Інтегральні рівняння плоских задач термомеханіки біматеріальних тіл із неідеальним контактом складових із матеріалів зі зв’язаними полями

Запропоновано матрично-векторний підхід на основі узагальненого формалізму Стро для математичного моделювання плоских задач термомеханіки в біматеріальних тілах. На основі останнього побудовано інтегральні формули та рівняння для моделювання біматеріальних тіл, виготовлених із матеріалів зі зв’язани...

Full description

Saved in:
Bibliographic Details
Date:2025
Main Authors: Пастернак, В.В., Сулим, Г.Т.
Format: Article
Language:Ukrainian
Published: Видавничий дім "Академперіодика" НАН України 2025
Series:Доповіді НАН України
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/206534
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Інтегральні рівняння плоских задач термомеханіки біматеріальних тіл із неідеальним контактом складових із матеріалів зі зв’язаними полями / В.В. Пастернак, Г.Т. Сулим // Доповіді Національної академії наук України. — 2025. — № 3. — С. 33-47. — Бібліогр.: 14 назв. — укр.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:Запропоновано матрично-векторний підхід на основі узагальненого формалізму Стро для математичного моделювання плоских задач термомеханіки в біматеріальних тілах. На основі останнього побудовано інтегральні формули та рівняння для моделювання біматеріальних тіл, виготовлених із матеріалів зі зв’язаними фізичними полями (піроелектриків, термомагнітоелектропружних тіл та термопружних квазікристалів). Окрему увагу приділено врахуванню впливу неідеального контакту на внутрішній межі поділу матеріалів. Отримані інтегральні формули та рівняння для опису стану двокомпонентних тіл із матеріалів зі зв’язаними полями автоматично враховують характерний тип неідеального теплового та магніто-електро-механічного контакту на міжфазній поверхні та не містять невластивих інтегралів уздовж останньої. Це дає можливість як аналітичного вивчення розглянутих кусково-однорідних тіл, так і зменшення за потреби кількості ступенів вільності дискретизованої задачі за збереження належної точності при їхньому числовому розв’язуванні.