Вывод интегро-дифференциального уравнения Клеро по методу Пицетти
Совместное решение функционального (критериального) уравнения Пицетти (25) и уравнения предполагаемой фигуры равновесия вращающейся гравитирующей жидкой массы (29) приводит к системе нескольких совокупных дифференциальных уравнений. Показано, что применительно к гипотезе Клеро о фигуре Земли как элл...
Збережено в:
| Опубліковано в: : | Кинематика и физика небесных тел |
|---|---|
| Дата: | 1990 |
| Автор: | |
| Формат: | Стаття |
| Мова: | Russian |
| Опубліковано: |
Головна астрономічна обсерваторія НАН України
1990
|
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/206232 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Вывод интегро-дифференциального уравнения Клеро по методу Пицетти / В.А. Олевский // Кинематика и физика небесных тел. — 1990. — Т. 6, № 6. — С. 73-78. — Бібліогр.: 9 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | Совместное решение функционального (критериального) уравнения Пицетти (25) и уравнения предполагаемой фигуры равновесия вращающейся гравитирующей жидкой массы (29) приводит к системе нескольких совокупных дифференциальных уравнений. Показано, что применительно к гипотезе Клеро о фигуре Земли как эллипсоиде вращения метод Пицетти дает семейство из четырех уравнений (33), одно из которых — знаменитое интегро-дифференциальное уравнение Клеро (1). Решение его приведено в [7].
Combined solution of the functional Pizzetti equation (25) and the equation of the supposed equilibrium figure of the rotating graviti-zing liquid mass (29) leads to a system of several differential equations. It is shown that the Pizzetti method as applied to the Clairaut hypothesis on the Earth’s figure as an ellipsoid of rotation presents a family of four equations (33) one of which is the well-known Clairaut integro-differential equation (1). Its solution is given in [7].
|
|---|---|
| ISSN: | 0233-7665 |