Иерархический информационно-экстремальный алгоритм обучения системы диагностирования с избыточной обучающей матрицей
Розглядається інформаційний синтез системи підтримки прийняття рішень для діагностування патологічних процесів у рамках інформаційно-екстремальної інтелектуальної технології, заснованої на максимізації інформаційної спроможності системи в процесі її навчання. Досліджено вплив способу формування навч...
Saved in:
| Published in: | Проблемы управления и информатики |
|---|---|
| Date: | 2015 |
| Main Authors: | , , |
| Format: | Article |
| Language: | Russian |
| Published: |
Інститут кібернетики ім. В.М. Глушкова НАН України
2015
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/207898 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Иерархический информационно-экстремальный алгоритм обучения системы диагностирования с избыточной обучающей матрицей / А.С. Довбыш, А.А. Стадник, С.А. Голубничий // Проблемы управления и информатики. — 2015. — № 2. — С. 72-80. — Бібліогр.: 5 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Summary: | Розглядається інформаційний синтез системи підтримки прийняття рішень для діагностування патологічних процесів у рамках інформаційно-екстремальної інтелектуальної технології, заснованої на максимізації інформаційної спроможності системи в процесі її навчання. Досліджено вплив способу формування навчальної матриці на функціональну ефективність машинного навчання. Реалізацію алгоритму виконано на прикладі діагностування різних за етиологією та перебігом форм спонтанного пневмотораксу.
The problem of information synthesis of decision support system for pathological process diagnosing is considered within the bounds of information-extreme intellectual technology based on maximization of information capacity of the system in the process of its learning. The influence of the training matrix forming method on functional efficiency of machine learning is investigated. Implementation of the algorithm was done with the example of diagnosis of the spontaneous pneumothorax forms differed by etiology and disease course.
|
|---|---|
| ISSN: | 0572-2691 |