Ermakov's Superintegrable Toy and Nonlocal Symmetries

We investigate the symmetry properties of a pair of Ermakov equations. The system is superintegrable and yet possesses only three Lie point symmetries with the algebra sl(2, R). The number of point symmetries is insufficient, and the algebra is unsuitable for the complete specification of the system...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2005
Hauptverfasser: Leach, P.G.L., Karasu (Kalkanli), A., Nucci, M.C., Andriopoulos, K.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2005
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/209342
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Ermakov's Superintegrable Toy and Nonlocal Symmetries / P.G.L. Leach, A. Karasu (Kalkanli), M.C. Nucci, K. Andiopoulos // Symmetry, Integrability and Geometry: Methods and Applications. — 2005. — Т. 1. — Бібліогр.: 50 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-209342
record_format dspace
spelling Leach, P.G.L.
Karasu (Kalkanli), A.
Nucci, M.C.
Andriopoulos, K.
2025-11-19T12:23:52Z
2005
Ermakov's Superintegrable Toy and Nonlocal Symmetries / P.G.L. Leach, A. Karasu (Kalkanli), M.C. Nucci, K. Andiopoulos // Symmetry, Integrability and Geometry: Methods and Applications. — 2005. — Т. 1. — Бібліогр.: 50 назв. — англ.
1815-0659
2000 Mathematics Subject Classification: 17B80; 22E70; 34C14; 37C80
https://nasplib.isofts.kiev.ua/handle/123456789/209342
https://doi.org/10.3842/SIGMA.2005.018
We investigate the symmetry properties of a pair of Ermakov equations. The system is superintegrable and yet possesses only three Lie point symmetries with the algebra sl(2, R). The number of point symmetries is insufficient, and the algebra is unsuitable for the complete specification of the system. We use the method of reduction of order to reduce the nonlinear fourth-order system to a third-order system comprising a linear second-order equation and a conservation law. We obtain the representation of the complete symmetry group from this system. Four of the required symmetries are nonlocal, and the algebra is the direct sum of a one-dimensional Abelian algebra with the semidirect sum of a two-dimensional solvable algebra with a two-dimensional Abelian algebra. The problem illustrates the difficulties that can arise in very elementary systems. Our treatment demonstrates the existence of possible routes to overcome these problems in a systematic fashion.
PGLL thanks the University of KwaZulu-Natal for its continuing support.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Ermakov's Superintegrable Toy and Nonlocal Symmetries
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Ermakov's Superintegrable Toy and Nonlocal Symmetries
spellingShingle Ermakov's Superintegrable Toy and Nonlocal Symmetries
Leach, P.G.L.
Karasu (Kalkanli), A.
Nucci, M.C.
Andriopoulos, K.
title_short Ermakov's Superintegrable Toy and Nonlocal Symmetries
title_full Ermakov's Superintegrable Toy and Nonlocal Symmetries
title_fullStr Ermakov's Superintegrable Toy and Nonlocal Symmetries
title_full_unstemmed Ermakov's Superintegrable Toy and Nonlocal Symmetries
title_sort ermakov's superintegrable toy and nonlocal symmetries
author Leach, P.G.L.
Karasu (Kalkanli), A.
Nucci, M.C.
Andriopoulos, K.
author_facet Leach, P.G.L.
Karasu (Kalkanli), A.
Nucci, M.C.
Andriopoulos, K.
publishDate 2005
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We investigate the symmetry properties of a pair of Ermakov equations. The system is superintegrable and yet possesses only three Lie point symmetries with the algebra sl(2, R). The number of point symmetries is insufficient, and the algebra is unsuitable for the complete specification of the system. We use the method of reduction of order to reduce the nonlinear fourth-order system to a third-order system comprising a linear second-order equation and a conservation law. We obtain the representation of the complete symmetry group from this system. Four of the required symmetries are nonlocal, and the algebra is the direct sum of a one-dimensional Abelian algebra with the semidirect sum of a two-dimensional solvable algebra with a two-dimensional Abelian algebra. The problem illustrates the difficulties that can arise in very elementary systems. Our treatment demonstrates the existence of possible routes to overcome these problems in a systematic fashion.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/209342
citation_txt Ermakov's Superintegrable Toy and Nonlocal Symmetries / P.G.L. Leach, A. Karasu (Kalkanli), M.C. Nucci, K. Andiopoulos // Symmetry, Integrability and Geometry: Methods and Applications. — 2005. — Т. 1. — Бібліогр.: 50 назв. — англ.
work_keys_str_mv AT leachpgl ermakovssuperintegrabletoyandnonlocalsymmetries
AT karasukalkanlia ermakovssuperintegrabletoyandnonlocalsymmetries
AT nuccimc ermakovssuperintegrabletoyandnonlocalsymmetries
AT andriopoulosk ermakovssuperintegrabletoyandnonlocalsymmetries
first_indexed 2025-12-07T20:04:55Z
last_indexed 2025-12-07T20:04:55Z
_version_ 1850886151582253056