Representations of U(2∞) and the Value of the Fine Structure Constant
A relativistic quantum mechanics is formulated in which all of the interactions are in the four-momentum operator and Lorentz transformations are kinematic. Interactions are introduced through vertices, which are bilinear in fermion and antifermion creation and annihilation operators, and linear in...
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2005 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2005
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/209332 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Representations of U(2∞) and the Value of the Fine Structure Constant / W.H. Klink // Symmetry, Integrability and Geometry: Methods and Applications. — 2005. — Т. 1. — Бібліогр.: 7 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-209332 |
|---|---|
| record_format |
dspace |
| spelling |
Klink, W.H. 2025-11-19T12:10:38Z 2005 Representations of U(2∞) and the Value of the Fine Structure Constant / W.H. Klink // Symmetry, Integrability and Geometry: Methods and Applications. — 2005. — Т. 1. — Бібліогр.: 7 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 22D10; 81R10; 81T27 https://nasplib.isofts.kiev.ua/handle/123456789/209332 https://doi.org/10.3842/SIGMA.2005.028 A relativistic quantum mechanics is formulated in which all of the interactions are in the four-momentum operator and Lorentz transformations are kinematic. Interactions are introduced through vertices, which are bilinear in fermion and antifermion creation and annihilation operators, and linear in boson creation and annihilation operators. The fermion-antifermion operators generate a unitary Lie algebra, whose representations are fixed by a first-order Casimir operator (corresponding to baryon number or charge). Eigenvectors and eigenvalues of the four-momentum operator are analyzed, and exact solutions in the strong coupling limit are sketched. A simple model shows how the fine structure constant might be determined for the QED vertex. en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications Representations of U(2∞) and the Value of the Fine Structure Constant Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Representations of U(2∞) and the Value of the Fine Structure Constant |
| spellingShingle |
Representations of U(2∞) and the Value of the Fine Structure Constant Klink, W.H. |
| title_short |
Representations of U(2∞) and the Value of the Fine Structure Constant |
| title_full |
Representations of U(2∞) and the Value of the Fine Structure Constant |
| title_fullStr |
Representations of U(2∞) and the Value of the Fine Structure Constant |
| title_full_unstemmed |
Representations of U(2∞) and the Value of the Fine Structure Constant |
| title_sort |
representations of u(2∞) and the value of the fine structure constant |
| author |
Klink, W.H. |
| author_facet |
Klink, W.H. |
| publishDate |
2005 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
A relativistic quantum mechanics is formulated in which all of the interactions are in the four-momentum operator and Lorentz transformations are kinematic. Interactions are introduced through vertices, which are bilinear in fermion and antifermion creation and annihilation operators, and linear in boson creation and annihilation operators. The fermion-antifermion operators generate a unitary Lie algebra, whose representations are fixed by a first-order Casimir operator (corresponding to baryon number or charge). Eigenvectors and eigenvalues of the four-momentum operator are analyzed, and exact solutions in the strong coupling limit are sketched. A simple model shows how the fine structure constant might be determined for the QED vertex.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/209332 |
| citation_txt |
Representations of U(2∞) and the Value of the Fine Structure Constant / W.H. Klink // Symmetry, Integrability and Geometry: Methods and Applications. — 2005. — Т. 1. — Бібліогр.: 7 назв. — англ. |
| work_keys_str_mv |
AT klinkwh representationsofu2andthevalueofthefinestructureconstant |
| first_indexed |
2025-11-25T22:58:37Z |
| last_indexed |
2025-11-25T22:58:37Z |
| _version_ |
1850885958142001152 |