Mean value properties for eigenfunctions of the Laplacian on symmetric spaces

Saved in:
Bibliographic Details
Date:2008
Main Authors: Volchkov, V.V., Volchkov, Vit.V.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2008
Series:Труды Института прикладной математики и механики НАН Украины
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/20006
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Mean value properties for eigenfunctions of the Laplacian on symmetric spaces / V.V. Volchkov, Vit.V. Volchkov // Труды Института прикладной математики и механики НАН Украины. — Донецьк: ІПММ НАН України, 2008. — Т. 17. — С. 31-35. — Бібліогр.: 8 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-20006
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-200062025-02-09T16:57:26Z Mean value properties for eigenfunctions of the Laplacian on symmetric spaces Volchkov, V.V. Volchkov, Vit.V. 2008 Article Mean value properties for eigenfunctions of the Laplacian on symmetric spaces / V.V. Volchkov, Vit.V. Volchkov // Труды Института прикладной математики и механики НАН Украины. — Донецьк: ІПММ НАН України, 2008. — Т. 17. — С. 31-35. — Бібліогр.: 8 назв. — англ. 1683-4720 https://nasplib.isofts.kiev.ua/handle/123456789/20006 517.5 en Труды Института прикладной математики и механики НАН Украины application/pdf Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
format Article
author Volchkov, V.V.
Volchkov, Vit.V.
spellingShingle Volchkov, V.V.
Volchkov, Vit.V.
Mean value properties for eigenfunctions of the Laplacian on symmetric spaces
Труды Института прикладной математики и механики НАН Украины
author_facet Volchkov, V.V.
Volchkov, Vit.V.
author_sort Volchkov, V.V.
title Mean value properties for eigenfunctions of the Laplacian on symmetric spaces
title_short Mean value properties for eigenfunctions of the Laplacian on symmetric spaces
title_full Mean value properties for eigenfunctions of the Laplacian on symmetric spaces
title_fullStr Mean value properties for eigenfunctions of the Laplacian on symmetric spaces
title_full_unstemmed Mean value properties for eigenfunctions of the Laplacian on symmetric spaces
title_sort mean value properties for eigenfunctions of the laplacian on symmetric spaces
publisher Інститут прикладної математики і механіки НАН України
publishDate 2008
url https://nasplib.isofts.kiev.ua/handle/123456789/20006
citation_txt Mean value properties for eigenfunctions of the Laplacian on symmetric spaces / V.V. Volchkov, Vit.V. Volchkov // Труды Института прикладной математики и механики НАН Украины. — Донецьк: ІПММ НАН України, 2008. — Т. 17. — С. 31-35. — Бібліогр.: 8 назв. — англ.
series Труды Института прикладной математики и механики НАН Украины
work_keys_str_mv AT volchkovvv meanvaluepropertiesforeigenfunctionsofthelaplacianonsymmetricspaces
AT volchkovvitv meanvaluepropertiesforeigenfunctionsofthelaplacianonsymmetricspaces
first_indexed 2025-11-28T06:05:01Z
last_indexed 2025-11-28T06:05:01Z
_version_ 1850013049162825728
fulltext ISSN 1683-4720 Труды ИПММ НАН Украины. 2008. Том 17 UDK 517.5 c©2008. V.V. Volchkov, Vit.V. Volchkov MEAN VALUE PROPERTIES FOR EIGENFUNCTIONS OF THE LAPLACIAN ON SYMMETRIC SPACES Let X = G/K be a symmetric space of the noncompact type with complex group G, L the Laplace- Beltrami operator on X. It is proved that eigenfunctions of L are characterized by vanishing of integrals over all balls in X with special radii. A well-known theorem on ball means for the Helmholtz equation asserts that a function f ∈ C(Rn) is a solution of the equation ∆u + λ2u = 0 if and only if for all x ∈ Rn and r > 0 ∫ |u|6r f(x + u)du = ( 2πr λ )n/2 Jn/2(λr)f(x), where Jk is the kth-order Bessel function of the first kind. In particular, this implies that every solution of the equation ∆u + u = 0 has zero integrals over all balls in Rn with radii belonging to the zero set of Jn/2. In [1] (also see [2], Part II, Theorem 1.12), the first author proved the following. Theorem A. Let f ∈ L1,loc(Rn), n > 2, and let {νk}∞k=1 be the sequence of all positive zeros of the function Jn/2. Then the integrals of f over all balls in Rn with radii ν1, ν2, . . . are equal to zero if and only if ∆f + f = 0 (here the equality is understood in the sense of distributions). Analogues of Theorem A for rank one symmetric spaces were established by V.V.Vol- chkov in [3]. These results enabled him to get a description of the Pompeiu sets in terms of approximations of their indicator functions by linear combinations of indicator functions of balls with special radii in L1 (see [1–3]). The purpose of this paper is to obtain an analogue of Theorem A for symmetric spaces of arbitrary rank. As regards basic notions and facts from the theory of symmetric spaces, see [4]–[6]. Let X = G/K be a symmetric space of the noncompact type, G being a connected semisimple Lie group with finite center and K a maximal compact subgroup. Let o = {K} be the origin in X and denote the action of G on X by (g, x) → gx for g ∈ G, x ∈ X. The Lie algebras of G and K are respectively denoted by g and k. The adjoint representations of g and G are respectively denoted by ad and Ad. Let 〈 , 〉 be the Killing form of gC, the complexification of g. The form 〈 , 〉 induces a G-invariant Riemannian structure on X with the corresponding distance function d(·, ·) and the Riemannian measure dx. For R > 0, y ∈ X we set BR(y) = {x ∈ X : d(x, y) < R}, BR = BR(o). 31 V.V. Volchkov, Vit.V. Volchkov Let L1(X) and L1,loc(X) be the classes of complex-valued functions on X that are dx- integrable and locally integrable, respectively. The Laplace-Beltrami operator on X is denoted by L. Let p be the orthogonal complement of k in g with respect to 〈 , 〉 and let a ⊂ p be any maximal abelian subspace (all such subspaces have the same dimension). The dimension of a is called the real rank of G and the rank of the space X. We shall write rankX = dim a. Let a∗ be the dual of a, a∗C and aC their respective complexifications. Next, let Aλ ∈ aC be determined by 〈H,Aλ〉 = λ(H) (H ∈ a) and put 〈λ, µ〉 = 〈Aλ, Aµ〉, λ, µ ∈ a∗C. For λ ∈ a∗ put |λ| = 〈λ, λ〉1/2, gλ = {U ∈ g : [H, U ] = λ(H)U for all H ∈ a}, where [·, ·] is the bracket operation in g. If λ 6= 0 and gλ 6= {0} then λ is called a (restricted) root and mλ = dim gλ is called its multiplicity. The spaces gλ are called root subspaces. The set of restricted roots will be denoted by Σ. A point H ∈ a is called regular if λ(H) 6= 0 for all λ ∈ Σ. The subset a′ ⊂ a of regular elements consists of the complement of finitely many hyperplanes, and its components are called Weyl chambers. Fix a Weyl chamber a+ ⊂ a. We call a root positive if it is positive on a+. Let Σ+ denote be the set of positive roots; for α ∈ Σ+ we will also use the notation α > 0 and put ρ = 1 2 ∑ α>0 mαα. Let exp be the exponential mapping of g into G. As usual we set ExpP = (expP ) K ∈ X for each P ∈ p. Denote by J the corresponding Jacobian, i.e., ∫ X f(x)dx = ∫ p f(ExpP )J(P )dP, f ∈ L1(X). Define dµ(x) = (J(Exp−1x))−1/2dx. Let D′(X) (resp. E ′(X)) be the space of distributions (resp. distributions of compact support) on X, E ′\(X) the space of K-invariant compactly supported distributions on X, T̃ the spherical transform of a distribution T ∈ E ′\(X). As in [7], denote by E ′\\(X) the set of all distributions T ∈ E ′\(X) with the following property: T ∈ E ′\\(X) if and only if there exists a function ◦ T : [0,+∞) → C such that T̃ (λ) = ◦ T (|λ|) 32 Mean value properties for eigenfunctions of the Laplacian on symmetric spaces for all λ ∈ a∗. It can be shown that for each T ∈ E ′\\(X) the function ◦ T admits extension to C so that ◦ T becomes an even entire function. For each T ∈ E ′\\(X) we set Z( ◦ T ) = {ζ ∈ C : ◦ T (ζ) = 0}. From the Paley-Wiener theorem for the spherical transform (see [5, Chap.4, Theo- rem 7.1]) it follows that the class E ′\\(X) is broad enough. We point out that E ′\\(X) = E ′\(X) provided rankX = 1. Let × denotes the convolution on X. We recall that if f ∈ D′(X) and T ∈ E ′(X) then 〈f × T, u〉 = 〈 T (g2K), 〈 f(g1K), ∫ K u(g1kg2K)dk 〉〉 , u ∈ D(X), (1) where D(X) is the space of complex-valued C∞-functions of compact support on X. The following characterizations of the class E ′\\(X) were proved in [7], [8]. Theorem B. If T ∈ E ′\(X) then the following assertions are equivalent. (i) T ∈ E ′\\(X). (ii) For each λ ∈ a∗ every solution f ∈ C∞(X) of the equation Lf = − (|λ|2 + |ρ|2) f satisfies the equality f × T = T̃ (λ)f. Theorem C. Let X = G/K be a symmetric space of the noncompact type with complex group G, and let T ∈ (E ′\∩L1)(X). Then the following assertions are equivalent. (i) T has the form T (x) = (J(Exp−1x))−1/2u(d(o, x)), x ∈ X, for some function u : [0, +∞) → C. (ii) T ∈ E ′\\(X). The main result of this paper is as follows. Theorem 1. Let X = G/K be a symmetric space of the noncompact type with complex group G. Let {λq}∞q=1 be the sequence of all positive zeros of Jl/2, where l = 1 2dimX, and let c > 0. Assume that f ∈ L1,loc(X) and rq = λq/c, q = 1, 2, . . .. Then the following items are equivalent. (i) f satisfies the equation (L + |ρ|2 + c2)f = 0. 33 V.V. Volchkov, Vit.V. Volchkov (ii) For all g ∈ G, q ∈ N, ∫ Brq f(gx)dµ(x) = 0. (2) Proof. Let g ∈ G and let χq be the characteristic function of the ball Brq . Then χq(g−1o) = χq(go). (3) Using Lemma 4.4 and Propositions 4.8 and 4.10 from [5, Chap. 4], one infers that J−1/2(Exp−1(go))ψλ(Exp−1(go)) = J−1/2(Exp−1(g−1o))ψ−λ(Exp−1(g−1o)), where ψλ(P ) = ∫ K ei〈Aλ,Ad(k)P 〉dk, P ∈ p. Hence J−1/2(Exp−1(go)) = J−1/2(Exp−1(g−1o)). (4) In view of (3), (4) and (1) relation (2) can be written as f × Tq = 0, (5) where Tq(x) = J−1/2(Exp−1x)χq(x), x ∈ X. The proof of Theorem С (see [7], [8]) shows that Tq ∈ E ′\\(X) and T̃q(λ) = γqIl/2(rq √ 〈λ, λ〉), λ ∈ a∗C, where Il/2(z) = Jl/2(z)z−l/2 and the constant γq is independent of λ (see [2], Part I, Example 6.1). This together with Theorem B gives the implication (i)→(ii). Let us prove that (ii)→(i). Define now Tq ∈ E ′\\(X) by the relation T̃q(λ) = (〈λ, λ〉 − c2)−1Il/2 ( rq √ 〈λ, λ〉), λ ∈ a∗C, q ∈ N. One therefore has ⋂∞ q=1Z ( ◦ T q ) = ∅ (see [2], Part II, Lemma 1.29). In addition, equality ((L + |ρ|2 + c2)Tq )̃ (λ) = (c2 − 〈λ, λ〉)T̃q(λ) and the argument in the proof of the implication (i)→(ii) show that (ii) can be brought to the form ((L + |ρ|2 + c2)f)× Tq = 0 for all q. Appealing now to [7, Theorem 4.12] we arrive at the desired statement. ¤ 1. Волчков В.В. Новые теоремы о среднем для решений уравнения Гельмгольца // Мат. сборник. – 1993. – Т.184. – №7. – С.71–78. 2. Volchkov V.V. Integral Geometry and Convolution Equations. – Dordrecht: Kluwer Academic Publi- shers, 2003. – 454pp. 34 Mean value properties for eigenfunctions of the Laplacian on symmetric spaces 3. Волчков В.В. Теоремы о шаровых средних на симметрических пространствах // Мат. сборник. – 2001. – Т.192. – №9. – С.17–38. 4. Helgason S. Differential Geometry, Lie Groups, and Symmetric Spaces. – New York: Academic Press, 1978. – 633p. 5. Helgason S. Groups and Geometric Analysis. – New York: Academic Press, 1984. – 735p. 6. Helgason S. Geometric Analysis on Symmetric spaces. – Rhode Island: Amer. Math. Soc., Providence, 1994. – 611p. 7. Volchkov V.V., Volchkov Vit.V. Convolution equations and the local Pompeiu property on symmetric spaces and on phase space associated to the Heisenberg group // J. Analyse Math. – 2008. – Vol.105. – P.43–124. 8. Volchkov V.V., Volchkov Vit.V., Zaraisky, D.A. The class E ′\\(X) in the theory of convolution equations // Труды ИПММ НАН Украины. – 2007. – вып.14. – С.52–55. Donetsk National University volchkov@univ.donetsk.ua Received 10.10.08 35 содержание Том 17 Донецк, 2008 Основан в 1997г.