О выборе начального приближения в итерационных алгоритмах решения уравнения X − AᵀX⁻¹A = Q

Розглянуто алгоритм розв’язання матричного рівняння. У цьому алгоритмі початкове наближення будується за допомогою лінійних матричних нерівностей. Для уточнення отриманого наближення використовується процедура Ньютона. На прикладах показано ефективність алгоритму і у випадках, коли власні значення м...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Проблемы управления и информатики
Дата:2011
Автор: Ларин, В.Б.
Формат: Стаття
Мова:Russian
Опубліковано: Інститут кібернетики ім. В.М. Глушкова НАН України 2011
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/207280
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:О выборе начального приближения в итерационных алгоритмах решения уравнения X − AᵀX⁻¹A = Q / В.Б. Ларин // Проблемы управления и информатики. — 2011. — № 1. — С. 81–86. — Бібліогр.: 22 назви. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Розглянуто алгоритм розв’язання матричного рівняння. У цьому алгоритмі початкове наближення будується за допомогою лінійних матричних нерівностей. Для уточнення отриманого наближення використовується процедура Ньютона. На прикладах показано ефективність алгоритму і у випадках, коли власні значення матричного пучка, асоційованого з цим рівнянням, лежать на колі одиничного радіуса, тобто коли використання традиційних алгоритмів є проблематичним. The algorithm of solution of the matrix equation is considered. In this algorithm, the starting value is constructed by use of the linear matrix inequalities. For improving the received starting value, the Newton procedure is used. On the example, the efficiency of the algorithm is shown also in cases when eigenvalues of the matrix pencil associated with this equation lay on the unit circle. Using in these cases the traditional algorithms is problematic.
ISSN:0572-2691