Гибридный алгоритм идентификации модели Гаммерштейна, линейной по состояниям

Запропоновано гібридний алгоритм ідентифікації нелінійної динамічної моделі Гаммерштейна, в якій статична нелінійність моделюється нейронною мережею радіальних базисних функцій (НМРБФ), а лінійна динамічна частина — моделлю простору станів. Алгоритм використовує оптимізацію рою частинок (ОРЧ) для оц...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2014
Автори: Гаращенко, Ф.Г., Мороз, О.Г.
Формат: Стаття
Мова:Russian
Опубліковано: Інститут кібернетики ім. В.М. Глушкова НАН України 2014
Назва видання:Проблемы управления и информатики
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/207710
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Гибридный алгоритм идентификации модели Гаммерштейна, линейной по состояниям / Ф.Г. Гаращенко, О.Г. Мороз // Проблемы управления и информатики. — 2014. — № 1. — С. 32-41. — Бібліогр.: 23 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Запропоновано гібридний алгоритм ідентифікації нелінійної динамічної моделі Гаммерштейна, в якій статична нелінійність моделюється нейронною мережею радіальних базисних функцій (НМРБФ), а лінійна динамічна частина — моделлю простору станів. Алгоритм використовує оптимізацію рою частинок (ОРЧ) для оцінки параметрів НМРБФ та ідентифікацію підпростору (ІП) для оцінки параметрів лінійної частини. Чисельний приклад демонструє ефективність запропонованого алгоритму ОРЧ/IП.