Investigation of spatial distribution of metal vapours admixtures in the plasma of an electric arc discharge
This work focuses on diagnosing the plasma in an electric arc discharge in an argon flow using optical emission spectroscopy. The method employed for determining the population of energy levels and the concentration of metal atoms based on the absolute values of emission intensity is described and v...
Збережено в:
| Опубліковано в: : | Problems of Atomic Science and Technology |
|---|---|
| Дата: | 2023 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2023
|
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/196192 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Investigation of spatial distribution of metal vapours admixtures in the plasma of an electric arc discharge / A. Murmantsev // Problems of Atomic Science and Technology. — 2023. — № 4. — С. 139-146. — Бібліогр.: 16 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-196192 |
|---|---|
| record_format |
dspace |
| spelling |
Murmantsev, A. 2023-12-11T12:36:44Z 2023-12-11T12:36:44Z 2023 Investigation of spatial distribution of metal vapours admixtures in the plasma of an electric arc discharge / A. Murmantsev // Problems of Atomic Science and Technology. — 2023. — № 4. — С. 139-146. — Бібліогр.: 16 назв. — англ. 1562-6016 PACS: 52.70.-m, 52.80.Mg DOI: https://doi.org/10.46813/2023-146-139 https://nasplib.isofts.kiev.ua/handle/123456789/196192 This work focuses on diagnosing the plasma in an electric arc discharge in an argon flow using optical emission spectroscopy. The method employed for determining the population of energy levels and the concentration of metal atoms based on the absolute values of emission intensity is described and validated. The experimental setup includes a spectrograph and an RGB CMOS matrix as the emission registration device. By obtaining the absolute values of the spectral radiances of Cu I lines and considering the axial symmetry of the electric arc discharge, the local radiation intensity of these lines is determined. Radial distributions of copper atom concentrations are then calculated using the absolute values of emission intensities and the radial distribution of the excitation temperature, which is determined using the Boltzmann plots technique. Two methods are employed for calculating the atom concentra ions. The first method involves Boltzmann plots based on four spectral lines of Cu I and the corresponding excitation temperature. The second method determines the concentrations directly from the population of copper’s energy levels, which are derived from the absolute values of emission intensity of the Cu I spectral lines. The results obtained from these two methods exhibit a coincidence of within 20%, supporting the recommendation of this technique for plasma diagnostics in electric arc discharges. Робота присвячена діагностиці плазми електродугового розряду в потоці аргону методами оптичної емісійної спектроскопії. Описано та апробовано метод визначення заселеності енергетичних рівнів та концентрації атомів металу із абсолютних значень інтенсивності випромінювання спектральних ліній. Дослідження проводили з використанням спектрографа та RGB CMOS матриці як пристрою реєстрації випромінювання. Отримано абсолютні значення спектральної яскравості ліній Cu I, та з урахуванням осьової симетрії електродугового розряду визначено їх локальну інтенсивність випромінювання. Із залученням абсолютних значень інтенсивності випромінювання та радіального розподілу температури заселення, визначеної методом діаграм Больцмана, отримано радіальні розподіли концентрацій атомів міді. Розглянуто два методи розрахунку концентрації атомів. А саме, розрахунок із діаграми Больцмана на основі чотирьох спектральних ліній Cu I та визначеної температури заселення. З іншого боку, концентрацію отримано із заселення енергетичних рівнів міді, визначених безпосередньо із абсолютних значень інтенсивності випромінювання цих спектральних ліній Cu I. Результати, отримані цими двома методами, збігаються в межах 20%, що дає підстави рекомендувати дану методику для діагностики плазми електродугових розрядів. This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement 101052200-EUROfusion). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them. Moreover, the author considers it an honour to express his gratitude to Prof. A. Veklich for supervising and reviewing the work, to V. Boretskij, M. Kleshych, S. Fesenko, and V. Telega for assistance in conducting the experiment and obtaining the results. en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Problems of Atomic Science and Technology Gas discharge, plasma-beam discharge and their applications Investigation of spatial distribution of metal vapours admixtures in the plasma of an electric arc discharge Дослідження просторового розподілу домішок парів металів у плазмі електродугового розряду Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Investigation of spatial distribution of metal vapours admixtures in the plasma of an electric arc discharge |
| spellingShingle |
Investigation of spatial distribution of metal vapours admixtures in the plasma of an electric arc discharge Murmantsev, A. Gas discharge, plasma-beam discharge and their applications |
| title_short |
Investigation of spatial distribution of metal vapours admixtures in the plasma of an electric arc discharge |
| title_full |
Investigation of spatial distribution of metal vapours admixtures in the plasma of an electric arc discharge |
| title_fullStr |
Investigation of spatial distribution of metal vapours admixtures in the plasma of an electric arc discharge |
| title_full_unstemmed |
Investigation of spatial distribution of metal vapours admixtures in the plasma of an electric arc discharge |
| title_sort |
investigation of spatial distribution of metal vapours admixtures in the plasma of an electric arc discharge |
| author |
Murmantsev, A. |
| author_facet |
Murmantsev, A. |
| topic |
Gas discharge, plasma-beam discharge and their applications |
| topic_facet |
Gas discharge, plasma-beam discharge and their applications |
| publishDate |
2023 |
| language |
English |
| container_title |
Problems of Atomic Science and Technology |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Дослідження просторового розподілу домішок парів металів у плазмі електродугового розряду |
| description |
This work focuses on diagnosing the plasma in an electric arc discharge in an argon flow using optical emission spectroscopy. The method employed for determining the population of energy levels and the concentration of metal atoms based on the absolute values of emission intensity is described and validated. The experimental setup includes a spectrograph and an RGB CMOS matrix as the emission registration device. By obtaining the absolute values of the spectral radiances of Cu I lines and considering the axial symmetry of the electric arc discharge, the local radiation intensity of these lines is determined. Radial distributions of copper atom concentrations are then calculated using the absolute values of emission intensities and the radial distribution of the excitation temperature, which is determined using the Boltzmann plots technique. Two methods are employed for calculating the atom concentra ions. The first method involves Boltzmann plots based on four spectral lines of Cu I and the corresponding excitation temperature. The second method determines the concentrations directly from the population of copper’s energy levels, which are derived from the absolute values of emission intensity of the Cu I spectral lines. The results obtained from these two methods exhibit a coincidence of within 20%, supporting the recommendation of this technique for plasma diagnostics in electric arc discharges.
Робота присвячена діагностиці плазми електродугового розряду в потоці аргону методами оптичної емісійної спектроскопії. Описано та апробовано метод визначення заселеності енергетичних рівнів та концентрації атомів металу із абсолютних значень інтенсивності випромінювання спектральних ліній. Дослідження проводили з використанням спектрографа та RGB CMOS матриці як пристрою реєстрації випромінювання. Отримано абсолютні значення спектральної яскравості ліній Cu I, та з урахуванням осьової симетрії електродугового розряду визначено їх локальну інтенсивність випромінювання. Із залученням абсолютних значень інтенсивності випромінювання та радіального розподілу температури заселення, визначеної методом діаграм Больцмана, отримано радіальні розподіли концентрацій атомів міді. Розглянуто два методи розрахунку концентрації атомів. А саме, розрахунок із діаграми Больцмана на основі чотирьох спектральних ліній Cu I та визначеної температури заселення. З іншого боку, концентрацію отримано із заселення енергетичних рівнів міді, визначених безпосередньо із абсолютних значень інтенсивності випромінювання цих спектральних ліній Cu I. Результати, отримані цими двома методами, збігаються в межах 20%, що дає підстави рекомендувати дану методику для діагностики плазми електродугових розрядів.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/196192 |
| citation_txt |
Investigation of spatial distribution of metal vapours admixtures in the plasma of an electric arc discharge / A. Murmantsev // Problems of Atomic Science and Technology. — 2023. — № 4. — С. 139-146. — Бібліогр.: 16 назв. — англ. |
| work_keys_str_mv |
AT murmantseva investigationofspatialdistributionofmetalvapoursadmixturesintheplasmaofanelectricarcdischarge AT murmantseva doslídžennâprostorovogorozpodíludomíšokparívmetalívuplazmíelektrodugovogorozrâdu |
| first_indexed |
2025-11-25T21:31:28Z |
| last_indexed |
2025-11-25T21:31:28Z |
| _version_ |
1850558388435419136 |
| fulltext |
ISSN 1562-6016. Problems of Atomic Science and Technology. 2023. № 4(146) 139
https://doi.org/10.46813/2023-146-139
INVESTIGATION OF SPATIAL DISTRIBUTION OF METAL VAPOURS
ADMIXTURES IN THE PLASMA OF AN ELECTRIC ARC DISCHARGE
A. Murmantsev
Faculty of Radiophysics, Electronics and Computer Systems of Taras Shevchenko
National University of Kyiv, Kyiv, Ukraine
E-mail: murmantsev.aleksandr@gmail.com
This work focuses on diagnosing the plasma in an electric arc discharge in an argon flow using optical emission
spectroscopy. The method employed for determining the population of energy levels and the concentration of metal
atoms based on the absolute values of emission intensity is described and validated. The experimental setup includes
a spectrograph and an RGB CMOS matrix as the emission registration device. By obtaining the absolute values of
the spectral radiances of Cu I lines and considering the axial symmetry of the electric arc discharge, the local radia-
tion intensity of these lines is determined. Radial distributions of copper atom concentrations are then calculated
using the absolute values of emission intensities and the radial distribution of the excitation temperature, which is
determined using the Boltzmann plots technique. Two methods are employed for calculating the atom concentra-
tions. The first method involves Boltzmann plots based on four spectral lines of Cu I and the corresponding excita-
tion temperature. The second method determines the concentrations directly from the population of copper's energy
levels, which are derived from the absolute values of emission intensity of the Cu I spectral lines. The results ob-
tained from these two methods exhibit a coincidence of within 20%, supporting the recommendation of this tech-
nique for plasma diagnostics in electric arc discharges.
PACS: 52.70.-m, 52.80.Mg
INTRODUCTION
The study of electric arc discharge plasma with metal
vapour admixtures is of great interest to researchers due
to its scientific significance and numerous practical appli-
cations. Processes such as electric arc welding and cutting
[1 - 3], plasma surface treatment [4 - 7], and current
switching in electrical devices [8] involve the evapoura-
tion of materials from switching contacts and electrodes.
To address the challenges posed by these applications, the
development of diagnostic methods for electric arc dis-
charge plasma with metal vapour admixtures is crucial.
During the switching of an electric circuit, arc dis-
charge occurs, leading to contact erosion [8] and reduc-
ing the service life of switches and contacts. Therefore,
investigating the physical processes that occur in plasma
media during switching and on contact surfaces is of
great importance. The study of electric arc discharge
plasma with metal vapour admixtures from electrode
materials can contribute to reducing electrode erosion
by optimizing material composition and developing new
manufacturing technologies.
Traditionally, the erosion intensity of electrode mate-
rials caused by the thermal effect of electric arc discharge
plasma is indirectly determined by calculating the content
of metal vapours in the positive plasma column based on
its equilibrium composition [9, 10]. This method requires
experimental determination of plasma parameters such as
temperature and electron density. The most common ap-
proach for obtaining electron density is direct calculation
from the full width at half-maximum (FWHM) of the
spectral line contours [11]. However, this approach has
limitations in practical diagnostics. It relies on high-
resolution spectral devices to accurately observe emission
spectral line contours, especially in low-current electric
arc discharges. Moreover, the width of spectral line con-
tours in such plasma sources can be comparable to the
instrumental function of spectral devices.
The main objective of this work is to propose an al-
ternative parameter to electron density for calculating
the equilibrium plasma composition and to develop a
method for its determination. Specifically, the method
focuses on measuring the concentration of metal vapour
admixtures in the discharge gap using the absolute val-
ues of emission intensity.
1. DETERMINATION OF THE ATOMS'
CONCENTRATION BY THE METHOD
OF ABSOLUTE INTENSITIES
OF SPECTRAL LINES
The emission intensity (or emissivity) of a spectral
line should be considered as the energy emitted in 1 s in
1 m
3
within the contour of the spectral line [12]. Then
the total emissivity of the spectral line εL can be ex-
pressed by eq. (1):
,
4
L L ki k
Line
hc
d A n
, (1)
where ελ,L is the spectral distribution of the emissivity of
the spectral line; h is the Planck constant; c is the speed
of light; λ is the wavelength in the centre of the spectral
line; Aki is the probability of the electron transition from
the k
th
to the i
th
energy level (the Einstein coefficient for
spontaneous emission); nk is the concentration of emit-
ting particles or the population of the k
th
level.
Since the absolute values of the total emissivity of
the spectral line were determined, it is possible to calcu-
late the population of the k
th
energy level by eq. (2):
4
k L
ki
n
hcA
. (2)
According to the Boltzmann law:
k
B
E
k Tk
k
a
g
n ne
, (3)
where gk is the statistical weight of the k
th
energy level;
Σa is the partition function of atoms of the emitting ma-
mailto:murmantsev.aleksandr@gmail.com
140 ISSN 1562-6016. Problems of Atomic Science and Technology. 2023. № 4(146)
terial; Ek is the energy of the k
th
level; kB is the Boltz-
mann constant, and T is the excitation temperature. Tak-
ing into account eq. (3) in (1), the intensity dependence
on the temperature and on the concentration of atoms of
the emitting element n is defined by eq. (4):
4
k
B
E
k Tki k
L
a
A ghc
ne
. (4)
In case of a known oscillator strength fik, the transi-
tion probability Aki can be determined by eq. (5):
2 2
2
8 i
ki ik
ke
ge
A f
gm c
. (5)
The linearization of (4) leads to equation (6) of a
slope-intercept form y ax b :
ln ln
4
kL
ki k B a
E hc n
A g k T
, (6)
where ln L
ki k
y
A g
;
kx E ;
1
B
a
k T
; ln
4 a
hc n
b
.
Using the Boltzmann plot technique based on the in-
tensities of at least two spectral lines, the excitation
temperature T can be determined by eq. (7):
1
B
T
k a
. (7)
Obtaining the temperature parameter allows deter-
mining the partition function of atoms using eq. (8) due
to the latter dependence on the former:
m
B
E
k T
a m
m
g e
. (8)
Based on this, it is possible to calculate the concen-
tration of particles of the emitting element according to
eq. (9):
4b
ae
n
hc
. (9)
Thus, it is enough to determine the absolute values
of the spectral lines intensity to obtain the population of
energy levels and the atoms' concentration of an emit-
ting element.
2. DETERMINATION OF ABSOLUTE
VALUES OF THE EMISSION INTENSITY
OF SPECTRAL LINES
The intensity εL can be determined from the radiance
of spectral lines, which is obtained experimentally. The
radiance should be understood as the energy that passes
through a unit of area per unit of time within a unit solid
angle perpendicular to the selected plane.
For an isotropic, optically thin and homogeneous
plasma, the emissivity of the spectral line ελ,L depends
on its radiance IL as L LI d , where d is the width of
the emitting layer [12].
In the case of optically thin and inhomogeneous
plasma, but which is characterized by cylindrical sym-
metry (e.g. the plasma of the electric arc discharge), the
dependence takes the form:
0
1
2 2 2
1
r
r
I x dx
r
x r
, (10)
where ε(r) is the emission intensity at a distance r from
the axis of symmetry of the radiation source (radial dis-
tribution of the emissivity); r0 is the emission boundary;
I(x) is the radiance integrated along the line-of-sight at a
distance x from the centre of the radiation source (spa-
tial distribution of the radiance). An integral equation of
the type (10) is known as the Abel integral. Its numeri-
cal solution was proposed by Bockasten [13], which
makes it possible to determine the values of the emis-
sion intensity (local values) of spectral lines at known
values of their radiance (observed values).
Thus, to determine the absolute values of the intensi-
ty of spectral lines in the plasma of electric arc dis-
charges with cylindrical symmetry, it is necessary to
determine the absolute values of the radiance of these
spectral lines.
The observed radiance values obsI , obtained using
the spectral device, differ from the radiance values *I
of the emission that falls on the sensor (for example, a
CMOS matrix), as follows:
*
*
obsI
I t
, (11)
where t is the registration time (exposure of the CMOS
matrix), and *
is the spectral sensitivity of the sensor.
Fig. 1. Optical scheme of the experimental setup
for studying emission with spatial resolution
The issue of determining the absolute values of
emission intensity is reduced to determining the spectral
sensitivity of the used spectral device, which is calibrat-
ed in energy units (W∙m
2
/nm according to spectral radi-
ance units).
In order to solve this issue, a spectrograph based on
a diffraction grating with a period of 600 l/mm has been
used (Fig. 1). The lens O
1
was installed between the
radiation source S and the horizontally oriented entrance
slit ES of the spectrograph (slit height 20 μm) at a dou-
ble focus distance (F1 = 200 mm) from each. Thus, an
image was formed at the ES without magnification, and
the fulfillment of the Abbe sine condition [12] ensured
the equality of the emission intensity value directly from
the source and its image (radiation losses depend only
on the transmittance of the O1).
In turn, the ES is located in the focus F2 of the O2
collimator. A parallel beam of light formed by the lens
O2 and directed through the glass window G1 is reflect-
ed from the mirror M and enters the diffraction grating
D. The radiation that passes through the window G2 is
focused by the lens O3 to obtain an image S∗ on the sur-
face of the detector. In this work, the CMOS matrix
ISSN 1562-6016. Problems of Atomic Science and Technology. 2023. № 4(146) 141
(RGB Sensor) of the Nikon D7000 camera was used as
a light-sensitive element.
If the spectral radiance of the radiation source is de-
noted as Iλ, then with this configuration of the optical
scheme, the spectral radiance that gets to the sensor can
be expressed as:
*I I , (12)
where Ω is the solid angle at which the dispersing ele-
ment D is seen from the entrance slit ES; τ is the total
transmittance of the optical scheme, which includes the
transmittances of the lenses O1 and O3, the windows G1
and G2, the collimator O2 and all other possible losses.
Then, taking into account eq. (12) in (11), the equation
(13) can be obtained:
*
obsI
I
t
, (13)
where χλ is the spectral sensitivity of the proposed spec-
tral device:
*
obsI
I t
. (14)
The spectral radiance Iλ can be calculated theoreti-
cally and registered using a reference source of emis-
sion. A tungsten band-lamp of the СИ-8-300 [14] type
with an incandescent band has been used as a source of
reference emission. Taking into account the temperature
of tungsten, the spectral radiance emitted by band of
such a lamp, can be calculated as:
, , ,T T TI I B , (15)
where τλ is the transmittance of the lamp window, ελ,T is
the emissivity of tungsten as a real “gray body” at tem-
perature T, Bλ,T is the spectral radiance of a blackbody at
a true temperature T. According to Planck's law:
1
2
, 2 5
2
1B
hc
k T
T
W hc
B e
m nm
. (16)
Since the tungsten incandescent band is not a black-
body, the calibration of the reference lamp (usually by
the method of optical pyrometry) is carried out accord-
ing to its brightness temperature Tbr. The brightness
temperature of the body corresponds to the temperature
of the blackbody, at which its spectral radiance at a
wavelength of 650 nm is equal to the radiance of a body
with a true temperature at the same wavelength. The
true temperature T is related to the brightness tempera-
ture Tbr by eq. (17):
0ln
br
B br T
hcT
T
k T hc
(17)
or
1
4
0 0,
1
1.041 10 lg T
br
T
T
. (18)
In eq. (17) and (18) τ0 is the transmittance of the
lamp window at a wavelength of 650 nm, and ε0,T is the
emissivity of tungsten at the temperature T at the same
wavelength.
The calibration curve of the reference tungsten band-
lamp (the dependence of Tbr on the incandescent cur-
rent I) is shown in Fig. 2. In this work, the current was
21.7 A, which corresponds to the brightness temperature
of 2175 K. The temperature of tungsten, calculated from
eq. (18), is 2400 K. The spectral distributions of the
transmittance and emissivity of tungsten at a tempera-
ture of 2400 K are shown in Figs. 3 and 4, respectively.
8 10 12 14 16 18 20 22 24
1000
1200
1400
1600
1800
2000
2200
2400
T
e
m
p
e
ra
tu
re
,
K
I, A
Tbr, K
Fig. 2. Calibration curve of a reference tungsten lamp
with an incandescent band
300 400 500 600 700 800 900 1000 1100
0.0
0.2
0.4
0.6
0.8
1.0 B
% (2)
B
, nm
, a.u.
Fig. 3. Spectral distribution of the transmittance
of glass [14]
0 500 1000 1500 2000 2500 3000 3500
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
1
2
0
0
, nm
,T, a.u.
Fig. 4. Emissivity of tungsten at a temperature
of 2400 K [15]
Since an image sensor of the digital camera is used
as a detector, the obtained images of emission spectra
require additional processing. Namely, images obtained
in *. NEF format (without compression and digital pro-
cessing) with a resolution of 6036×4020 pixels and a
colour depth of 12 bits were linearized from the distri-
bution of tetrads of colour filters array (Bayer's filters)
to the distribution of pixels with RGB components.
142 ISSN 1562-6016. Problems of Atomic Science and Technology. 2023. № 4(146)
Then the RGB images were converted to grayscale for
their subsequent calibration both in wavelength and in
spatial coordinates.
The plasma emission spectrum of the electric arc
discharge between single-component copper and nickel
electrodes has been obtained and applied to calibrate the
spectral coordinate of the registration device (Fig. 5).
The choice of electrodes is due to the fact that the spec-
trum of copper is well studied, and the spectrum of
nickel contains a large number of spectral lines that can
be used as reference points for wavelength calibration.
Wavelength data for Cu I and Ni I spectral lines were
taken from the NIST database [16].
0 1000 2000 3000 4000
0
2000
4000
6000
8000
10000
12000
14000
16000
18000
C
u
I
5
1
5
.3
n
m
C
u
I
5
2
1
.8
n
m
Pixel number
Іobs, a.u.
C
u
I
5
1
0
.5
n
m
Fig. 5. Observed emission spectrum of arc discharge
plasma between Cu and Ni electrodes according
to pixel number
At the first iteration of the calibration of the spectral
dependence, the lines of copper Cu I 510.5, 515.3, and
521.8 nm have been identified and linear interpolation
of wavelength values has been performed. The depend-
ence of the wavelength on the pixel number obtained in
this way is not sufficiently accurate, since the dispersion
of the diffraction grating is non-linear. Therefore, in the
next iteration, the positions of all reference wavelengths
have been determined, the values of which were taken
from the NIST database (see Fig. 6). The calibration
curve has been obtained by interpolating the wave-
lengths by a second degree polynomial (see Fig. 7).
350 400 450 500 550 600 650 700
0
2000
4000
6000
8000
10000
12000
14000
16000
18000
D
X
, nm
Registered spectrum
Іobs
, a.u.
0
1000
2000
3000
4000 NIST data for Cu I
0
2000
4000
6000
8000
NIST data for Ni I
Fig. 6. Emission spectrum of arc discharge plasma be-
tween Cu and Ni electrodes with calibrated wavelength
0 1000 2000 3000 4000
300
350
400
450
500
550
600
650
700
750
Real wavelength
Calibration curve
W
a
v
e
le
n
g
th
,
n
m
Pixel number
, nm
Fig. 7. Resulting calibration curve
of the spectral registration device
300 350 400 450 500 550 600 650 700 750
0
20
40
60
80
100
120
140
160
180
b
(λ
,
T
)
, nm
Radiance of BB radiation
Radiance of tungsten radiation
I, , W/m2nm
Fig. 8. Emission spectrum of blackbody and tungsten
band of the reference lamp at a temperature of 2400 K
Fig. 9. RGB image of the tungsten band emission
of the reference lamp at a temperature
of 2400 K (exposure time 100 ms)
Fig. 10. Observed emission spectrum with spatial
resolution (radial coordinate is presented
in pixel numbers)
ISSN 1562-6016. Problems of Atomic Science and Technology. 2023. № 4(146) 143
The obtained values of the wavelength for each pixel
and the real radiation temperature were used to calculate
the spectral distribution of the radiance of the blackbody
emission Bλ,T and tungsten Iλ from eq. (16) and (15),
respectively (Fig. 8). The RGB image of the tungsten
band emission at a temperature of 2400 K registered
with an exposure of 100 ms is shown in Fig. 9. The ob-
served emission spectrum in grayscale with spatial reso-
lution is shown in Fig. 10. The observed spectrum in the
centre of the tungsten band is shown in Fig. 11. In order
to eliminate the noise caused by the fluctuations of the
CMOS matrix due to heating, the emission spectrum
was additionally smoothed as shown in Fig. 11.
300 350 400 450 500 550 600 650 700 750
0
5000
10000
15000
20000
25000
30000
35000
B
, nm
Registered spectrum
Smoothing curve
I, a.u.
Fig. 11. Emission spectrum observed in the centre
of the tungsten incandescent band
300 350 400 450 500 550 600 650 700 750
0
5000
10000
15000
20000
25000
χ
(λ
)
, nm
, m2nm/W
Fig. 12. Spectral sensitivity of the registration device
The spectral sensitivity of the proposed spectral de-
vice obtained according to eq. (14) is shown in Fig. 12.
It can be seen from the behavior of the spectral sen-
sitivity, that the use of this spectral device is correct in
the wavelength range of 430…650 nm. Since the spec-
tral sensitivity goes to zero outside this range, its use in
these regions of the spectrum is inexpedient.
3. DETERMINATION OF RADIAL
DISTRIBUTIONS OF TEMPERATURE
AND ATOMS' CONCENTRATION
An electric arc discharge burning in an argon flow
between single-component copper electrodes was used
to validate the method of determining the energy levels
population and the concentration of atoms in the plasma
of arc discharge from the absolute values of the emis-
sion intensity. The discharge was operated at an arc cur-
rent of 3.5 A, a discharge gap of 8 mm, an argon flow
rate of 7 LPM, an electrode diameter of 5 mm.
Fig. 13. RGB image of the plasma emission
(exposure time 2 ms)
Fig. 14. Space-resolved emission spectrum of plasma
(the spectral sensitivity of the device
is taken into account)
The plasma emission of such a discharge was regis-
tered by the optical scheme shown in Fig. 1. The regis-
tered RGB image of the spectral emission of plasma
with copper vapours admixtures is shown in Fig. 13.
This image has been converted in the grayscale and the
spectral sensitivity (see Fig. 12) has been taken into
account. The space-resolved emission spectrum of the
plasma obtained in such a way is shown in Fig. 14.
The boundaries of emission of spectral lines r0 were
determined according to the spatial coordinate for each
registered copper spectral line, namely 510.5, 515.3,
521.8, and 578.2 nm. The obtained space intervals were
separated into 9 equidistant segments. Thus, 10 spatial
points, each of which contained the spectral distribution
of radiance, was used for the further calculations. An
approximation of contours of the spectral lines by the
Gaussian function was used as it shown in Fig. 15 to
determine the radiance of the corresponding lines. Spa-
tial distributions of the radiance I(x) (Fig. 16) have been
obtained by repeating the procedure for each spatial
point and each Cu I spectral line. These distributions
were approximated by the Gaussian function to obtain a
smooth function, which was used to calculate the radial
distributions of the emission intensity of spectral lines
ε(r) according to eq. (10) by the Bockasten method [13]
(Fig. 17).
144 ISSN 1562-6016. Problems of Atomic Science and Technology. 2023. № 4(146)
510.0 510.5 511.0
0
50
100
150
200
250
300
350
S
p
e
c
tr
a
l
ra
d
ia
n
c
e
,
W
/m
2
/n
m
Experimental dots at r = 0 mm
Approximation by Gaussian
, nm
I, W/m2/nm
Model Gauss
Equation
y=y0 + (A/(w*sqrt(pi/2)))*exp(-2*((x-x
c)/w)^2)
Plot 3.96
y0 0 ± 0
xc 510.4903 ± 0.00227
w 0.13372 ± 0.00641
A 0.83272 ± 0.02706
Reduced Chi-Sqr 0.01922
R-Square (COD) 0.99278
Adj. R-Square 0.99117
Fig. 15. Typical approximation of the Cu I 510.5 nm
spectral line registered at the axis of the discharge
channel
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0
10
20
30
40
50
R
a
d
ia
n
c
e
,
W
/m
2
Cu I 510.5 nm
Cu I 515.3 nm
Cu I 521.8 nm
Cu I 578.2 nm
x, mm
I(x), W/m2
Fig. 16. Spatial distributions of radiance of copper
spectral lines and their approximation by Gaussian
function (dash lines)
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0
2000
4000
6000
8000
10000
12000
In
te
n
s
it
y
,
W
/m
2
/n
m
Cu I 510.5 nm
Cu I 515.3 nm
Cu I 521.8 nm
Cu I 578.2 nm
r, mm
(r), W/m3
Fig. 17. Radial distributions of emission intensity
of copper spectral lines
The obtained values of the emission intensity of
each spectral line were used to determine the radial dis-
tributions of population of the upper energy levels n(r)
corresponding to wavelength of the transition (Fig. 18)
by eq. (2).
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
1E13
1E14
1E15
1E16
1E17
1E18
1E19
1E20
r, mm
3d104p (Cu I 510.5 nm)
3d104d (Cu I 515.3 nm)
3d104d (Cu I 521.8 nm)
3d104p (Cu I 578.2 nm)
n(r), m-3
Fig. 18. Radial distributions of energy levels population
of copper atoms
3.5 4.0 4.5 5.0 5.5 6.0 6.5
24
26
28
30
32
510.5
515.3
521.8
578.2
ln(r3/gf)
r = 0 mm
r = 1.5 mm
r = 3.4 mm
0
E, eV
Fig. 19. Typical Boltzmann plots for different radial
points on the basis of the absolute intensities
of copper spectral lines
0.0 0.5 1.0 1.5 2.0 2.5 3.0
4000
4500
5000
5500
6000
4 lines
T
e
m
p
e
ra
tu
re
,
K
r, mm
T(r), K
Fig. 20. Radial distribution of excitation temperature
The Boltzmann plot technique on the basis of the ob-
tained absolute values of emission intensity of spectral
lines has been applied according to eq. (6). The typical
Boltzmann plot based on Cu I 510.5, 515.3, 521.8, and
578.2 nm spectral lines, constructed for different radial
points of plasma emission are shown in Fig. 19. Thus,
the radial distribution of the excitation temperature
(Fig. 20) has been obtained by eq. (7). In turn, the con-
centration of copper atoms was determined by eq. (9)
ISSN 1562-6016. Problems of Atomic Science and Technology. 2023. № 4(146) 145
using partition function obtained according to eq. (8) on
the basis of known radial distribution of the tempera-
ture. Additionally, the radial distributions of concentra-
tions were obtained on the basis of populations of cop-
per energy levels (see Fig. 18) by eq. (3).
The radial distributions of the concentrations ob-
tained in different ways are shown in Fig. 21. As one
can see, the distributions obtained from the population
of energy levels differ insignificantly from that one ob-
tained by Boltzmann plot technique. The error bars for
the last one were constructed assuming that the accuracy
of the method is not less than 80%. One can see that
such an assuming is correct for a distance from the axis
of the arc up to 2 mm.
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
1E20
1E21
C
o
n
c
e
n
tr
a
ti
o
n
s
,
m
-3
r, mm
Cu I 510.5 nm
Cu I 515.3 nm
Cu I 521.8 nm
Cu I 578.2 nm
Boltzmann plot
n(r), m-3
Fig. 21. Radial distributions of concentrations obtained
by Boltzmann plot technique (shown with error bars)
and from energy levels population of copper atoms
CONCLUSIONS
The alternative parameter to electron density for fur-
ther calculation of the equilibrium plasma composition
and the technique for its measuring have been proposed
and described. Namely, the method for determining the
atoms' concentration of metal vapours admixtures in the
discharge gap from the absolute values of emission in-
tensities has been considered. Additionally, a spectral
device based on a spectrograph with a diffraction grat-
ing and a RGB CMOS matrix as a registration device
has been applied to realize such a technique. The copper
atoms' concentration has been determined in the plasma
of electric arc discharge between single-component
copper electrodes in the argon flow by Boltzmann plots
technique based on the four spectral lines of Cu I and
the determined excitation temperature. Moreover, the
concentrations have been calculated from the population
of copper's energy levels, determined directly from the
absolute values of the emission intensity of these Cu I
spectral lines. The results obtained by these two meth-
ods coincide within 20%, which gives grounds for rec-
ommending such a technique for plasma diagnostics of
electric arc discharges.
ACKNOWLEDGEMENT
This work has been carried out within the framework
of the EUROfusion Consortium, funded by the European
Union via the Euratom Research and Training Pro-
gramme (Grant Agreement 101052200-EUROfusion).
Views and opinions expressed are however those of the
author(s) only and do not necessarily reflect those of the
European Union or the European Commission. Neither
the European Union nor the European Commission can
be held responsible for them.
Moreover, the author considers it an honour to ex-
press his gratitude to Prof. A. Veklich for supervising
and reviewing the work, to V. Boretskij, M. Kleshych,
S. Fesenko, and V. Telega for assistance in conducting
the experiment and obtaining the results.
REFERENCES
1. A.B. Murphy. A Perspective on Arc Welding Re-
search: The Importance of the Arc, Unresolved
Questions and Future Directions // Plasma Chemis-
try and Plasma Processing. 2015, v. 35, p. 471-489.
https://doi.org/10.1007/s11090-015-9620-2.
2. A.B. Murphy. The effects of metal vapour in arc
welding // Journal of Physics D: Applied Physics.
2010, v. 43(43), p. 43401.
https://doi.org/10.1088/0022-3727/43/43/434001.
3. B. Heider, M. Oechsner, U. Reisgen, J. Ellermeier,
T. Engler, G. Andersohn, R. Sharma, E. Gonzalez
Olivares, E. Zokoll. Corrosion Resistance and Mi-
crostructure of Welded Duplex Stainless Steel Sur-
face Layers on Gray Cast Iron // Journal of Thermal
Spray Technology. 2020, v. 29, p. 825-842.
https://doi.org/10.1007/s11666-020-01003-y.
4. M. Yan. Micro-beam plasma-arc surface processing
for ferrous and nonferrous metals // Journal of Ma-
terials Science. 2003, v. 38, p. 3219-3222.
https://doi.org/ 10.1023/A:1025169517526.
5. F. Darvish, N.M. Sarkari, M. Khani, E. Eslami,
B. Shokri, M. Mohseni, M. Ebrahimi, M. Alizadehg,
Ch. Fu Dee. Direct Plasma Treatment Approach
Based on Non-Thermal Gliding Arc for Surface
Modification of Biaxially-Oriented Polypropylene
with Post-Exposure Hydrophilicity Improvement
and Minus Aging Effects // Applied Surface Science.
2020, v. 509, p. 144815.
https://doi.org/10.1016/j.apsusc.2019.144815.
6. S. Zeng, M. Xiao, X. Liu, Y. Wu, K. Li, Zh. Qiu,
D. Zeng. Effects of Process Parameters on Morphol-
ogies of Titanium Carbide Powder by Thermal
Plasma Treatment // Materials Research Express.
2020, v. 6(12), p. 1265h5.
https://doi.org/10.1088/2053-1591/ab5ddb.
7. S. Samal. Thermal Plasma Technology: The Pro-
spective Future in Material Processing // Journal of
Cleaner Production. 2017, v. 142(4), p. 3131-3150.
https://doi.org/10.1016/j.jclepro.2016.10.154.
8. P.G. Slade. Electrical contacts, principles and appli-
cations [Second edition]. CRC Press. 2014, 1312 p.
9. O.O. Murmantsev, A.M. Veklich, V.F. Boretskij,
M.M. Kleshych, S.O. Fesenko, G.I. Levada1. Spec-
troscopy of Thermal Plasma of Electric Arc Dis-
charge Between Melting Electrodes // Bulletin of
Shevchenko National University of Kyiv. Physics
and Mathematics. 2018, v. 2, p. 83-88.
10. A. Murmantsev, A. Veklich, V. Boretskij,
M. Bartlová, L. Dostál, J. Píška, D. Šimek,
A. Gajdos, O. Tolochyn. Composite Cu-Cr materials
https://doi.org/10.1007/s11090-015-9620-2
https://doi.org/10.1088/0022-3727/43/43/434001
https://doi.org/10.1007/s11666-020-01003-y
https://doi.org/%2010.1023/A:1025169517526
https://doi.org/10.1016/j.apsusc.2019.144815
https://doi.org/10.1088/2053-1591/ab5ddb
https://doi.org/10.1016/j.jclepro.2016.10.154
146 ISSN 1562-6016. Problems of Atomic Science and Technology. 2023. № 4(146)
under thermal action of electric arc discharge plasma
// Problems of Atomic Science and Technology.
2021, № 1(131), p. 98-101.
https://doi.org/10.46813/2021-131-098.
11. R. Konjevic, N. Konjevic. Stark broadening and
shift of neutral copper spectral lines // Physica.
1986, v. 18(4), p. 327-335.
12. W. Lochte-Holtgreven. Plasma Diagnostics. Am-
sterdam: North-Holland Publishing Company. 1968,
928 p.
13. K. Bockasten. Transformation of Observed Radianc-
es into Radial Distribution of the Emission of a
Plasma // Journal of the Optical Society of America.
1961, v. 51(9), p. 943-947.
14. T. Tmenova, A. Veklich, V. Boretskij. Calibration of
spectral response of the SDH-IV spectrometer // Bul-
letin of the Taras Shevchenko National University of
Kyiv. Radiophysics and Electronics. 2016, v. 24(1),
p. 54-60.
15. J.C. De Vos. A new determination of the emissivity
of tungsten ribbon // Physica. 1954, v. 20(7-12),
p. 690-712.
https://doi.org/10.1016/S0031-8914(54)80182-0.
16. A. Kramida. NIST Atomic Spectra Database (ver.
5.8) [Online]. Ralchenko Yu, Reader J and NIST
ASD Team // National Institute of Standards and
Technology. 2021. Available:
https://physics.nist.gov/asd.
Article received 15.07.2023
ДОСЛІДЖЕННЯ ПРОСТОРОВОГО РОЗПОДІЛУ ДОМІШОК ПАРІВ МЕТАЛІВ У ПЛАЗМІ
ЕЛЕКТРОДУГОВОГО РОЗРЯДУ
О. Мурманцев
Робота присвячена діагностиці плазми електродугового розряду в потоці аргону методами оптичної емі-
сійної спектроскопії. Описано та апробовано метод визначення заселеності енергетичних рівнів та концент-
рації атомів металу із абсолютних значень інтенсивності випромінювання спектральних ліній. Дослідження
проводили з використанням спектрографа та RGB CMOS матриці як пристрою реєстрації випромінювання.
Отримано абсолютні значення спектральної яскравості ліній Cu I, та з урахуванням осьової симетрії елект-
родугового розряду визначено їх локальну інтенсивність випромінювання. Із залученням абсолютних зна-
чень інтенсивності випромінювання та радіального розподілу температури заселення, визначеної методом
діаграм Больцмана, отримано радіальні розподіли концентрацій атомів міді. Розглянуто два методи розраху-
нку концентрації атомів. А саме, розрахунок із діаграми Больцмана на основі чотирьох спектральних ліній
Cu I та визначеної температури заселення. З іншого боку, концентрацію отримано із заселення енергетичних
рівнів міді, визначених безпосередньо із абсолютних значень інтенсивності випромінювання цих спектраль-
них ліній Cu I. Результати, отримані цими двома методами, збігаються в межах 20%, що дає підстави реко-
мендувати дану методику для діагностики плазми електродугових розрядів.
https://doi.org/10.46813/2021-131-098
https://doi.org/10.1016/S0031-8914(54)80182-0
https://physics.nist.gov/asd.
|