Исследование геометрии D-разбиения одномерной плоскости параметра характеристического уравнения непрерывной системы
Розглянуто два види границь D-розбиття в площині одного параметра лінійних неперервних систем, задані характеристичним рівнянням з дійсними коефіцієнтами. Проводиться оцінка кількості відрізків і інтервалів стійкості кривої D-розбиття. Визначено максимальну кількість відрізків стійкості для різних п...
Збережено в:
| Дата: | 2021 |
|---|---|
| Автори: | , |
| Формат: | Стаття |
| Мова: | Russian |
| Опубліковано: |
Інститут кібернетики ім. В.М. Глушкова НАН України
2021
|
| Назва видання: | Проблемы управления и информатики |
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/208998 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Исследование геометрии D-разбиения одномерной плоскости параметра характеристического уравнения непрерывной системы / Л.Т. Мовчан, С.Л. Мовчан // Проблемы управления и информатики. — 2021. — № 4. — С. 125-136. — Бібліогр.: 7 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | Розглянуто два види границь D-розбиття в площині одного параметра лінійних неперервних систем, задані характеристичним рівнянням з дійсними коефіцієнтами. Проводиться оцінка кількості відрізків і інтервалів стійкості кривої D-розбиття. Визначено максимальну кількість відрізків стійкості для різних порядків поліномів рівняння границі D-розбиття першого виду (парний, непарний порядок, один — парного порядку, а другий — непарного). Доказано, що максимальна кількість відрізків стійкості однопараметричного сімейства для всіх випадків різна і залежить від співвідношення степенів поліномів рівняння кривої D-розбиття. Отримано в аналітичному вигляді похідну уявної частини виразу досліджуваного параметра в початковій точці кривої D-розбиття, знак якої залежить від співвідношення коефіцієнтів характеристичного рівняння і визначає стійкість першого відрізка дійсної осі площини параметра. Показано, що для другого виду границі D-розбиття в площині одного параметра є тільки один відрізок стійкості, розміщення якого, як і для першого виду границі області стійкості (ГОС), визначається знаком першої похідної уявної частини виразу досліджуваного параметра. Розглянуто приклад, в якому ілюструється ефективність запропонованого підходу для побудови області стійкості (ОС) в просторі двох параметрів без використання «штриховки за Неймарком» й побудови особливих прямих. При цьому забезпечується машинна реалізація побудови ОС. Враховуючи, що задача побудови границі області в площині двох параметрів зводиться до задачі визначення ГОС в площині одного параметра, то пропоновані оцінки максимальної кількості областей стійкості в площині одного параметра дозволяють зробити висновок про кількість максимальних областей стійкості в площині двох параметрів, які мають практичне значення. При цьому один з параметрів може нелінійно входити в коефіцієнти характеристичного рівняння. |
|---|