Transverse Evolution Operator for the Gross-Pitaevskii Equation in Semiclassical Approximation

The Gross-Pitaevskii equation with a local cubic nonlinearity that describes a many-dimensional system in an external field is considered in the framework of the complex WKB-Maslov method. Analytic asymptotic solutions are constructed in semiclassical approximation in a small parameter h, h → 0, in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2005
Hauptverfasser: Borisov, A., Shapovalov, A., Trifonov, A.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2005
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/209341
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Transverse Evolution Operator for the Gross-Pitaevskii Equation in Semiclassical Approximation / A. Borisov, A. Shapovalov, A. Trifonov // Symmetry, Integrability and Geometry: Methods and Applications. — 2005. — Т. 1. — Бібліогр.: 33 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:The Gross-Pitaevskii equation with a local cubic nonlinearity that describes a many-dimensional system in an external field is considered in the framework of the complex WKB-Maslov method. Analytic asymptotic solutions are constructed in semiclassical approximation in a small parameter h, h → 0, in the class of functions concentrated in the neighborhood of an unclosed surface associated with the phase curve that describes the evolution of the surface vertex. The functions of this class are of the one-soliton form along the direction of the surface normal. The general constructions are illustrated by examples.
ISSN:1815-0659