Transverse Evolution Operator for the Gross-Pitaevskii Equation in Semiclassical Approximation
The Gross-Pitaevskii equation with a local cubic nonlinearity that describes a many-dimensional system in an external field is considered in the framework of the complex WKB-Maslov method. Analytic asymptotic solutions are constructed in semiclassical approximation in a small parameter h, h → 0, in...
Gespeichert in:
| Veröffentlicht in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Datum: | 2005 |
| Hauptverfasser: | , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2005
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/209341 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Transverse Evolution Operator for the Gross-Pitaevskii Equation in Semiclassical Approximation / A. Borisov, A. Shapovalov, A. Trifonov // Symmetry, Integrability and Geometry: Methods and Applications. — 2005. — Т. 1. — Бібліогр.: 33 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Zusammenfassung: | The Gross-Pitaevskii equation with a local cubic nonlinearity that describes a many-dimensional system in an external field is considered in the framework of the complex WKB-Maslov method. Analytic asymptotic solutions are constructed in semiclassical approximation in a small parameter h, h → 0, in the class of functions concentrated in the neighborhood of an unclosed surface associated with the phase curve that describes the evolution of the surface vertex. The functions of this class are of the one-soliton form along the direction of the surface normal. The general constructions are illustrated by examples.
|
|---|---|
| ISSN: | 1815-0659 |