Технологія збільшення роздільної здатності мігрованих сейсмічних даних на основі використання нейронних мереж

Розроблено і програмно реалізовано математичну модель машинного навчання на базі нейронної мережі архітектури U-net для збільшення роздільної здатності та збільшення значення сигнал/завада для полів сейсмічної зйомки 2D і 3D досліджень із застосуванням синтетичного набору тренувальних даних. Описано...

Full description

Saved in:
Bibliographic Details
Published in:Доповіді НАН України
Date:2024
Main Author: Носков, О.В.
Format: Article
Language:Ukrainian
Published: Видавничий дім "Академперіодика" НАН України 2024
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/202319
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Технологія збільшення роздільної здатності мігрованих сейсмічних даних на основі використання нейронних мереж / О.В. Носков // Доповіді Національної академії наук України. — 2024. — № 3. — С. 11-17. — Бібліогр.: 12 назв. — укр.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:Розроблено і програмно реалізовано математичну модель машинного навчання на базі нейронної мережі архітектури U-net для збільшення роздільної здатності та збільшення значення сигнал/завада для полів сейсмічної зйомки 2D і 3D досліджень із застосуванням синтетичного набору тренувальних даних. Описано будову моделі, наведено метрики якості тренування/валідації. Побудовано алгоритм для підготовки мігрованих сейсмічних даних у стандартному форматі SEGY для опрацювання за допомогою моделі і зворотною конвертацією у вхідний формат. The paper contains description of a U-net architecture-based machine learning model created for seismic resolution enhancement and noise reduction. The presentation includes a brief explanation of the choice of publicly available synthetic data for training and verification purposes. Apart from architecture blocks description, the author describes variations of the loss functions used as metrics to verify the model’s performance.
ISSN:1025-6415