Ermakov's Superintegrable Toy and Nonlocal Symmetries

We investigate the symmetry properties of a pair of Ermakov equations. The system is superintegrable and yet possesses only three Lie point symmetries with the algebra sl(2, R). The number of point symmetries is insufficient, and the algebra is unsuitable for the complete specification of the system...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry, Integrability and Geometry: Methods and Applications
Date:2005
Main Authors: Leach, P.G.L., Karasu (Kalkanli), A., Nucci, M.C., Andriopoulos, K.
Format: Article
Language:English
Published: Інститут математики НАН України 2005
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/209342
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Ermakov's Superintegrable Toy and Nonlocal Symmetries / P.G.L. Leach, A. Karasu (Kalkanli), M.C. Nucci, K. Andiopoulos // Symmetry, Integrability and Geometry: Methods and Applications. — 2005. — Т. 1. — Бібліогр.: 50 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine

Similar Items