Transverse Evolution Operator for the Gross-Pitaevskii Equation in Semiclassical Approximation

The Gross-Pitaevskii equation with a local cubic nonlinearity that describes a many-dimensional system in an external field is considered in the framework of the complex WKB-Maslov method. Analytic asymptotic solutions are constructed in semiclassical approximation in a small parameter h, h → 0, in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2005
Hauptverfasser: Borisov, A., Shapovalov, A., Trifonov, A.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2005
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/209341
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Transverse Evolution Operator for the Gross-Pitaevskii Equation in Semiclassical Approximation / A. Borisov, A. Shapovalov, A. Trifonov // Symmetry, Integrability and Geometry: Methods and Applications. — 2005. — Т. 1. — Бібліогр.: 33 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-209341
record_format dspace
spelling Borisov, A.
Shapovalov, A.
Trifonov, A.
2025-11-19T12:23:21Z
2005
Transverse Evolution Operator for the Gross-Pitaevskii Equation in Semiclassical Approximation / A. Borisov, A. Shapovalov, A. Trifonov // Symmetry, Integrability and Geometry: Methods and Applications. — 2005. — Т. 1. — Бібліогр.: 33 назв. — англ.
1815-0659
2000 Mathematics Subject Classification: 81Q20; 81R30; 35Q55
https://nasplib.isofts.kiev.ua/handle/123456789/209341
https://doi.org/10.3842/SIGMA.2005.019
The Gross-Pitaevskii equation with a local cubic nonlinearity that describes a many-dimensional system in an external field is considered in the framework of the complex WKB-Maslov method. Analytic asymptotic solutions are constructed in semiclassical approximation in a small parameter h, h → 0, in the class of functions concentrated in the neighborhood of an unclosed surface associated with the phase curve that describes the evolution of the surface vertex. The functions of this class are of the one-soliton form along the direction of the surface normal. The general constructions are illustrated by examples.
The work was supported in part by a Grant of the President of the Russian Federation (No.NSh1743.2003.2).
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Transverse Evolution Operator for the Gross-Pitaevskii Equation in Semiclassical Approximation
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Transverse Evolution Operator for the Gross-Pitaevskii Equation in Semiclassical Approximation
spellingShingle Transverse Evolution Operator for the Gross-Pitaevskii Equation in Semiclassical Approximation
Borisov, A.
Shapovalov, A.
Trifonov, A.
title_short Transverse Evolution Operator for the Gross-Pitaevskii Equation in Semiclassical Approximation
title_full Transverse Evolution Operator for the Gross-Pitaevskii Equation in Semiclassical Approximation
title_fullStr Transverse Evolution Operator for the Gross-Pitaevskii Equation in Semiclassical Approximation
title_full_unstemmed Transverse Evolution Operator for the Gross-Pitaevskii Equation in Semiclassical Approximation
title_sort transverse evolution operator for the gross-pitaevskii equation in semiclassical approximation
author Borisov, A.
Shapovalov, A.
Trifonov, A.
author_facet Borisov, A.
Shapovalov, A.
Trifonov, A.
publishDate 2005
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description The Gross-Pitaevskii equation with a local cubic nonlinearity that describes a many-dimensional system in an external field is considered in the framework of the complex WKB-Maslov method. Analytic asymptotic solutions are constructed in semiclassical approximation in a small parameter h, h → 0, in the class of functions concentrated in the neighborhood of an unclosed surface associated with the phase curve that describes the evolution of the surface vertex. The functions of this class are of the one-soliton form along the direction of the surface normal. The general constructions are illustrated by examples.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/209341
citation_txt Transverse Evolution Operator for the Gross-Pitaevskii Equation in Semiclassical Approximation / A. Borisov, A. Shapovalov, A. Trifonov // Symmetry, Integrability and Geometry: Methods and Applications. — 2005. — Т. 1. — Бібліогр.: 33 назв. — англ.
work_keys_str_mv AT borisova transverseevolutionoperatorforthegrosspitaevskiiequationinsemiclassicalapproximation
AT shapovalova transverseevolutionoperatorforthegrosspitaevskiiequationinsemiclassicalapproximation
AT trifonova transverseevolutionoperatorforthegrosspitaevskiiequationinsemiclassicalapproximation
first_indexed 2025-12-07T19:52:24Z
last_indexed 2025-12-07T19:52:24Z
_version_ 1850886151586447360