Digital convergence of agriculture and industry 4.0: opportunities and organisation interfaces

This paper explores the role of digital-based high-tech agriculture as a central driver of innovation and sustainability in the agro-industrial complex. Emphasis is placed on the strategic importance of technology transfer, foresight-based planning and data-driven solutions to improve productivity a...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Економіка промисловості
Дата:2025
Автор: Omelyanenko, V.A.
Формат: Стаття
Мова:English
Опубліковано: Інститут економіки промисловості НАН України 2025
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/208361
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Digital convergence of agriculture and industry 4.0: opportunities and organisation interfaces / V.A. Omelyanenko // Економіка промисловості. — 2025. — № 3 (111). — С. 23-39. — Бібліогр.: 28 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-208361
record_format dspace
spelling Omelyanenko, V.A.
2025-10-25T18:17:59Z
2025
Digital convergence of agriculture and industry 4.0: opportunities and organisation interfaces / V.A. Omelyanenko // Економіка промисловості. — 2025. — № 3 (111). — С. 23-39. — Бібліогр.: 28 назв. — англ.
1562-109Х
https://nasplib.isofts.kiev.ua/handle/123456789/208361
338.4:631
http://doi.org/10.15407/econindustry2025.03.023
This paper explores the role of digital-based high-tech agriculture as a central driver of innovation and sustainability in the agro-industrial complex. Emphasis is placed on the strategic importance of technology transfer, foresight-based planning and data-driven solutions to improve productivity and enhance resilience. The findings reinforce the notion that high-tech agriculture is not an isolated phenomenon but an integral part of a broader digitalized industrial economy. This paper presents a systems-based digitally supported approach for the transfer and commercialization of agricultural technologies.
Агропромисловий комплекс зазнає глибокої трансформації, зумовленої нагальною потребою в подоланні таких глобальних викликів, як продовольча небезпека, зміна клімату, демографічні зрушення та дефіцит ресурсів. Проаналізовано роль високотехнологічного сільського господарства як ключового рушія інновацій і стійкості в агропромисловому комплексі. Наголошено на основних технологічних тенденціях Індустрії 4.0, зокрема інтеграції Інтернету речей (IoT), робототехніки, точного землеробства, біотехнологій і відновлюваної енергетики, які в сукупності переосмислюють сільськогосподарські практики та тісно пов’язують агросектор із сучасними галузями промисловості. Особлива увага приділяється стратегічній важливості трансферу технологій, плануванню на основі форсайту та заснованих на даних рішенням для підвищення продуктивності, зниження екологічного навантаження та посилення стійкості. Взаємозв’язок між сільським господарством та іншими секторами («зелена» енергетика, ІКТ) представлений через системний погляд на інновації, що підкреслює зростаючу конвергенцію галузей. Висновки підтверджують ідею, що високотехнологічне сільське господарство є не ізольованим, а становить складову цифровізованої промислової економіки. Сформовано системно орієнтований підхід до трансферу та комерціалізації аграрних технологій, що передбачає використання цифрових технологій і ґрунтується на принципах паралельної інженерії та теорії інноваційних мереж. Паралельна інженерія широко застосовується в передових галузях промисловості та пропонує трансформаційну альтернативу традиційним послідовним моделям розроблення, забезпечуючи колаборацію та паралельне проєктування. Підкреслено критичну роль етапу проєктування в життєвому циклі агротехнологій. Розглянуто, як паралельна інженерія підвищує ефективність, стійкість та адаптивність в інноваційних мережах сільського господарства. Із використанням цифрових інструментів, інтегрованих систем знань і платформ ІКТ-співпраці такий підхід передбачає узгодження інженерного проєктування з цілями сталого розвитку, забезпечуючи раннє виявлення ризиків, гнучке прототипування та залучення зацікавлених сторін із різних секторів. Запропоновано структуру ІКТ-підтримки інноваційних мереж. Наголошено на необхідності включення міждисциплінарних і географічно розподілених команд у цикл розроблення для забезпечення релевантності, стійкості та створення довгострокової цінності в секторі аграрних технологій. Запропонована організаційна модель трансферу технологій інтегрує підсистеми управління даними, геоінформаційного аналізу та прийняття рішень на основі знань для підтримки життєвого циклу аграрних інновацій. Основну увагу приділено зближенню сільського господарства та Індустрії 4.0 через регіональну смарт-спеціалізацію, публічно-приватне партнерство та формування агротехнологічних кластерів. Висвітлено організаційні та інфраструктурні вимоги до побудови мережі трансферу технологій з фокусом на важливості маркетингових сервісів й інтегрованих високоефективних екосистем трансферу. Завдяки поєднанню інституційного проєктування з цифровою інфраструктурою модель забезпечує ефективніше, масштабоване та стійке впровадження агротехнологічних інновацій у регіонах.
en
Інститут економіки промисловості НАН України
Економіка промисловості
Економіко-теоретичні проблеми виробництва
Digital convergence of agriculture and industry 4.0: opportunities and organisation interfaces
Цифрова конвергенція сільського господарства та Індустрії 4.0: можливості та організаційні інтерфейси
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Digital convergence of agriculture and industry 4.0: opportunities and organisation interfaces
spellingShingle Digital convergence of agriculture and industry 4.0: opportunities and organisation interfaces
Omelyanenko, V.A.
Економіко-теоретичні проблеми виробництва
title_short Digital convergence of agriculture and industry 4.0: opportunities and organisation interfaces
title_full Digital convergence of agriculture and industry 4.0: opportunities and organisation interfaces
title_fullStr Digital convergence of agriculture and industry 4.0: opportunities and organisation interfaces
title_full_unstemmed Digital convergence of agriculture and industry 4.0: opportunities and organisation interfaces
title_sort digital convergence of agriculture and industry 4.0: opportunities and organisation interfaces
author Omelyanenko, V.A.
author_facet Omelyanenko, V.A.
topic Економіко-теоретичні проблеми виробництва
topic_facet Економіко-теоретичні проблеми виробництва
publishDate 2025
language English
container_title Економіка промисловості
publisher Інститут економіки промисловості НАН України
format Article
title_alt Цифрова конвергенція сільського господарства та Індустрії 4.0: можливості та організаційні інтерфейси
description This paper explores the role of digital-based high-tech agriculture as a central driver of innovation and sustainability in the agro-industrial complex. Emphasis is placed on the strategic importance of technology transfer, foresight-based planning and data-driven solutions to improve productivity and enhance resilience. The findings reinforce the notion that high-tech agriculture is not an isolated phenomenon but an integral part of a broader digitalized industrial economy. This paper presents a systems-based digitally supported approach for the transfer and commercialization of agricultural technologies. Агропромисловий комплекс зазнає глибокої трансформації, зумовленої нагальною потребою в подоланні таких глобальних викликів, як продовольча небезпека, зміна клімату, демографічні зрушення та дефіцит ресурсів. Проаналізовано роль високотехнологічного сільського господарства як ключового рушія інновацій і стійкості в агропромисловому комплексі. Наголошено на основних технологічних тенденціях Індустрії 4.0, зокрема інтеграції Інтернету речей (IoT), робототехніки, точного землеробства, біотехнологій і відновлюваної енергетики, які в сукупності переосмислюють сільськогосподарські практики та тісно пов’язують агросектор із сучасними галузями промисловості. Особлива увага приділяється стратегічній важливості трансферу технологій, плануванню на основі форсайту та заснованих на даних рішенням для підвищення продуктивності, зниження екологічного навантаження та посилення стійкості. Взаємозв’язок між сільським господарством та іншими секторами («зелена» енергетика, ІКТ) представлений через системний погляд на інновації, що підкреслює зростаючу конвергенцію галузей. Висновки підтверджують ідею, що високотехнологічне сільське господарство є не ізольованим, а становить складову цифровізованої промислової економіки. Сформовано системно орієнтований підхід до трансферу та комерціалізації аграрних технологій, що передбачає використання цифрових технологій і ґрунтується на принципах паралельної інженерії та теорії інноваційних мереж. Паралельна інженерія широко застосовується в передових галузях промисловості та пропонує трансформаційну альтернативу традиційним послідовним моделям розроблення, забезпечуючи колаборацію та паралельне проєктування. Підкреслено критичну роль етапу проєктування в життєвому циклі агротехнологій. Розглянуто, як паралельна інженерія підвищує ефективність, стійкість та адаптивність в інноваційних мережах сільського господарства. Із використанням цифрових інструментів, інтегрованих систем знань і платформ ІКТ-співпраці такий підхід передбачає узгодження інженерного проєктування з цілями сталого розвитку, забезпечуючи раннє виявлення ризиків, гнучке прототипування та залучення зацікавлених сторін із різних секторів. Запропоновано структуру ІКТ-підтримки інноваційних мереж. Наголошено на необхідності включення міждисциплінарних і географічно розподілених команд у цикл розроблення для забезпечення релевантності, стійкості та створення довгострокової цінності в секторі аграрних технологій. Запропонована організаційна модель трансферу технологій інтегрує підсистеми управління даними, геоінформаційного аналізу та прийняття рішень на основі знань для підтримки життєвого циклу аграрних інновацій. Основну увагу приділено зближенню сільського господарства та Індустрії 4.0 через регіональну смарт-спеціалізацію, публічно-приватне партнерство та формування агротехнологічних кластерів. Висвітлено організаційні та інфраструктурні вимоги до побудови мережі трансферу технологій з фокусом на важливості маркетингових сервісів й інтегрованих високоефективних екосистем трансферу. Завдяки поєднанню інституційного проєктування з цифровою інфраструктурою модель забезпечує ефективніше, масштабоване та стійке впровадження агротехнологічних інновацій у регіонах.
issn 1562-109Х
url https://nasplib.isofts.kiev.ua/handle/123456789/208361
citation_txt Digital convergence of agriculture and industry 4.0: opportunities and organisation interfaces / V.A. Omelyanenko // Економіка промисловості. — 2025. — № 3 (111). — С. 23-39. — Бібліогр.: 28 назв. — англ.
work_keys_str_mv AT omelyanenkova digitalconvergenceofagricultureandindustry40opportunitiesandorganisationinterfaces
AT omelyanenkova cifrovakonvergencíâsílʹsʹkogogospodarstvataíndustríí40možlivostítaorganízacíiníínterfeisi
first_indexed 2025-11-26T00:13:27Z
last_indexed 2025-11-26T00:13:27Z
_version_ 1850596932070670336
fulltext 23ISSN 1562-109X. Економіка промисловості. 2025. № 3 (111) ЕКОНОМІКО-ТЕОРЕТИЧНІ ПРОБЛЕМИ ВИРОБНИЦТВА ECONOMIC AND THEORETICAL PROBLEMS OF PRODUCTION http://doi.org/10.15407/econindustry2025.03.023 UDC 338.4:631 JEL: O32, O33, Q16 Vitaliy A. OMELYANENKO, Doctor of Economic Science, Senior Researcher, Professor Е-mail: omvitaliy@gmail.com; https://orcid.org/0000-0003-0713-1444 Institute of Industrial Economics of NAS of Ukraine 2 Maria Kapnist Street, Kyiv, 03057, Ukraine DIGITAL CONVERGENCE OF AGRICULTURE AND INDUSTRY 4.0: OPPORTUNITIES AND ORGANISATION INTERFACES Th is paper explores the role of digital-based high-tech agriculture as a central driver of innovation and sustainability in the agro-industrial complex. Emphasis is placed on the strategic importance of technology transfer, foresight-based planning and data-driven solutions to improve productivity and enhance resilience. Th e fi ndings reinforce the notion that high-tech agriculture is not an isolated phenomenon but an integral part of a broader digitalized industrial economy. Th is paper presents a systems-based digitally supported approach for the transfer and commercialization of agricultural technologies. Keywords: agriculture, technology transfer, ICT, innovation network, agri-tech innovations. Cite : Omelyanenko V. A. Digital convergence of agriculture and Industry 4.0: opportunities and organisation interfaces. Econ. promisl. 2025. № 3 (111). P. 23—38. http://doi.org/10.15407/econindustry.2025.03.023 © Publisher PH "Akademperiodyka" of the NAS of Ukraine, 2025. Th is is an open access article under the CC BY-NC-ND license https://creativecommons.org/licenses/by-nc-nd/4.0/) Th e agricultural sector plays a key role in ensur- ing food security, the sustainability of ecosystems and economic development. According to UN forecasts, in 30 years humanity will need 1,7 times more food than is currently produced (FAO, 2023). Such results cannot be achieved without serious modernization of agriculture (Alston & Pardey, 2014; FAO, 2017). Th e answer to global challenges can be technologies: sensors, drones, unmanned harvesters and robots. Technologies automate har- vesting and sowing campaigns, optimize the use of fertilizers and chemical plant protection products and signifi cantly reduce water consumption. How- ever, rapid changes in climate, demographics and technological progress are creating new challenges for the agricultural sector (Badiane, 2014). For the growth of these clicks, it is important to promote new technologies, as well as ensure eff ective tech- nology transfer between countries and regions. Th e development of the country’s agricultu re at the present stage is associated with the transi tion to new technologies and a strategic factor in strength- ening the competitiveness of domestic agriculture is to increase its technological level. According to scientists and agricultural experts, the weakest link in the production of agricultural products is tech- nical equipment and technological modernization, which leads to incomplete use of resource potential, decrease in production performance, deterioration in the quality of work performed and ultimately, to the unprofi tability of the industry (Shevchenko, Omelyanenko et al., 2025). At the same time, the social and economic transformations taking place recently have revealed a discrepancy between man- agement methods and the technological capabili- ties of agriculture. Th is is due to the fact that the fi eld of process management is less supported by research and in management theory it is given only ЕКОНОМІКА ПРОМИСЛОВОСТІ ECONOMY OF INDUSTRY 24 ISSN 1562-109X Econ. promisl. 2025. № 3 (111) V. A. Omelyanenko a secondary role, in contrast to the study of pro- duction management as a whole. Based on the above, technology transfer is an im- portant process in the agricultural sector and the economy as a whole. To eff ectively manage tech- nology transfer from a strategical point of view, it is important to focus on forecasts for the develop- ment of innovation. Foresight in the fi eld of agri- culture can be defi ned as systematic analytics with the aim of identifying the long-term future of sci- ence, technology, economy and society in order to identify areas of strategic research and the emer- gence of new high technologies that promise to bring the greatest economic and social benefi ts. Sustainability of agricultural innovation projects is infl uenced by a dynamic interplay of community engagement, technology adoption, and local capa- city building (Mgendi, Shiping, & Xiang, 2019). When agricultural technology is transferred, it can boost productivity, but this may also reduce the community’s dependence on external support. As a result, the system seeks a balance between increased output and long-term project sustain- ability. A critical factor is how the local commu- nity perceives the benefi ts of the new technology. Positive perceptions enhance community partici- pation, which strengthens stakeholder networks and builds trust and commitment. Th is collective engagement improves the project’s operating envi- ronment, making it more conducive to long-term success. Local autonomy and the ability to rely on indigenous resources play a reinforcing role. As communities become more self-reliant and eff ec- tively use local assets, their ownership over the pro- jects deepens. Th is empowerment leads to better integration of transferred technologies, greater sus- tainability, and reduced need for continuous exter- nal input. Stakeholders’ support and eff ective col- laboration further enhance the benefi ts perceived by the community, feeding back into stronger par- ticipation and better outcomes. Over time, these reinforcing processes create a resilient foundation for agricultural cooperation that adapts to both ex- ternal inputs and internal developments. High-tech agricultural production is produc- tion with the rational use of technologies that in- crease productivity and quality of cultivated crops, using scientifi cally based standards that ensure increased productivity and economic effi ciency of agricultural producers. Th e production of high- tech products requires the formation of large-scale specialized zones of operation, development and improvement of interregional connections. Th e institutional environment for technology transfer in agricultural production presupposes economic and geographical unity, similar social and economic conditions. Th e use of technology responds to the growth of available data for analysis and decision- making (Fig. 1). Scientists in other countries are also exploring high-tech solutions to combat the severe impacts of climate change, including drought and loss of arable land due to desertifi cation and to meet the grow- ing food needs of a growing global population. As technology advances, smart farming is transform- ing agriculture from a practice largely dependent on grower experience and intuition to a data-driv- en industry, opening up the possibility of involving a wider range of participants in the process. E.g. the importance of Internet of Th ings (IoT) for the further development of agricultural tech- nologies is approximately the same as the synergy eff ect for the economy — this is when the combi- nation of several components gives a greater result than using them separately. Sometimes synergy is also called the 2 + 2 = 5 eff ect. Th us, IoT acts as a tool that combines various technologies and forms a single ecosystem out of them. Th is symbiosis of data in one source will allow for better data man- agement, which increases the effi ciency of using these technologies. Research service Business Intel- ligence (BI) predicts that the use of IoT devices will increase from 30 million in 2015 to 75 million in 2020, an annual growth rate of about 20 %. In 2014, the average farm generated 190 thousand data points, then in 2050 there will be 4.1 million. Now one of the main users of IoT are American farmers and on average they produce 7.34 tons of grain per 1 hectare, while the global average is 3.85 tons of grain per hectare. In addition, OnFarm conducted a study that found that IoT increased the average American farm’s yield by 1.75 %, reduced energy costs by $7 to $13 per acre and reduced irrigation water use by 8 %1. Th is is despite the fact that US farmers are already quite technologically advanced, adhere to cultivation technologies and are already showing high effi ciency. If we talk about Ukraine, the potential for yield growth due to the introduc- tion of IoT technologies will be much higher. 1 Pylypchuk A. (2021). Why IoT and Precision Farming Are the Future of Agriculture. Aggeek. https://app.agro- online.com/21242/details/ (Access: 07.07.2025). 25ISSN 1562-109X. Економіка промисловості. 2025. № 3 (111) Digital convergence of agriculture and Industry 4.0: opportunities and organisation interfaces High-tech agriculture is no longer a stand- alone sector; it is deeply interwoven with various branches of modern industry, forming a synergis- tic agri-industrial ecosystem (Table 1). Th is integra- tion transforms traditional farming into a digitally enabled, in novation-driven fi eld that draws upon industrial ad vancements for effi ciency, sustainabi- lity and scalability. Precision agriculture, leveraging IoT, Artifi - cial intelligence (AI) and GIS technologies, mir- rors the principles of Industry 4.0 by introduc- ing data-driven decision-making (Vyshnevskyi, Anufriiev, Bozhyk, Gulchuk, 2024) and automa- tion into the farming process. Robotics and au- tonomous machinery, developed in high-tech en- gineering industries, are now routinely deployed in fi elds and greenhouses, demonstrating the crossover between mechatronics and agriculture. Biotechnological innovations, such as genetically improved seeds and microbial treatments, show- case the connection between agriculture and the biotech and pharmaceutical industries. Similarly, vertical farming systems depend on industrial en- vironmental control, lighting systems and green technologies typically used in advanced manufac- turing. In the post-harvest phase, agriculture con- nects to smart food processing industries through the use of automation, robotics and quality con- trol systems. Blockchain and digital platforms support transparency and certifi cation across the supply chain, linking agriculture to the fi ntech and digital infrastructure sectors. Cloud comput- Fig. 1. Estimated volume of data received by one farm per day Source: Pylypchuk A. (2021). Why IoT and Precision Farming Are the Future of Agriculture. Aggeek. https://app.agro-online.com/21242/details/ (Access: 07.07.2025). ing and big data analytics play a key role in man- aging farm data, highlighting the dependence on the ICT and soft ware industries. At the same time, the integration of renewable energy into farming operations (solar irrigation or biomass reuse) brings agriculture into the green industrial and environ- mental engineering space. Modern agriculture also relies on smart logistics, cold chain solutions and transportation systems de- veloped by industrial logistics providers, ensuring safe and timely delivery of agricultural products. Finally, the rise of agri-tech startups and platform- based solutions refl ects the growing involvement of venture capital and innovation ecosystems in agricultural transformation. Th ese connections demonstrate that high-tech agriculture functions as a core part of the modern industrial economy, driving both rural development and technological advancement. Th e aim of this research is to explore and criti- cally analyze the convergence between agricul- ture and Industry 4.0 through the integration of digital technologies with a focus on identifying organizational interfaces, innovation potentials and implementation challenges. In doing so, the research aims to provide a systematic under- standing of the opportunities and limitations associated with the digitalization of agriculture, assess the readiness of organizational structures to adapt to these changes and off er strategic rec- ommendations for policy and technological dif- fusion in agribusiness sectors. 26 ISSN 1562-109X Econ. promisl. 2025. № 3 (111) V. A. Omelyanenko Concurrent engineering approach for digital support of transfer of agri-tech Th e author`s approach is based on the ideas of us- ing the concurrent engineering methodology for the transfer of agricultural technologies. Th e key stage in the life cycle of agricultural technology is the design stage (Méndez-Zambrano et al, 2023). Any mistake at this stage can be costly in terms of design changes and impact on the production process, delays in the release of products to the market with the potential threat of loss of market position and product recall, signifi cant fi nancial losses and damage to the com- pany’s reputation. Hence, emphasis must be placed on design to make sure that the product reaches the market fl awlessly and as quickly as possible. Doing it right the fi rst time, which is all the more important in the global market, is only possible with a good project. Current trends in the agricultural industry in- dicate the need for companies throughout the in- creasingly complex agricultural machinery and tech- Table 1. High-tech agriculture and its connection to modern industry Agricultural technology/trend Connected industrial sector Nature of connection Precision agriculture (IoT, AI, GIS) Industry 4.0 / Smart manufac- turing Data-driven control systems, predictive analytics, automation techniques Drones, robots, autonomous machinery Robotics & Mechatronics in- dustry Shared platforms for automation, sensor fusion, control soft ware Biotech crops & microbial inputs Biopharmaceutical & Biotech industry Genetic engineering, lab-to-fi eld translation, mo- lecular product development Vertical farming & hydropon- ics Green tech / Industrial design Use of controlled environment systems, lighting, ventilation and nutrient technologies Agri-food processing automa- tion Food industry / industrial Pro- cessing Smart factories, robotic sorting, digital quality con- trol Blockchain traceability sys- tems FinTech / Supply chain manage- ment Transparency in production chains, anti-fraud, certifi cation, digital transactions Big data & cloud platforms ICT / Soft ware industry Platform-based analytics, farm management sys- tems, mobile data services Renewable energy integration Energy & Environmental engi- neering Solar irrigation, biomass reuse, integration with green industrial parks Smart logistics & cold chains Transportation & Logistics Temperature-controlled supply chains, real-time GPS tracking, effi ciency optimization Agri-tech startups and plat- forms Innovation ecosystems / Ven- ture capital Incubators, accelerators and tech clusters linking agri-sector with startup ecosystems Source: author`s generalization based on Alston & Pardey, 2014; FAO, 2017; Dror, 2016; Moussa S. (2002). Technology Transfer for Agriculture Growth in Africa; African Development Bank: Tunis, Tunisia. https://www.afdb.org/fi leadmin/ uploads/afdb/Documents/Publications/00157678-FR-ERP-72.PDF (Access: 07.07.2025); Pylypchuk A. (2021). Why IoT and Precision Farming Are the Future of Agriculture. Aggeek. https://app.agro-online.com/21242/details/ (Access: 07.07.2025); Piddubna A. (2024, April 20). Th e Future of AgriTech: Trends and Innovations in Agriculture to Watch in 2023. Intellias. https://intellias.com/innovations-in-agriculture/ (Access: 07.07.2025). nology supply chain to invest in improving their development processes2. Th is can be achieved through the acquisition of collaborative and inter- operable digital design tools of a multi-dimension- al parallel engineering approach, as well as through the integration of universities and engineers who will practice the design and development of digital agricultural machines in such environments (dos Reis, Medeiros, Fernando, et al., 2020). According to Dror (2016) the main objectives of sectoral innovation management include the fol- lowing three issues:   development of the system of agricultural in- novations;    studying the evolution of technology-based approaches to solving problems of agriculture; 2 Piddubna A. (2024, April 20). Th e Future of AgriTech: Trends and Innovations in Agriculture to Watch in 2023. Intellias. https://intellias.com/innovations-in-agriculture/ (Access: 07.07.2025). 27ISSN 1562-109X. Економіка промисловості. 2025. № 3 (111) Digital convergence of agriculture and Industry 4.0: opportunities and organisation interfaces   development of various forms of participation and appropriate tools. Concurrent engineering methodology involves the joint work of experts from various functional areas of technology development (scientists, engi- neers, users) at the earliest possible stage of develop- ment in order to achieve high quality, functionality and manufacturability in the shortest possible time with minimal costs (Facco et al., 2017). Concurrent engineering is an expression of the desire to increase the competitiveness of products by reducing the product life cycle, as well as improving quality and reducing prices (Prasad, 2018; Deshpande, 2018). According to ESA concurrent engineering methodology provides a “collaborative, co-opera- tive, collective and simultaneous engineering work- ing environment” 3. Table 2 outlines the core com- ponents of concurrent engineering as applied in innovation networks, highlighting its connections to industry sectors, digital tools and organizational models that support agile and synchronized inno- vation processes. Th rough the analysis of complex real-world ap- plications and experiences, the study of Stjepandić, Wognum & Verhagen (2015) demonstrates that concurrent engineering is widely used in many in- dustries and that the same basic design principles can also be applied to emerging new industries. Among such industries there is high-tech agricul- ture, which in modern conditions is developing due to digitalization and the development of complex technologies. Such case of IoT device placements for agriculture based on concurrent engineering is presented in study Tirupathi & Niranjan (2022). From the point of view of agriculture, it is im- portant that new products and technologies meet the goals of sustainable development. Th e sustain- ability of a product or technology can be most in- fl uenced early in product development through the Quality Function Deployment (QFD) method and the ‘sustainability house’, which translates sustain- ability requirements into technical solutions for the product (Rihar & Kušar, 2021). From this research we can outline such tasks relevant for agriculture:    establishment of criteria for continuous im- provement of products and processes by creating added value of products; 3 ESA (2024). What is concurrent engineering? https:// www.esa.int/Enabling_Support/Space_Engineering_ Technology/CDF/What_is_concurrent_engineering (Access: 07.07.2025).   increasing the potential for innovation and so- lutions to create environmentally friendly products;    identifi cation of opportunities and risks in sustainable product development;   strengthening competitive advantage through innovative solutions for the development of prod- ucts that have a low impact on the environment;    designing and planning the introduction of sustainable products by choosing cleaner technol- ogies (eco-technologies);   creation of requirements for product process- ing and production of new products from renew- able raw materials;   sustainable procurement of materials with less impact on the environment;   bringing together all stakeholders in the procure- ment-production-supply chain to coordinate shared responsibility and risks related to environmental re- quirements and reduce environmental fi nes. In the table 3 we present the key technologies that defi ne high-tech agriculture and outline their major benefi ts. It also refl ects how these technolo- gies link agriculture to broader innovation systems and industrial value chains, supporting the transi- tion toward sustainable, resilient and future-ori- ented food systems. Сoncurrent engineering is positioned as a trans- formative methodology that shift s traditional, se- quential development models toward integrated real-time collaboration. Expectations from this ap- proach span from incremental effi ciency gains to comprehensive process automation across innova- tion networks. By replacing the conventional linear sequence of design, testing and implementation with a parallelized framework, concurrent engineering accelerates development cycles, reduces costs and enhances responsiveness to change. It ensures that all stages (design, production, operational manage- ment, support services, end-of-life disposal) are con- sidered simultaneously from the project’s inception. Th is holistic perspective, supported by advanced ICT tools, enables synchronized actions across di- verse innovation actors and strengthens the agility, resilience and performance of the entire network. In the era of interconnected innovation eco- systems ICT play a foundational role in enabling collaboration, knowledge sharing and system-level integration across diverse actors. Innovation net- works comprise research institutions, industries, startups, public agencies and users and require real- time coordination, data transparency and intelligent 28 ISSN 1562-109X Econ. promisl. 2025. № 3 (111) V. A. Omelyanenko Table 2. Concurrent engineering in innovation networks Component Description Role in innovation networks Example tools / platforms Integrated multi- stakeholder collabo- ration Promotes real-time, cross-disci- plinary collaboration among all partners Enables distributed actors to co-develop solutions Microsoft Teams, Miro, Confl uence Parallel development processes Multiple development tasks pro- ceed simultaneously rather than sequentially Reduces overall project time, increases adaptability in com- plex ecosystems Trello, Asana Early involvement of partners All relevant actors (design, manu- facturing, etc.) are involved from the start Ensures alignment and avoids late-stage friction or failures Stakeholder mapping tools, CRM systems Shared digital infra- structure Centralized access to designs, data and prototypes across loca- tions Enhances transparency and trust among network partici- pants Cloud PLM, shared Git repositories, CAD plat- forms Continuous feedback loops Constant testing and refi nement based on live inputs from various actors Improves innovation quality and user-centric design Digital twins, A/B testing tools, simulation apps Agile knowledge sharing Knowledge is exchanged itera- tively across the network Accelerates learning and knowledge-based decision- making Knowledge hubs, open innovation portals Rapid prototyping & scaling Designs can be prototyped and scaled simultaneously in diff erent nodes of the network Enhances speed of innovation and responsiveness to market needs 3D printing hubs, living labs, fab labs Design for network resilience Solutions are designed consider- ing interoperability, sustainability and adaptability Supports long-term network vi- ability and modular innovation Modular design soft - ware, sustainability scor- ing Source: author`s generalization based on Alston & Pardey, 2014; FAO, 2017; Dror, 2016; Moussa S. (2002). Technology Transfer for Agriculture Growth in Africa; African Development Bank: Tunis, Tunisia. https://www.afdb.org/fi leadmin/ uploads/afdb/Documents/Publications/00157678-FR-ERP-72.PDF (Access: 07.07.2025); Pylypchuk A. (2021). Why IoT and Precision Farming Are the Future of Agriculture. Aggeek. https://app.agro-online.com/21242/details/ (Access: 07.07.2025); Piddubna A. (2024, April 20) Th e Future of AgriTech: Trends and Innovations in Agriculture to Watch in 2023. Intellias. https://intellias.com/innovations-in-agriculture/ (Access: 07.07.2025). infrastructure to co-create and scale solutions ef- fi ciently. ICT tools support not only communica- tion and data management but also strategic func- tions such as forecasting, modeling, simulation and lifecycle monitoring. As innovation processes become increasingly digi- tal and distributed, ICT enables the implementation of advanced methodologies such as concurrent engi- neering, digital twins and smart project management (Prokopenko, Järvis, Omelyanenko, Maslov, Lopes, 2025). Th ese tools help align processes across geo- graphically dispersed teams, synchronize workfl ows and reduce development cycles. In the table 4 we out- line how ICT contributes to the functionality and ef- fectiveness of innovation networks, highlighting core technological enablers, their roles and their impact on innovation performance and sustainability. Th e concept of ICT support of innovation net- work is based on several basic principles (Brookes, & Blackhouse, 1996; Brookes & Blackhouse, 1998) that can be solved with model ICT applications (Th orat, Patle, & Kashyap, 2023): 1) early detection of the problem; the later the problem is discovered, more eff ort and time and consequently, money, is spent on eliminating it; 2) early decision making; in the early stages there are much more opportunities to make changes to the project, the “window of opportunity” is much wider; 3) structuring of work; the entire process must be divided into jobs in such a way that each job can be performed independently of the others so that it can be handled by a person, a computer or a machine; 4) close teamwork; will achieve optimal results in terms of combined knowledge and insights. A strong team is more than the sum of its people; 5) use of knowledge for decision making; mod- ern products are so complex that it is impossible to create expert systems and decision support systems 29ISSN 1562-109X. Економіка промисловості. 2025. № 3 (111) Digital convergence of agriculture and Industry 4.0: opportunities and organisation interfaces Table 3. High-tech agriculture: key technologies and impacts Technology Function Benefi ts Precision farming (Smart Farming) Uses GPS, sensors and data analytics to man- age variability in fi elds Optimized inputs, increased yields, reduced waste Drones and UAVs Aerial surveillance, crop monitoring, spraying Real-time data, effi cient spraying, reduced labor IoT sensors (Soil & Climate) Monitor soil moisture, nutrients, weather and crop health Better irrigation, timely intervention, data- driven decisions AI Analyzes big data for forecasting, decision- making and automation Predictive analytics, disease detection, opti- mized operations Robotics and automa- tion Automates harvesting, weeding, planting and sorting Labor savings, precision, 24/7 operation Vertical farming Indoor, stacked cultivation using controlled environments Urban farming, resource effi ciency, year- round production Hydroponics & aqua- ponics Soil-free systems using water/nutrient circu- lation or fi sh integration Space saving, effi cient water usage, pesti- cide-free production Blockchain Tracks agricultural supply chains and ensures product traceability Food safety, fraud prevention, transparency Genetically modifi ed crops (GMO) Engineered for traits like drought resistance or pest control Higher productivity, reduced chemical use Satellite imagery & remote sensing Monitors large-scale changes and crop health remotely Early warning systems, regional planning, crop insurance Big Data analytics Aggregates and analyzes diverse farm-related datasets Smarter resource allocation, profi tability tracking Source: author`s idea. for all occasions. However, human knowledge and experience always remains the most important tool; 6) mutual understanding; If each member of a work group knows what the other is doing, the whole group works better. For example, the design- er knows what diffi culties the technologist will en- counter when changing some design parameters; 7) possession; groups work with enthusiasm when they have the freedom to make decisions and when they are given “ownership” and respon- sibility for the product they produce; 8) constancy of purpose; you need to change your thinking away from the indicators of each specifi c department to the indicators of the entire company as a whole. Focusing on the goals of the entire company will allow everyone to contribute to the common good. Th e principle of concurrent engineering involves performing the processes of developing and design- ing a technology simultaneously with modeling the processes of its practical operation. Th is also includes the simultaneous design of various components of a complex product. With concurrent engineering, ma- ny problems that may arise at later stages of the life cycle of agricultural technology are identifi ed and sol- ved at the design stage. Th is approach allows to im- prove quality, reduce time to market and reduce costs. Th e diff erences between concurrent engineer- ing and the traditional approach to organizing sci- entifi c and engineering processes are:    eliminating traditional barriers between the functions of individual specialists and organiza- tions by creating and if necessary, subsequent transformation, multidisciplinary working groups, including geographically distributed ones, which is important for agricultural technologies in order to most eff ectively localize application;    iterative process of approaching the required result. Multidisciplinary working groups in modern ag- riculture include specialists from diff erent fi elds and are created to solve specifi c problems. For example, representatives of the operator, general developer and component supplier, i.e. specialists from diff er- ent organizations can be brought together into one group to solve problems that arise during operation. Th e main patterns of agricultural development, which require the practice of organizing communi- 30 ISSN 1562-109X Econ. promisl. 2025. № 3 (111) V. A. Omelyanenko Table 4. ICT support of innovation network Component Function in innovation network Expected benefi ts Knowledge management Store, organize and share innovation-related knowledge Enhanced knowledge continuity and onboarding Collaboration platforms Facilitate cross-organizational teamwork and virtual meetings Real-time cooperation and reduced communication delays Innovation portals Centralized access to open calls, R&D initia- tives, idea submissions Better visibility and participation in innovation initiatives Data analytics & business intelligence Extract insights from data to guide strategy Evidence-based decision-making CRM & stakeholder man- agement Map and manage relationships with ecosys- tem actors Stronger stakeholder engagement and coordination Project & portfolio man- agement Track innovation project status, risks and ROI Transparency, prioritization and re- source optimization Cloud infrastructure & storage Provide scalable, shared access to computing and data resources Agility, scalability and cost-effi ciency Cybersecurity & identity management Protect innovation data, IP and communica- tions Security, compliance and trust in digi- tal environments Digital twin / simulation tools Model systems, test innovations virtually Lower prototyping costs, faster itera- tion Blockchain & smart con- tracts Ensure trust and traceability in collaborative innovation settings Transparency, trust, automated execu- tion Open data platforms Enable access to datasets for co-creation and experimentation Data-driven innovation and civic tech engagement Artifi cial intelligence & ML Predict trends, personalize solutions, auto- mate processes Acceleration of complex problem- solving IoT platforms & sensors Collect real-world data for smart infrastruc- ture and urban innovation Real-time monitoring and adaptive systems Incubation & mentoring platforms Support early-stage innovators and connect them to mentors and investors Nurturing of startups and access to capital Community & networking tools Build relationships and shared identity among ecosystem actors Sustained engagement and knowledge exchange Source: author`s idea. cations within the framework of multidisciplinary working groups, include the need to adapt agri- cultural technologies to local conditions; develop- ment of agricultural technologies with maximum environmental safety; formation of specialized in- dustry; digitalization of agricultural production; broad integration of agricultural science and edu- cation into agricultural production systems. Concurrent engineering involves replacing the traditional sequential approach with a set of oper- ations overlapping in time, aimed at systematically improving the solution being developed until the desired result is achieved. Th e initial understanding of the problem leads to the fi rst version of documented requirements, from which the initial design solution is developed. It gives rise to new questions and allows us to clar- ify the formulation of the problem. Eff ective implementation of this approach is impossible outside of the information system. Th e possibility of applying the principles of con- current engineering arises due to the fact that in the information system all work results are pre- sented in electronic form, are up-to-date, acces- sible to all participants and can be easily adjusted (Jha, Ranjan, & Gaur, 2020). Applied decision for digital support of agri-tech transfer Th e information & analytical system is designed to support and manage the process of development and transfer of agricultural technologies. Th e system 31ISSN 1562-109X. Економіка промисловості. 2025. № 3 (111) Digital convergence of agriculture and Industry 4.0: opportunities and organisation interfaces is based on a сoncurrent engineering model and allows to create an environment for communica- tion between science and business for the joint de- velopment of technology. Th e proposed model in- volves the simultaneous implementation of various stages of development and testing of new technol- ogy, which signifi cantly reduces the costs of adapt- ing technology to new conditions that are signifi - cant for agricultural production. Th e scheme of the system’s operation is based on the analysis of existing solutions to the prob- lem of сoncurrent engineering and the stages of process planning in the development of a new product, as well as an object-oriented informa- tion model of the process (Th ankachan, Bhasi, & Madhu, 2010), which includes classes of necessary information. Th e environment formed through the use of concurrent engineering unites project participants through an information system that allows for the exchange of knowledge, establishes eff ective mechanisms for coordinating project ac- tivities and reduces development time (Aguilar- Virgen et al, 2021). Taking into account the above requirements, we have developed a formalized conceptual model of an agent-oriented environment for the develop- ment of innovation, which is the basis for repre- senting the structure and algorithms of opera- tion of the developed information and analytical knowledge management system about the innova- tive development of the economy, its functionality and component soft ware modules. Th e main goal of creating an information & analytical system is to prepare and maintain mul- tidimensional information that displays a related set of data that serves as the basis for prompt and informed decision-making on the development and transfer of agricultural technologies. Th e information & analytical system is based on the concept of integrating information from vari- ous subject areas, the ability to quickly access it, keep it up to date, use eff ective tools for analyz- ing and displaying aggregated and interconnected subsets of information, its retrospective analysis and providing access to it for users of various lev- els in in accordance with their authority. Th e basis of the information & analytical system is a unifi ed information base in which relation- ships are established between the main informa- tion components, which include:   register of territorial units;   register of users with powers according to the user matrix;   register of information events;   register of documents and regulatory informa- tion. Th e information & analytical system consist of three subsystems:   data management subsystem;   information and cartographic subsystem;   information and analytical subsystem. Main ideas of information & analytical system: 1. A system for constructing a unifi ed informa- tion space, containing a communication interface module connected to a number of information sources (inputs) representing technical and soft - ware information processing tools, an automatic design system for entering data and queries, an electronic archive module and an information model of an agricultural technology (Figure 2). 2. A system for constructing a unifi ed informa- tion space, containing a communication interface module connected to a number of information sources (inputs) representing technical and soft - ware information processing tools, an automatic design system for entering data and queries, an electronic archive module and an information model of an agricultural technology or product. 3. Th e system is characterized by adaptive digital environment depending on the technology or prod- uct, it is possible to create a set of target indicators. 4. Th e system contains an updating function de- signed to collect and update measurement infor- mation regarding a set of target indicators, formal- ize initial data and knowledge about the state and monitor these states. 5. Th e system contains a metadata conversion block and a virtual data integration block connect- ed to each other and to the specifi ed information environment, a unit of services for a single infor- mation space and a data exchange module. 6. Th e system contains of control centers for data and knowledge processing are designed to store data and knowledge, various product life cy- cles and the system also includes tools for process- ing analytical reporting and tools for generating recommendations for decision-making. 7. Th e information system contains a geoinfor- mation module for storing and processing geo- physical information of target territories (territo- ries where the technology will be implemented), including cartographic and reference information, 32 ISSN 1562-109X Econ. promisl. 2025. № 3 (111) V. A. Omelyanenko Fig. 2. Unifi ed information space for innovation tech development Source: author`s idea. a means of constantly entering and replenishing geophysical information and a system for admin- istering user accounts. 8. Th e module contains the ability to connect digital video data of a territory with the ability to link a three-dimensional image to the current time and transfer it to a server, which is designed with the ability to permanently store retrospec- tive and prospective maps. For this purpose, it is possible to enter into the database an image of the area, its coordinates and the time the video image was recorded and with the ability to enter time and coordinates. 9. Th e geoinformation module is distinguished by the fact that it is designed to transmit informa- tion online. 10. Th e geoinformation module is distinguished by the fact that it is designed with the ability to transmit retrospective information to the user (re- searcher, technician worker). 11. Th e geoinformation module is distinguished by the fact that it is designed with the ability to predict events in the time of future information. 12. Th e geoinformation module is distinguished by the fact that it is designed to determine the co- ordinates of an object on the plan, taking into ac- count the specifi ed time. Organizational interfaces of digital convergence of agriculture and Industry 4.0 Emphasizing the signifi cance of innovation revital- izing of agricultural businesses’ business models, it is vital to draw attention to the primary factors that need to be considered when formulating frame- work for digital convergence of agriculture and Industry 4.0:    focusing on regional development priorities, especially the agriculture sector; establishing pub- lic-private partnerships and encouraging private investment in the agricultural sector (Omelianen- ko О., Omelyanenko V., Pidorycheva, 2025; Pido- rycheva, Bash, 2024);    allocation of funds from local and regional budgets to initiatives that are strategically impor- tant for the area, guaranteeing food and environ- mental security;    activation of communication and informa- tional eff orts, with the aim of presenting a favora- ble picture of the area to a prospective investor and giving him the most comprehensive information regarding investment off ers and the benefi ts of funding the agriculture industry. Unlike traditional ones, the mechanism for managing the agro-industrial complex’s sustain- able development based on the concept of a busi- ness model proposed in the study is regarded as a system of network business interaction of enter- prises in the agro-industrial complex. It reveals the key components of the value chain of enterprises in the agro-industrial complex, implies that an agro- industrial complex enterprise chooses the best kind of innovative business model and enables the determination of strategic directions for achieving the region’s sustainable development goals. 33ISSN 1562-109X. Економіка промисловості. 2025. № 3 (111) Digital convergence of agriculture and Industry 4.0: opportunities and organisation interfaces Th e following justifi es the speed with which a business model concept can be selected for the es- tablishment of an integration mechanism for the sustainable growth of agricultural enterprises:    considering the growing popularity of the sharing economy (economy of joint use) theories, business networks of agricultural fi rms function as organizational innovations. Long-term meg- atrends, primarily brought about by technological advancements, resource scarcity and social chang- es, come together to form the economy of shared consumption;    business models explain how enterprises in- teract with one another in networks and they can also be a source of competition between players (the interaction of stakeholders in the network oc- curs on a competitive market basis);    agro-industrial complex’s business networks are based on both formal and for the most part, informal groups of businesses that interact with one another. Th is calls for knowledge integration and exchange. By addressing social and cognitive issues, business modeling seeks to improve enter- prise group interaction and foster the creative po- tential of each employee in the business network. Within the framework of smart specialization and organization of interaction between technol- ogy transfer participants, it is proposed to create a technology transfer center, the purpose of which will be the development and implementation of a system of commercialization and technology transfer in the region’s agriculture, the transfer of scientifi c results, new technologies from their de- veloper to a new owner. Th e tasks of this center can include: preparation and organization of events to identify promising scientifi c developments aimed at further commer- cialization and technology transfer; search for part- ners for the commercialization of developments; organization and holding of advertising activities, exhibitions, seminars, symposia and conferences focused on the commercialization of R&D results; information support for the process of commer- cialization and transfer of developments; assess- ment of costs associated with the acquisition of technologies; conclusion of an agreement and transfer of technology. As a result of the study, the network and clus- ter form of organization of agricultural produc- tion was identifi ed as the most acceptable for the implementation of the relationship between sci- ence and production. In world practice, a cluster approach is used in the implementation of inno- vation policy, according to which a cluster is un- derstood as a network of independent production and service fi rms, including suppliers, creators of technologies and know-how, connecting market institutions and consumers interacting with each other within a single value chain. A feature of a cluster is the emphasis on the links between industries, enterprises and organizations that contribute to: the development of production and competition; simplifi ed access to the latest technologies; risk distribution in various types of joint activities; organization of joint scientifi c re- search and the process of training and retraining of specialists; reduction of transaction costs, etc. Th e creation of an agro-technological cluster in terms of technological development will allow:    to identify problems and determine the cur- rent state of the technical and technological sphere of the region;   to assess the resource potential;    to determine the mechanisms for regulating technological development;   to assess the expected socio-economic results from the activities carried out. An agro-technological cluster is understood as a system of interconnected organizations integrated with the aim of simultaneous and interconnect- ed solution of agricultural production problems based on eff ective technologies. Th e fundamental diff erence of the proposed cluster model is its construction based on tech- nology transfer. Th e cluster boundaries will cover several industries, as it develops, the depth of sec- ondary raw material processing will increase and the supplier and consumer bases will expand. Re- source-saving technologies will form the basis of the agro-technological cluster. In the cluster structure, a large role is given to scientifi c institutions, since these institutions act as a system for promoting knowledge and technol- ogy, in addition, inventions are transformed into innovations in them. Th anks to information and consulting services, participants in the cluster formation receive com- petitive advantages from innovations. Th e implementation of the cluster strategy will require attracting large investment resources. Th e enterprises themselves should act as the main in- vestors, which is unlikely at present. Th erefore, 34 ISSN 1562-109X Econ. promisl. 2025. № 3 (111) V. A. Omelyanenko additional scientifi c research is required, signifi - cant amendments to a number of laws and regula- tions on agro-industrial formations of the holding and cluster type. Th e productivity of organizations, supported by the technological connectivity of the cluster value chain, provides its critical mass and the basis for further innovations. Based on this, it should be noted that the interaction of participants in the sphere of the innovation process has a number of characteristic features expressed in the specifi cs of the industry and the innovation cycle itself. Anal- ysis of experience in the creation of innovation structures provides broad opportunities in choos- ing a model of innovative development, the main result of innovation activity is the transfer and commercialization of technologies. Technological development in the institutional sphere provides for developments related to the creation of forms and mechanisms for connecting science and pro- duction — this is the central link in the implemen- tation of integration processes, intensifi cation of science and production, acceleration of the pace of scientifi c and technological progress. To solve this problem in agriculture, research, creation and op- eration of multi-level scientifi c organizations with- in the framework of cluster policy are necessary. Following the example of developed countries, it is advisable to involve a third party in the trans- fer of material technologies and innovative servic- es, whose task is to provide information support for this process. Such mediation will be carried out through the information provider system. Th e function of providers is also to mediate between manufacturers and the fi nancial sector. Th e development of an information provider network is possible only in the structure of an ef- fective technology transfer system, functioning in the form of a branched network and providing for the coordination of all transfer participants from a single center. Examples of such networks are European Entrepreneurship Network, American Technology Transfer Center, which have a complex multi-level hierarchical structure of regional cent- ers and representative offi ces. At the same time, the commercialization of technology, as well as ensur- ing the purchase of innovation on the most favora- ble terms, are usually carried out with the media- tion of their participants. Th ere are two large networks in Ukraine (Ukrain- ian Technology Transfer Network with a coordina- tion center in Academy of Technical Sciences and National Technology Transfer Network), as well as several transfer centers, business incubators, technology parks, operating independently of each other. Unlike foreign practice, the domestic technology transfer sector is characterized by sig- nifi cant fragmentation. Th is is due to the fact that the specifi ed non-integrated technology transfer networks perform almost the same functions. In addition, none of the domestic networks is a par- ticipant in foreign technology transfer platforms, which not only signifi cantly complicates access to foreign databases, but also makes it impossible for providers and manufacturers from other countries to access data on domestic achievements in science and technology. From the above, we can conclude that it is necessary to create a single centralized do- mestic technology transfer network. Technology transfer services within the frame- work of agricultural production should cover: 1) legal support for the development commer- cialization process; 2) patenting and licensing; 3) creation and maintenance of an information support platform for the innovation process; 4) economic assessment of the prospects of in- novations, their eff ectiveness; 5) marketing services for technology transfer, in particular, promotion of technologies, search for the necessary innovations for specifi c buyers. It is advisable to integrate personnel for servic- ing technology transfer in agriculture on the ba- sis of agricultural and natural science universities. Th is is explained by the availability of specialists with the necessary qualifi cations, in particular, practicing legal scholars, economists who are specialists in the fi elds of investment, innovation management, intellectual property, fi nance, mar- keting, etc., IT specialists who are capable of not only servicing but also creating information sys- tems. Scientifi c institutions in such a system will play, fi rst of all, the role of technology developers, the commercialization of which will be carried out by transfer specialists It is advisable to create the following divisions in the structure of Center for Technology Transfer in Agriculture: 1) technology department (technological audit of technology and the enterprise — the customer of the innovation; development of accompanying technical documentation, etc.); 35ISSN 1562-109X. Економіка промисловості. 2025. № 3 (111) Digital convergence of agriculture and Industry 4.0: opportunities and organisation interfaces 2) marketing department (research of the mar- ket situation for innovations in agriculture, in par- ticular, supply and demand; organization of par- ticipation in conferences, exhibitions); 3) fi nancial and economic department (assess- ment of socio-economic and environmental ef- fi ciency of an idea, development; preparation of business plans and innovation and investment projects; establishment of contacts with budget fi - nancing bodies, optimization of fi nancing sources and innovation portfolio); 4) patent service (preparation and support of pat- ent applications, protection of intellectual property); 5) legal service (legal support for registration of license agreements, loan agreements, agreements with contractors, consulting in case of violation of intellectual property rights); 6) information support department (creation and maintenance of information support of the technology transfer center; ensuring two-way communication of the center’s information sys- tem with the information platform of the national technology transfer network). Conclusions High-tech agriculture represents a paradigm shift in how food is produced, managed and delivered in the 21st century. It merges traditional farming with cutting-edge technologies from across the industrial spectrum, transforming agriculture into a knowl- edge-intensive, data-driven and innovation-orient- ed sector. Th e integration of IoT, AI, robotics, bio- technology and renewable energy into agricultural systems fosters not only higher productivity and re- source effi ciency but also greater sustainability and adaptability to climate and market uncertainties. As shown by international experiences, especially in technologically advanced countries, the implemen- tation of smart agricultural technologies results in measurable improvements in yield, energy use and water effi ciency. However, realizing similar out- comes in developing and transitioning economies, such as Ukraine, requires a focused eff ort in strategic planning, capacity building and technology transfer. Th e institutional environment, research support and international cooperation play decisive roles in this transformation. By positioning high-tech agricul- ture within the broader context of Industry 4.0 and innovation ecosystems, this study confi rms that the sector can act as a catalyst for inclusive economic growth and regional development. Th e transition to concurrent engineering in ag- riculture marks a paradigm shift in how modern agri-technologies are developed, tested and de- ployed. By replacing linear development models with synchronized, collaborative processes, this methodology addresses the pressing need for fast- er, more sustainable and context-adapted innova- tions in a rapidly evolving sector. Th e integration of ICT tools and digital infrastructures facilitates the coordination of multidisciplinary teams, sup- ports knowledge-driven decision-making and en- sures early problem detection. Moreover, the inclu- sion of sustainability indicators during the design phase, supported by methods such as QFD and the «sustainability house», strengthens alignment with environmental and socio-economic goals. As high-tech agriculture continues to evolve within complex innovation ecosystems, the adoption of concurrent engineering provides a robust founda- tion for systemic, scalable and inclusive techno- logical advancement. Th e proposed approach not only enhances product and process innovation but also supports the resilience and competitiveness of agriculture in the face of global challenges. Th e eff ective transfer of agricultural technolo- gies requires not only scientifi c excellence but also well-structured, digitally enabled systems that can bridge the gap between research and practice. Th is study proposes a comprehensive model of a concurrent engineering-based infor- mation and analytical system that facilitates the co-creation, adaptation and dissemination of innovations within the agri-food sector. By in- tegrating data-driven modules, geospatial tools and decision support functionalities into a uni- fi ed platform, the system empowers stakehold- ers to reduce development time, manage risk and increase the effi ciency of technology adoption in diverse territorial contexts. Th e formation of agro-technological clusters and technology transfer centers is central to operation- alizing this model, fostering collaboration among universities, startups, producers and policymakers. Th ese clusters provide a functional environment for the coordinated development of sustainable and locally adapted technologies, while the digital architecture ensures transparency, knowledge con- tinuity and stakeholder accountability. Further- more, the institutionalization of transfer services is essential for scaling innovations and creating ro- bust, investor-ready ecosystems. 36 ISSN 1562-109X Econ. promisl. 2025. № 3 (111) V. A. Omelyanenko Given the fragmentation of the current technol- ogy transfer landscape in Ukraine, the paper un- derscores the need for a centralized, integrated na- tional network that connects domestic innovation actors with international platforms. Such an ap- proach not only enhances global competitiveness but also aligns agricultural innovation with nation- al goals for food security, environmental sustain- ability and regional development. Th e proposed model demonstrates that digital infrastructure, organizational integration and smart specialization can collectively transform technology transfer into a dynamic engine of agricultural modernization. Prospects for further studies Future research will focus on expanding the func- tionality of the proposed system through the in- tegration of real-time data analytics, which can further automate scenario generation and deci- sion-making processes. Another important direc- tion includes testing the tool in specifi c sectors, such as green infrastructure, high-tech agriculture and urban mobility, to tailor the models to sector- specifi c needs. Th ere is also signifi cant potential for international collaboration, particularly within the framework of EU digital and innovation eco- systems, to adapt the tool for cross-border infra- structure projects. Furthermore, researchers aim to investigate the role of local innovation commu- nities in optimizing the interaction between tech- nological systems and human decision-makers. Th ese steps will contribute to refi ning the system’s responsiveness and scalability across various envi- ronments and use cases. ЛІТЕРАТУРА Підоричева І. Ю., Баш А. С. (2024). Смарт-спеціалізація промислових регіонів України: організаційно-економічний супровід. Економіка промисловості. № 2 (106). С. 5—28. http://doi.org/10.15407/econindustry 2024.02.005 Aguilar-Virgen Q., Castañeda-González M., Marquez-Benavides L., Gonzalez-Vazquez J., Taboada-González P. Con- current Engineering Model for the Implementation of New Products in the Textile Industry: A Case Study. Applied Sciences. 2021. Vol. 11, Iss. 8. Art. 3584. https://doi.org/10.3390/app11083584 Alston J. M., Pardey P. G. Agriculture in the global economy. J. Econ. Perspect. 2014. Vol. 28, No. 1. P. 121—146. https:// doi.org/10.1257/jep.28.1.121 Badiane O. Agriculture and structural transformation in Africa. Frontiers in Food Policy : Perspectives on Sub-Saharan Africa / Eds. W. P. Falcon, R. L. Naylor. Th e Center on Food Security and the Environment. Stanford University  : Stanford, CA, USA, 2014. URL: http://fsi.stanford.edu/publications/frontiers_in_food_policy_perspectives_on_sub- saharan_africa (Access: 07.07.2025). Bietresato M., Selmo F., Mazzetto F. Concurrent engineering approach in design of test equipment for detecting farm trac- tor mechanical performances: Application to development of hub-adapter. Engineering for rural development. Jelgava, 2020, May 20—21. URL: https://www.iitf.lbtu.lv/conference/proceedings2020/Papers/TF389.pdf (Access: 07.07.2025). Brookes N., Blackhouse C. (1996). Concurrent engineering — what’s working where. Th e Design Council. London: Gow- er Publishing, Ltd. URL: https://books.google.com.ua/books/about/Concurrent_Engineering.html?id=QzRhe0MM_ EkC&redir_esc=y (Access: 07.07.2025). Brookes N., Blackhouse C. Understanding concurrent engineering implementation: a case study approach. International Journal of Production Research. 1998. No. 36. Р. 3035—3054. http://dx.doi.org/10.1080/002075498192274 Climate, Livestock and Poverty: Challenges at the Interface. International Livestock Research Institute. Corporate Re- port 2008—09. ILRI, Nairobi, Kenya. 2008. URL: https://www.ilri.org/knowledge/publications/ilri-corporate-report- 2008-9-climate-livestock-and-poverty-challenges (Access: 07.07.2025). Concurrent Engineering in the 21st Century / Eds. J. Stjepandić, P. M. Wognum, W. J. Verhagen. Springer, 2015. URL: https://link.springer.com/book/10.1007/978-3-319-13776-6 (Access: 07.07.2025). Deshpande A. Concurrent Engineering, Knowledge Management and Product Innovation. J. Oper. Strateg. Plan. 2018. Vol. 1, Iss. 2. Р. 204—231. https://doi.org/10.1177/2516600X18816204 dos Reis Â. V., Medeiros F. A., Fernando M. et al. Technological trends in digital agriculture and their impact on ag- ricultural machinery development practices. Revista Ciência Agronômica. 2020. Vol. 51. Special Agriculture 4.0. Art. e20207740. https://doi.org/10.5935/1806-6690.20200093 Dror I. From technology transfer (TT) to agricultural innovation systems (AIS). SEARCA Forum-workshop on Plat- forms, Rural Advisory Services and Knowledge Management: Towards Inclusive and Sustainable Agricultural and Rural Development. Los Banos, 2016, May 17—19. https://cgspace.cgiar.org/server/api/core/bitstreams/cf481b78-d117- 44c9-a6d5-b5a5b4b780c1/content (Access: 07.07.2025). Facco G., et al. Cooperation of functional areas in agricultural machinery development process. Product : Management & Development. 2017. Vol. 15, No. 1. P. 1—7. http://dx.doi.org/10.4322/pmd.2017.007 Jha G. K., Ranjan P., Gaur M. A machine learning approach to recommend suitable crops and fertilizers for agriculture. Recom- mender System with Machine Learning and Artifi cial Intelligence: Practical Tools and Applications in Medical, Agricultural and Other Industries. John Wiley & Sons : Hoboken, NJ, USA. 2020. P. 89—99. https://doi.org/10.1002/9781119711582.ch5 37ISSN 1562-109X. Економіка промисловості. 2025. № 3 (111) Digital convergence of agriculture and Industry 4.0: opportunities and organisation interfaces Klerkx L., Van M., Leeuwis C. (2012). Evolution of systems approaches to agricultural innovation: Concepts, analysis and interventions. Farming Systems Research into the 21st Century : Th e New Dynamic / Eds. I. Darnhofer, D. Gibbon, B. Dedieu. Springer, Netherlands. https://doi.org/10.1007/978-94-007-4503-2_20 Méndez-Zambrano P. V., Tierra Pérez L. P., Ureta Valdez R. E., Flores Orozco Á. P. Technological Innovations for Agri- cultural Production from an Environmental Perspective : A Review. Sustainability. 2023. Vol. 15, Iss. 22. Art. 16100. https://doi.org/10.3390/su152216100 Mgendi G., Shiping M., Xiang C. A Review of Agricultural Technology Transfer in Africa: Lessons from Japan and China Case Projects in Tanzania and Kenya. Sustainability. 2019. Vol. 11, Iss. 23. Art. 6598. https://doi.org/10.3390/su11236598 Omelianenko O., Omelyanenko V., Pidorycheva I. Data-driven planning of regional development and inclusive indus- trialization. Data economy: challenges and opportunities for business and government : monograph. Praha : OKTAN PRINT, 2025. P. 277—288. https://doi.org/10.46489/DECAO-25-03 Prasad B. Collaborative Design and Manufacturing Research. Concurr. Eng. 2018. Vol.  26. P.  211—214. https://doi. org/10.1177/1063293X18793692 Prokopenko O., Järvis M., Omelyanenko V., Maslov A., Lopes H. Th e Convergence of IoT, Cyber-Physical Systems and Mechatronics in Industry 4.0 Digitalization. Innovations in Industrial Engineering IV. Icieng 2025. Lecture Notes in Mechanical Engineering / Eds. J. Machado, J. Trojanowska, K. Antosz, C. P. Leão, L. Knapcikova, A. Sover. Springer, Cham, 2025. P. 48—65. https://doi.org/10.1007/978-3-031-94484-0_5 Rihar L., Kušar J. Implementing Concurrent Engineering and QFD Method to Achieve Realization of Sustainable Pro- ject. Sustainability. 2021. Vol. 13 (3). Art. 1091. https://doi.org/10.3390/su13031091 Shevchenko I., Omelyanenko V., Chuprun Y., Ippolitova I., Shchokin R. Advancing the Knowledge Economy: Th e Im- pact of Innovations and Human Capital. Journal of Posthumanism. 2025. Vol. 5, No. 1. P. 1270—1283. https://doi. org/10.63332/joph.v5i1.664 Th ankachan T., Bhasi M., Madhu G. Application of concurrent engineering in manufacturing industry. International Journal of Computer Integrated Manufacturing. 2010. Vol. 23, Iss. 5. P. 425—440. https://doi.org/10.1080/09511921003643152 Th e Future of Food and Agriculture: Trends and Challenges. FAO : Rome, Italy, 2017. URL: https://openknowledge.fao. org/server/api/core/bitstreams/2e90c833-8e84-46f2-a675-ea2d7afa4e24/content (Access: 07.07.2025). Th e State of Food and Agriculture 2023. FAO : Rome, Italy, 2023 https://doi.org/10.4060/cc7724en Th orat T., Patle B. K., Kashyap S. K. Intelligent insecticide and fertilizer recommendation system based on TPF-CNN for smart farming. Smart Agric. Technol. 2023. Vol. 3. Art. 100114. https://doi.org/10.1016/j.atech.2022.100114 Tirupathi P., Niranjan P. An optimal strategy for sustainable IoT device placements for agriculture. Concurrent Engineer- ing. 2022. https://doi.org/10.1177/1063293X221131885 Vyshnevskyi O. S., Anufriiev M. Yu., Bozhyk M. S., Gulchuk T. O. Artifi cial intelligence as a core of the new industrial revolu- tion: prospects and limitations. Econ. promisl. 2024. Vol. 3 (107). P. 5—21. http://doi.org/10.15407/econindustry2024.03.005 Надійшла до редакції 11.07.2025 р. Прийнята до друку 29.07.2025 р. REFERENCES Pidorycheva, I. Yu., & Bash, A. S. (2024). Smart specialization of industrial regions of Ukraine: organizational and economic support. Econ. promisl., 2 (106), 5—28. http://doi.org/10.15407/econindustry2024.02.005 [in Ukrainian]. Aguilar-Virgen, Q., Castañeda-González, M., Marquez-Benavides, L., Gonzalez-Vazquez, J., & Taboada-González, P. (2021). Concurrent Engineering Model for the Implementation of New Products in the Textile Industry: A Case Study. Applied Sciences, 11 (8), 3584. https://doi.org/10.3390/app11083584 Alston, J. M., & Pardey, P. G. (2014). Agriculture in the global economy. J. Econ. Perspect., 28 (1), 121—146. https:// doi.org/10.1257/jep.28.1.121 Badiane, O. (2014). Agriculture and structural transformation in Africa. In Falcon, W.  P. & Naylor, R.  L. (Eds.). Frontiers in Food Policy: Perspectives on Sub-Saharan Africa. Th e Center on Food Security and the Environment, Stanford University: Stanford, CA, USA. http://fsi.stanford.edu/publications/frontiers_in_food_policy_perspec- tives_on_subsaharan_africa Bietresato, M., Selmo, F., & Mazzetto, F. (2020, May 20—21). Concurrent engineering approach in design of test equipment for detecting farm tractor mechanical performances: Application to development of hub-adapter. En- gineering for rural development. Jelgava. https://www.iitf.lbtu.lv/conference/proceedings2020/Papers/TF389.pdf Brookes, N., & Blackhouse, C. (1996). Concurrent engineering — what’s working where. Th e Design Coun- cil. London: Gower Publishing, Ltd. https://books.google.com.ua/books/about/Concurrent_Engineering. html?id=QzRhe0MM_EkC&redir_esc=y Brookes, N., & Blackhouse, C. (1998). Understanding concurrent engineering implementation: a case study approach. International Journal of Production Research, 36, 3035—3054. http://dx.doi.org/10.1080/002075498192274 ILRI (2008). Climate, Livestock and Poverty: Challenges at the Interface. International Livestock Research Institute. Corporate Report 2008—09. ILRI, Nairobi, Kenya. https://www.ilri.org/knowledge/publications/ilri-corporate- report-2008-9-climate-livestock-and-poverty-challenges Stjepandić, J., Wognum, P.  M., & Verhagen, W.  J. (2015). Concurrent Engineering in the 21st Century. Springer. https://link.springer.com/book/10.1007/978-3-319-13776-6 38 ISSN 1562-109X Econ. promisl. 2025. № 3 (111) V. A. Omelyanenko Deshpande, A. (2018). Concurrent Engineering, Knowledge Management and Product Innovation. J. Oper. Strateg. Plan., 1 (2), 204—231. https://doi.org/10.1177/2516600X18816204 dos Reis, Â. V., Medeiros, F. A., Fernando, M., & et al. (2020). Technological trends in digital agriculture and their impact on agricultural machinery development practices. Revista Ciência Agronômica, 51, Special Agriculture 4.0, e20207740. https://doi.org/10.5935/1806-6690.20200093 Dror, I. (2016, May 17—19). From technology transfer (TT) to agricultural innovation systems (AIS). SEARCA Fo- rum-workshop on Platforms, Rural Advisory Services and Knowledge Management: Towards Inclusive and Sustaina- ble Agricultural and Rural Development. Los Banos. https://cgspace.cgiar.org/server/api/core/bitstreams/cf481b78- d117-44c9-a6d5-b5a5b4b780c1/content Facco, G., & et al. (2017). Cooperation of functional areas in agricultural machinery development process. Product: Management & Development, 15 (1), 1—7. http://dx.doi.org/10.4322/pmd.2017.007 Jha, G. K., Ranjan, P., & Gaur, M. (2020). A machine learning approach to recommend suitable crops and fertilizers for agriculture. In S. Na. Mohanty, J. M. Chatterjee, S. Jain, A. A. Elngar, P. Gupta (Eds.). Recommender System with Machine Learning and Artifi cial Intelligence: Practical Tools and Applications in Medical, Agricultural and Other Industries (pp. 89—99). John Wiley & Sons: Hoboken, NJ, USA. https://doi.org/10.1002/9781119711582.ch5 Klerkx, L., Van M., & Leeuwis, C. (2012). Evolution of systems approaches to agricultural innovation: Concepts, analysis and interventions. In I. Darnhofer, D. Gibbon, & B. Dedieu (Eds.). Farming Systems Research into the 21st Century: Th e New Dynamic (pp. 457—483). Springer, Netherlands. https://doi.org/10.1007/978-94-007-4503-2_20 Méndez-Zambrano, P. V., Tierra Pérez, L. P., Ureta Valdez, R. E., & Flores Orozco, Á. P. (2023). Technological Inno- vations for Agricultural Production from an Environmental Perspective: A Review. Sustainability, 15 (22), 16100. https://doi.org/10.3390/su152216100 Mgendi, G., Shiping, M., & Xiang, C. (2019). A Review of Agricultural Technology Transfer in Africa: Lessons from Japan and China Case Projects in Tanzania and Kenya. Sustainability, 11  (23), 6598. https://doi.org/10.3390/ su11236598 Omelianenko, O., Omelyanenko, V., & Pidorycheva, I. Data-driven planning of regional development and inclu- sive industrialization. Data economy: challenges and opportunities for business and government: monograph (pp. 277—288). Praha: OKTAN PRINT. https://doi.org/10.46489/DECAO-25-03 Prasad, B. (2018). Collaborative Design and Manufacturing Research. Concurr. Eng., 26, 211—214. https://doi. org/10.1177/1063293X18793692 Prokopenko, O., Järvis, M., Omelyanenko, V., Maslov, A., & Lopes, H. (2025). Th e Convergence of IoT, Cyber-Phys- ical Systems and Mechatronics in Industry 4.0 Digitalization. In J., Machado, J., Trojanowska, K., Antosz, C. P., Leão, L., Knapcikova, & A., Sover (Eds). Innovations in Industrial Engineering IV. ICIENG 2025. Lecture Notes in Mechanical Engineering (pp. 48—65). Springer, Cham. https://doi.org/10.1007/978-3-031-94484-0_5 Rihar, L., & Kušar, J. (2021). Implementing Concurrent Engineering and QFD Method to Achieve Realization of Sus- tainable Project. Sustainability, 13 (3), 1091. https://doi.org/10.3390/su13031091 Shevchenko, I., Omelyanenko, V., Chuprun, Y., Ippolitova, I., & Shchokin, R. (2025). Advancing the Knowledge Econ- omy: Th e Impact of Innovations and Human Capital. Journal of Posthumanism, 5  (1), 1270—1283. https://doi. org/10.63332/joph.v5i1.664 Th ankachan, T., Bhasi, M., & Madhu, G. (2010). Application of concurrent engineering in manufactur- ing industry. International Journal of Computer Integrated Manufacturing, 23  (5), 425—440. https://doi. org/10.1080/09511921003643152 FAO (2017). Th e Future of Food and Agriculture: Trends and Challenges; Food and Agriculture Organization of the United Nations: Rome, Italy. https://doi.org/10.4060/cc7724en FAO (2023). Th e State of Food and Agriculture 2023. FAO: Rome, Italy. https://openknowledge.fao.org/items/1516eb79- 8b43-400e-b3cb-130fd70853b0 Th orat, T., Patle, B. K., & Kashyap, S. K. (2023). Intelligent insecticide and fertilizer recommendation system based on TPF-CNN for smart farming. Smart Agric. Technol, 3, 100114. https://doi.org/10.1016/j.atech.2022.100114 Tirupathi, P., & Niranjan, P. (2022). An optimal strategy for sustainable IoT device placements for agriculture. Con- current Engineering. https://doi.org/10.1177/1063293X221131885 Vyshnevskyi, O. S., Anufriiev, M. Yu., Bozhyk, M. S., & Gulchuk, T. O. (2024). Artifi cial intelligence as a core of the new industrial revolution: prospects and limitations. Econ. promisl., 3 (107), рр. 5—21. http://doi.org/10.15407/ econindustry2024.03.005 Received: 11.07.2025 Accepted: 29.07.2025 39ISSN 1562-109X. Економіка промисловості. 2025. № 3 (111) Digital convergence of agriculture and Industry 4.0: opportunities and organisation interfaces Віталій Анатолійович Омельяненко, д-р екон. наук, старший дослідник, професор Е-mail: omvitaliy@gmail.com; https://orcid.org/0000-0003-0713-1444 Інститут економіки промисловості НАН України вул. Марії Капніст, 2, м. Київ, 03057, Україна ЦИФРОВА КОНВЕРГЕНЦІЯ СІЛЬСЬКОГО ГОСПОДАРСТВА ТА ІНДУСТРІЇ 4.0: МОЖЛИВОСТІ ТА ОРГАНІЗАЦІЙНІ ІНТЕРФЕЙСИ Агропромисловий комплекс зазнає глибокої трансформації, зумовленої нагальною потребою в подоланні таких глобальних викликів, як продовольча небезпека, зміна клімату, демографічні зрушення та дефіцит ресурсів. Проаналізовано роль високотехнологічного сільського господарства як ключового рушія іннова- цій і стійкості в агропромисловому комплексі. Наголошено на основних технологічних тенденціях Індустрії 4.0, зокрема інтеграції Інтернету речей (IoT), робототехніки, точного землеробства, біотехнологій і віднов- люваної енергетики, які в сукупності переосмислюють сільськогосподарські практики та тісно пов’язують агросектор із сучасними галузями промисловості. Особлива увага приділяється стратегічній важливості трансферу технологій, плануванню на основі форсайту та заснованих на даних рішенням для підвищен- ня продуктивності, зниження екологічного навантаження та посилення стійкості. Взаємозв’язок між сіль- ським господарством та іншими секторами («зелена» енергетика, ІКТ) представлений через системний погляд на інновації, що підкреслює зростаючу конвергенцію галузей. Висновки підтверджують ідею, що ви- сокотехнологічне сільське господарство є не ізольованим, а становить складову цифровізованої промисло- вої економіки. Сформовано системно орієнтований підхід до трансферу та комерціалізації аграрних техно- логій, що передбачає використання цифрових технологій і ґрунтується на принципах паралельної інженерії та теорії інноваційних мереж. Паралельна інженерія широко застосовується в передових галузях промис- ловості та пропонує трансформаційну альтернативу традиційним послідовним моделям розроблення, за- безпечуючи колаборацію та паралельне проєктування. Підкреслено критичну роль етапу проєктування в життєвому циклі агротехнологій. Розглянуто, як паралельна інженерія підвищує ефективність, стійкість та адаптивність в інноваційних мережах сільського господарства. Із використанням цифрових інструментів, інтегрованих систем знань і платформ ІКТ-співпраці такий підхід передбачає узгодження інженерного про- єктування з цілями сталого розвитку, забезпечуючи раннє виявлення ризиків, гнучке прототипування та залучення зацікавлених сторін із різних секторів. Запропоновано структуру ІКТ-підтримки інноваційних мереж. Наголошено на необхідності включення міждисциплінарних і географічно розподілених команд у цикл розроблення для забезпечення релевантності, стійкості та створення довгострокової цінності в сек- торі аграрних технологій. Запропонована організаційна модель трансферу технологій інтегрує підсистеми управління даними, геоінформаційного аналізу та прийняття рішень на основі знань для підтримки життє- вого циклу аграрних інновацій. Основну увагу приділено зближенню сільського господарства та Індустрії 4.0 через регіональну смарт-спеціалізацію, публічно-приватне партнерство та формування агротехнологіч- них кластерів. Висвітлено організаційні та інфраструктурні вимоги до побудови мережі трансферу техно- логій з фокусом на важливості маркетингових сервісів й інтегрованих високоефективних екосистем транс- феру. Завдяки поєднанню інституційного проєктування з цифровою інфраструктурою модель забезпечує ефектив ніше, масштабоване та стійке впровадження агротехнологічних інновацій у регіонах. Ключові слова: сільське господарство, трансфер технологій, інформаційно-комунікаційні технології, іннова- ційна мережа, агротехнологічні інновації.