Иерархический информационно-экстремальный алгоритм обучения системы диагностирования с избыточной обучающей матрицей

Розглядається інформаційний синтез системи підтримки прийняття рішень для діагностування патологічних процесів у рамках інформаційно-екстремальної інтелектуальної технології, заснованої на максимізації інформаційної спроможності системи в процесі її навчання. Досліджено вплив способу формування навч...

Full description

Saved in:
Bibliographic Details
Published in:Проблемы управления и информатики
Date:2015
Main Authors: Довбыш, А.С., Стадник, А.А., Голубничий, С.А.
Format: Article
Language:Russian
Published: Інститут кібернетики ім. В.М. Глушкова НАН України 2015
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/207898
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Иерархический информационно-экстремальный алгоритм обучения системы диагностирования с избыточной обучающей матрицей / А.С. Довбыш, А.А. Стадник, С.А. Голубничий // Проблемы управления и информатики. — 2015. — № 2. — С. 72-80. — Бібліогр.: 5 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:Розглядається інформаційний синтез системи підтримки прийняття рішень для діагностування патологічних процесів у рамках інформаційно-екстремальної інтелектуальної технології, заснованої на максимізації інформаційної спроможності системи в процесі її навчання. Досліджено вплив способу формування навчальної матриці на функціональну ефективність машинного навчання. Реалізацію алгоритму виконано на прикладі діагностування різних за етиологією та перебігом форм спонтанного пневмотораксу. The problem of information synthesis of decision support system for pathological process diagnosing is considered within the bounds of information-extreme intellectual technology based on maximization of information capacity of the system in the process of its learning. The influence of the training matrix forming method on functional efficiency of machine learning is investigated. Implementation of the algorithm was done with the example of diagnosis of the spontaneous pneumothorax forms differed by etiology and disease course.
ISSN:0572-2691