162, p. 163-167. 10. W. Schuurman. Investigation of a low pressure Pen- ning discharge // Physica. 1967, v. 36, p. 136-160. 11. I. Sereda, Ya. Hrechko, Ie. Babenko. The plasma parameters of Penning discharge with negatively bi- ased metal hydride cathode at longitudinal emission of H – ions // East. Eur. J. Phys. 2021, v. 3, p. 81-86. 12. D.G. Dow. Electron Beam Probing of a Penning Discharge // J. Appl. Phys. 1963, v. 34, p. 2395- 2400. Article received 15.05.2023 ДЖЕРЕЛО ІОНІВ H – ПЕННІНГІВСЬКОГО ТИПУ З МЕТАЛОГІДРИДНИМ КАТОДОМ У ПУЛЬСУЮЧОМУ РЕЖИМІ І. Середа, Я. Гречко, М. Азарєнков Досліджено особливості емісії іонів Н – джерела іонів пеннінгівського типу з металогідридним катодом у пульсуючому режимі. Металогідридний катод забезпечував локальну інжекцію водню в активованому стані та впливав на здатність пеннінгівського розряду емітувати іони H – у поздовжньому напрямку. Для стимуля- ції десорбції попередньо збудженого водню з гідриду металу до анода розряду підводили імпульс напруги (4,5 кВ, τ ≈ 15 мкс) на фоні постійної напруги 6 кВ. Отримано струм іонів H – близько 0,2 мА.