Многокритериальная оптимизация эволюционирующих сетей прямого распространения
Запропоновано використання багатокритерійного підходу до навчання нейронних мереж прямого розповсюдження, що еволюціонують. Розглянуто загальну структуру таких мереж. Проведено порівняльний аналіз одноцільового, скаляризованого багатокритерійного навчання та багатокритерійного навчання за Парето. Ім...
Gespeichert in:
| Veröffentlicht in: | Проблемы управления и информатики |
|---|---|
| Datum: | 2014 |
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | Russian |
| Veröffentlicht: |
Інститут кібернетики ім. В.М. Глушкова НАН України
2014
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/207858 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Многокритериальная оптимизация эволюционирующих сетей прямого распространения / О.Г. Руденко, А.А. Бессонов // Проблемы управления и информатики. — 2014. — № 6. — С. 29-41. — Бібліогр.: 26 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Zusammenfassung: | Запропоновано використання багатокритерійного підходу до навчання нейронних мереж прямого розповсюдження, що еволюціонують. Розглянуто загальну структуру таких мереж. Проведено порівняльний аналіз одноцільового, скаляризованого багатокритерійного навчання та багатокритерійного навчання за Парето. Імітаційне моделювання за наявністю завад вимірювань з різними законами розподілу підтвердило ефективність запропонованого підходу.
It is proposed to utilize multicriteria approach to training evolutionary feedforward neural networks. The general structure of such neural networks is considered. A comparative analysis of single-objective, scalarized multiobjective learning and Paretobased multiobjective learning is performed. Simulation with the presence of noisy measurements with different distribution laws has confirmed the effectiveness of the suggested approach.
|
|---|---|
| ISSN: | 0572-2691 |