Численный метод интегрирования решения стохастического дифференциального уравнения на основе дифференциальных преобразований
Запропоновано метод розробки обчислювальної схеми інтегрування системи звичайних диференціальних рівнянь, що описує середнє значення та дисперсію випадкового процесу, який задано стохастичним диференціальним рівнянням у формі рівняння Ланжевена. Права частина цих рівнянь задовольняє умови гладкості,...
Saved in:
| Published in: | Проблемы управления и информатики |
|---|---|
| Date: | 2013 |
| Main Author: | |
| Format: | Article |
| Language: | Russian |
| Published: |
Інститут кібернетики ім. В.М. Глушкова НАН України
2013
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/207673 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Численный метод интегрирования решения стохастического дифференциального уравнения на основе дифференциальных преобразований / М.Ю. Ракушев // Проблемы управления и информатики. — 2013. — № 6. — С. 68-78. — Бібліогр.: 9 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Summary: | Запропоновано метод розробки обчислювальної схеми інтегрування системи звичайних диференціальних рівнянь, що описує середнє значення та дисперсію випадкового процесу, який задано стохастичним диференціальним рівнянням у формі рівняння Ланжевена. Права частина цих рівнянь задовольняє умови гладкості, які дають змогу визначати похідні за отримуваним розв’язком до другого порядку включно. Метод засновано на диференціальних перетвореннях.
It is proposed a method of developing computational scheme for integrating the system of ordinary differential equations describing the mean and variance of the random process defined by a stochastic differential equation in the form of the Langevin equation, the right-hand side of which satisfies the smoothness conditions allowing to define derivatives to obtain the solution of the second order. The method is based on the differential transformations.
|
|---|---|
| ISSN: | 0572-2691 |