Representations of U(2∞) and the Value of the Fine Structure Constant

A relativistic quantum mechanics is formulated in which all of the interactions are in the four-momentum operator and Lorentz transformations are kinematic. Interactions are introduced through vertices, which are bilinear in fermion and antifermion creation and annihilation operators, and linear in...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2005
Автор: Klink, W.H.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2005
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/209332
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Representations of U(2∞) and the Value of the Fine Structure Constant / W.H. Klink // Symmetry, Integrability and Geometry: Methods and Applications. — 2005. — Т. 1. — Бібліогр.: 7 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-209332
record_format dspace
spelling Klink, W.H.
2025-11-19T12:10:38Z
2005
Representations of U(2∞) and the Value of the Fine Structure Constant / W.H. Klink // Symmetry, Integrability and Geometry: Methods and Applications. — 2005. — Т. 1. — Бібліогр.: 7 назв. — англ.
1815-0659
2000 Mathematics Subject Classification: 22D10; 81R10; 81T27
https://nasplib.isofts.kiev.ua/handle/123456789/209332
https://doi.org/10.3842/SIGMA.2005.028
A relativistic quantum mechanics is formulated in which all of the interactions are in the four-momentum operator and Lorentz transformations are kinematic. Interactions are introduced through vertices, which are bilinear in fermion and antifermion creation and annihilation operators, and linear in boson creation and annihilation operators. The fermion-antifermion operators generate a unitary Lie algebra, whose representations are fixed by a first-order Casimir operator (corresponding to baryon number or charge). Eigenvectors and eigenvalues of the four-momentum operator are analyzed, and exact solutions in the strong coupling limit are sketched. A simple model shows how the fine structure constant might be determined for the QED vertex.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Representations of U(2∞) and the Value of the Fine Structure Constant
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Representations of U(2∞) and the Value of the Fine Structure Constant
spellingShingle Representations of U(2∞) and the Value of the Fine Structure Constant
Klink, W.H.
title_short Representations of U(2∞) and the Value of the Fine Structure Constant
title_full Representations of U(2∞) and the Value of the Fine Structure Constant
title_fullStr Representations of U(2∞) and the Value of the Fine Structure Constant
title_full_unstemmed Representations of U(2∞) and the Value of the Fine Structure Constant
title_sort representations of u(2∞) and the value of the fine structure constant
author Klink, W.H.
author_facet Klink, W.H.
publishDate 2005
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description A relativistic quantum mechanics is formulated in which all of the interactions are in the four-momentum operator and Lorentz transformations are kinematic. Interactions are introduced through vertices, which are bilinear in fermion and antifermion creation and annihilation operators, and linear in boson creation and annihilation operators. The fermion-antifermion operators generate a unitary Lie algebra, whose representations are fixed by a first-order Casimir operator (corresponding to baryon number or charge). Eigenvectors and eigenvalues of the four-momentum operator are analyzed, and exact solutions in the strong coupling limit are sketched. A simple model shows how the fine structure constant might be determined for the QED vertex.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/209332
citation_txt Representations of U(2∞) and the Value of the Fine Structure Constant / W.H. Klink // Symmetry, Integrability and Geometry: Methods and Applications. — 2005. — Т. 1. — Бібліогр.: 7 назв. — англ.
work_keys_str_mv AT klinkwh representationsofu2andthevalueofthefinestructureconstant
first_indexed 2025-11-25T22:58:37Z
last_indexed 2025-11-25T22:58:37Z
_version_ 1850885958142001152